(完整版)Matlab学习系列13.数据插值与拟合
- 格式:doc
- 大小:3.92 MB
- 文档页数:21
matlab的数据拟合与插值Matlab 的数据的分析处理-拟合与插值在数学建模过程中,常常需要确定⼀个变量依存于另⼀个或更多的变量的关系,即确定这些变量之间的函数关系。
但在实际中确定这些变量之间函数函数关系时往往没有先验的依据,只能在收集的实际数据的基础上对若⼲合乎理论的形式进⾏试验,从中选择⼀个最有可能反映实际的函数形式,这就是统计学中的拟合和回归⽅程问题。
本节我们主要介绍如何分析处理实际中得到的数据。
下⾯先看⼀个例⼦。
例1 “⼈⼝问题”是我国最⼤社会问题之⼀,估计⼈⼝数量和发展趋势是我们制定⼀系列相关政策的基础。
有⼈⼝统计年鉴,可查到我国从1949年⾄1994⼀般地,我们采⽤下⾯的分析处理⽅法:⾸先,在直⾓坐标系上作出⼈⼝数与年份的散点图象。
观察随着年份的增加⼈⼝数与年份变化关系,初步估计出他们之间的关系可近似地可看做⼀条直线。
那么我们如何把这条直线⽅程确定出来呢?并⽤他来估计1999年我国的⼈⼝数。
⽅法⼀:先选择能反映直线变化的两个点,如(1949,541.67),(1984,1034.75)⼆点确定⼀条直线,⽅程为 N = 14.088 t – 26915.842 ,代⼊t =1999,得N ≈12.46亿⽅法⼆:可以多取⼏组点对,确定⼏条直线⽅程,将t = 1999代⼊,分别求出⼈⼝数,在取其算数平值。
⽅法三:可采⽤“最⼩⼆乘法”求出直线⽅程。
这就是曲线拟合的问题。
⽅法⼀与⽅法⼆都具有⼀定的局限性,下⾯我们重点介绍数据的曲线拟合。
所谓曲线拟合是指给定平⾯上的n 个点(x i ,y i ),i=1,2,….,n,找出⼀条曲线使之与这些点相当吻合,这个过程称之为曲线拟合。
最常见的曲线拟合是使⽤多项式来作拟合曲线。
曲线拟合最常⽤的⽅法是最⼩⼆乘法。
其原理是求f(x),使21])([i ni i y x f -=∑=δ达到最⼩。
matlab 提供了基本的多项式曲线拟合函数命令polyfit格式::polyfit(x,y,n)说明:polyfit(x,y,n)是找n 次多项式p(x)的系数,这些系数满⾜在最⼩⼆乘法意义下p(x(i)) ~= y(i).已知⼀组数据,⽤什么样的曲线拟合最好呢?可以根据散点图进⾏直观观察,在此基础上,选择⼏种曲线分别拟合,然后⽐较,观察那条曲线的最⼩⼆乘指标最⼩。
matlab插值与拟合
在MATLAB中,插值和拟合都是通过函数来实现的。
插值是通过创建新的数据点来填充在已知数据点之间的空白。
MATLAB提供了几种不同的插值方法,例如分段线性插值、三次样条插值、立方插值等。
具体使用哪种插值方法取决于数据的特性和所需的精度。
插值函数的一般形式是`interp1(x, y, xi, 'method')`,其中`x`和`y`是已知的数据点,`xi`是待插值点的横坐标向量,`method`是插值方法,例如最近邻点插值、线性插值、三次样条插值、立方插值等。
拟合是通过调整一个数学模型来使得该模型尽可能地接近给定的数据点。
在MATLAB中,可以使用`polyfit`函数进行多项式拟合。
该函数的一般形式是`p = polyfit(x, y, n)`,其中`x`和`y`是已知的数据点,`n`是多项式的阶数。
该函数返回一个向量`p`,表示多项式的系数。
可以使用`polyval`函数来评估这个多项式模型在给定数据点上的值。
需要注意的是,插值和拟合都是数学上的近似方法,它们只能尽可能地逼近真实的情况,而不能完全准确地描述数据的变化。
因此,选择合适的插值和拟合方法是非常重要的。
Matlab曲线拟合工具箱zy搜集整理1 插值 (1)1.1 一维插值interp1 (1)1.2 二维数据内插值interp2 (3)1.3 三维插值interp3 (4)1.4 快速Fourier 算法作一维插值interpft (5)1.5 命令5 griddata (5)1.6 三次样条数据插值spline (6)1.7 n 维数据插值interpn (7)1.8 生成三位图形矩阵数据meshgrid (8)1.9 多维函数数据产生函数ndgrid (8)2 拟合 (9)2.1 多项式曲线拟合ployfit (9)2.2 多项式曲线求值函数polyval (10)2.3 多项式曲线拟合的评价和置信区间函数polyconf (10)2.4 稳健回归函数robust (11)2.5 向自定义函数拟合nlinfit (12)2.6 拟合工具cftool (13)3 回归分析 (14)3.1 多元线性回归分析函数regress (15)1插值Matlab中插值函数汇总和使用说明1.1 一维插值interp1MATLAB中的插值函数为interp1,其调用格式为:yi= interp1(x,y,xi,'method') 其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量,'method'表示采用的插值方法,MATLAB提供的插值方法有几种:'method'是最邻近插值,'linear'线性插值;'spline'三次样条插值;'cubic'立方插值.缺省时表示线性插值注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。
例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18 ,24,28,27,25,20,18,15,13,推测中午12点(即13点)时的温度.x=0:2:24;y=[12 9 9 10 18 24 28 27 25 20 18 15 13];a=13;y1=interp1(x,y,a,'spline')结果为:27.8725若要得到一天24小时的温度曲线,则:xi=0:1/3600:24;yi=interp1(x,y,xi, 'spline');plot(x,y,'o' ,xi,yi)命令1 interp1功能一维数据插值(表格查找)。
在Matlab中如何进行数据插值与拟合引言:数据处理是科学研究与工程开发中不可或缺的环节之一。
而数据插值和拟合则是数据处理中常用的技术手段。
在Matlab这一强大的数值分析工具中,提供了丰富的函数与工具箱,使得数据插值与拟合变得更加便捷高效。
本文将详细阐述在Matlab中如何进行数据插值与拟合,并介绍几个常用的插值与拟合方法。
一、数据插值数据插值是通过已知的有限个数据点,推导出数据点之间未知位置上的数值。
在Matlab中,可以利用interp1函数进行数据插值。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据插值:1. 调用interp1函数,并传入x和y作为输入参数。
```matlabxi = linspace(min(x), max(x), n);yi = interp1(x, y, xi, '方法');```其中,xi是插值点的位置,min和max分别是x向量的最小值和最大值,n是插值点的数量。
'方法'是要使用的插值方法,可以选择线性插值(method='linear')、样条插值(method='spline')等。
2. 绘制插值结果曲线。
```matlabplot(x, y, 'o', xi, yi)legend('原始数据','插值结果')```使用plot函数可以绘制原始数据点和插值结果的曲线。
通过设置不同的插值方法和插值点的数量,可以探索不同的插值效果。
二、数据拟合数据拟合是通过已知的一组数据点,找到一个符合数据趋势的函数模型。
在Matlab中,可以利用polyfit函数进行多项式拟合。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据拟合:1. 调用polyfit函数,并传入x和y作为输入参数。
```matlabp = polyfit(x, y, n);```其中,n是多项式的次数,p是拟合多项式的系数。
插值与拟合的MATLAB实现插值和拟合是MATLAB中常用的数据处理方法。
插值是通过已知数据点之间的数值来估计未知位置的数值。
而拟合则是通过已知数据点来拟合一个曲线或者函数,以便于进行预测和分析。
插值方法:1.线性插值:使用MATLAB中的interp1函数可以进行线性插值。
interp1函数的基本语法为:yinterp = interp1(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据已知数据点的线性关系,在xinterp位置返回相应的yinterp值。
2.拉格朗日插值:MATLAB中的lagrangepoly函数可以使用拉格朗日插值方法。
lagrangepoly的基本语法为:yinterp = lagrangepoly(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据拉格朗日插值公式,在xinterp位置返回相应的yinterp值。
3.三次样条插值:使用MATLAB中的spline函数可以进行三次样条插值。
spline函数的基本语法为:yinterp = spline(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据已知数据点之间的曲线关系,在xinterp位置返回相应的yinterp值。
拟合方法:1.多项式拟合:MATLAB中的polyfit函数可以进行多项式拟合。
polyfit的基本语法为:p = polyfit(x, y, n),其中x和y为已知数据点的向量,n为要拟合的多项式的次数。
函数返回一个多项式的系数向量p,从高次到低次排列。
通过使用polyval函数,我们可以将系数向量p应用于其他数据点,得到拟合曲线的y值。
2.曲线拟合:MATLAB中的fit函数可以进行曲线拟合。
fit函数的基本语法为:[f, goodness] = fit(x, y, 'poly2'),其中x和y为已知数据点的向量,'poly2'表示要拟合的曲线类型为二次多项式。
MATLAB中的数据插值与拟合方法介绍概述数据处理是科学研究和工程实践中的重要环节之一。
对于实验或观测数据,我们常常需要通过插值和拟合方法来获取更加精确和连续的函数或曲线。
在MATLAB中,有多种方法和函数可以用于实现数据插值和拟合,本文将介绍其中的一些常用方法。
一、数据插值数据插值是指利用有限个数据点,通过某种方法构建一个连续的函数,以实现在这些点之间任意位置的数值估计。
在MATLAB中,常用的数据插值方法有线性插值、多项式插值、三次样条插值等。
1. 线性插值线性插值是最简单的插值方法之一,假设我们有两个数据点 (x1, y1) 和 (x2, y2),要在这两个点之间插值一个新的点 (x, y),线性插值即为连接 (x1, y1) 和 (x2, y2) 这两个点的直线上的点(x, y)。
在MATLAB中,可以通过interp1函数进行线性插值。
2. 多项式插值多项式插值是使用一个低次数的多项式函数来拟合数据的方法。
在MATLAB 中,可以通过polyfit函数进行多项式拟合,然后利用polyval函数来进行插值。
具体的插值效果与所选用的多项式阶数有关。
3. 三次样条插值三次样条插值算法利用相邻数据点之间的三次多项式来拟合数据,从而构成一条光滑的曲线。
在MATLAB中,可以通过spline函数进行三次样条插值。
二、数据拟合除了插值方法外,数据拟合也是处理实验或观测数据的常见方法之一。
数据拟合是指通过选择一个特定的数学模型,使该模型与给定的数据点集最好地拟合。
在MATLAB中,常用的数据拟合方法有多项式拟合、指数拟合、非线性最小二乘拟合等。
1. 多项式拟合在MATLAB中,可以使用polyfit函数进行多项式拟合。
该函数通过最小二乘法来拟合给定数据点集,并得到一个多项式函数。
根据所选用的多项式阶数,拟合效果也会有所不同。
2. 指数拟合指数拟合常用于具有指数关系的数据。
在MATLAB中,可以通过拟合幂函数的对数来实现指数拟合。
建模中数据处理和分析班级 学号 姓名 实验地点 完成日期 成绩(一)实验目的与要求应用matlab 处理数据并分析,主要学会并熟练掌握数据拟合和插值。
(二)实验内容1. 用下面一组数据拟合ktbea t c 02.0)(-+=中的参数a ,b ,k2.在某山区测得一些地点的高程如下表。
平面区域为 1200<=x<=4000,1200<=y<=3600) 试作出该山区的地貌图X Y 120016002000240028003200360040001200 1130 1250 1280 1230 1040 900 500 700 1600 1320 1450 1420 1400 1300 700 900 850 2000 1390 1500 1500 1400 900 1100 1060 950 2400 1500 1200 1100 1350 1450 1200 1150 1010 2800 1500 1200 1100 1550 1600 1550 1380 1070 3200 1500 1550 1600 1550 1600 1600 1600 1550 36001480 1500 1550 1510 1430 1300 1200 980(三)实验具体步骤 实验1要先建立一个M 文件,文件中代码如下: function F=myfun(x,xdata) F=x(1)+x(2)*exp(-0.02*x(3)*xdata) 接下来在command window 中输入如下代码: Clc Clearxdata=[100:100:1000];ydata=[4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59]/1000; x0=[0.2 0.05 0.05];[x,resnorm]=lsqcurvefit(@myfun,x0,xdata,ydata) 接着MATLAB 会进行若干次运算,并给出结果:所以拟合的结果是a=0.0063,b=-0.0034,c=0.2542 然后,我们作图看看拟合的结果,输入代码plot(xdata,0.0063-0.0034*exp(-0.02*0.2542*xdata),xdata,ydata,'o') 得到图像如下:实验二建立一个m 文件,在其中输入代码如下: x=1200:400:4000;y=1200:400:3600;100200300400500600700800900100044.555.566.57x 10-3temps=[1130 1250 1280 1230 1040 900 500 700;1320 1450 1420 1400 1300 700 900 850;1390 1500 1500 1400 900 1100 1060 950;1500 1200 1100 1350 1450 1200 1150 1010;1500 1200 1100 1550 1600 1550 1380 1070;1500 1550 1600 1550 1600 1600 1600 1550;1480 1500 1550 1510 1430 1300 1200 980];mesh(x,y,temps)xi=1200:30:4000;yi=1200:30:3600;zi=interp2(x,y,temps,xi',yi,'cubic');mesh(xi,yi,zi)meshz(xi,yi,zi)colordef black运行后打开图形窗口的属性设置对话框,对背景,颜色等属性进行设置,得到下图:(四)实验结果实验中顺利得到拟合结果以及一个三维图像,虽然过程艰辛,但结果十分美好。
13. 数据插值与拟合实际中,通常需要处理实验或测量得到的离散数据(点)。
插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。
1.如果要求近似函数经过所已知的所有数据点,此时称为插值问题(不需要函数表达式)。
2.如果不要求近似函数经过所有数据点,而是要求它能较好地反映数据变化规律,称为数据拟合(必须有函数表达式)。
插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。
区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。
【拟合】要求得到一个具体的近似函数的表达式。
因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。
当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。
一、数据插值根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值)(2)分段线性插值(3)Hermite(4)三次样条插值Matlab 插值函数实现:(1)interp1( ) 一维插值(2)intep2( ) 二维插值(3)interp3( ) 三维插值(4)intern( ) n维插值1.一维插值(自变量是1维数据)语法:yi = interp1(x0, y0, xi, ‘method’)其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。
注:(1)要求x0是单调的,xi不超过x0的范围;(2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;默认为分段线性插值。
例1 从1点12点的11小时内,每隔1小时测量一次温度,测得的温度的数值依次为:5,8,9,15,25,29,31,30,22,25,27,24.试估计每隔1/10小时的温度值。
代码:hours=1:12;temps=[5 8 9 15 25 29 31 30 22 25 27 24]; h=1:0.1:12;t=interp1(hours,temps,h,'spline');plot(hours,temps,'+',h,t,hours,temps,'r:') % 作图,原散点数据用+标记xlabel('Hour'),ylabel('Degrees Celsius')运行结果:5101520253035HourD e g r e e s C e l s i u s2.二维插值(自变量是2维数据)语法:zi = interp2(x0, y0, z0, xi, yi, ‘method’)其中,x0, y0, z0为原离散数据(x0, y0为自变量,z0为因变量);xi, yi为需要插值的节点,method为插值方法。
注:(1)要求x0, y0是单调的,xi, yi不超过x0, y0的范围,注意:要求xi取为行向量,yi取列向量;(2)插值方法有‘nearest’——最邻近插值;‘linear’——双线性插值;‘cubic’——双三次插值;默认为双线性插值。
例2山区地貌:在某山区测得一些地点的高度如下表:(平面区域为:1200<=x<=4000, 1200<=y<=3600)试作出该山区的地貌图和等高线图。
代码:x0=1200:400:4000;y0=1200:400:3600;height=[1130 1250 1280 1230 1040 900 500 700;1320 1450 1420 1400 1300 700 900 850;1390 1500 1500 1400 900 1100 1060 950;1500 1200 1100 1350 1450 1200 1150 1010;1500 1200 1100 1550 1600 1550 1380 1070;1500 1550 1600 1550 1600 1600 1600 1550;1480 1500 1550 1510 1430 1300 1200 980];mesh(x0,y0,height)title('原数据散点图');pause % 等待,按任意键切换到新图形xi=1200:5:4000;yi=1200:5:3600;zi=interp2(x0,y0,height,xi',yi,'cubic');mesh(xi,yi,zi)title('cubic 插值图');运行结果:另外,二维插值函数还有griddata函数,格式类似cz = griddata(x0, y0, z0, cx, cy, ‘method’)插值方法有‘nearest’——最邻近插值;‘linear’——双线性插值;‘cubic’——双三次插值;‘v4’——Matlab提供的插值方法;默认为双线性插值。
与interp2区别是,interp2的插值数据必须是矩形域,即已知数据点(x,y)组成规则的矩阵(或称之为栅格),可使用meshgid生成。
而griddata函数的已知数据点(X,Y)不要求规则排列,特别是对试验中随机没有规律采取的数据进行插值具有很好的效果。
例3在某海域测得一些点(x,y)处的水深z由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)×(-50,150)里的哪些地方船要避免进入.作海底曲面图,作出水深小于5的海域范围, 即z=5的等高线。
代码:x = [129.0 140.0 103.5 88.0 185.5 195.0 105.5 157.5 107.5 77.0 81.0 162.0 162.0 117.5];y = [7.5 141.5 23.0 147.0 22.5 137.5 85.5 -6.5 -81 3.0 56.5 -66.5 84.0 -33.5];z = [4 8 6 8 6 8 8 9 9 8 8 9 4 9];x1=75:1:200;y1=-50:1:150;[x1,y1]=meshgrid(x1,y1);z1=griddata(x,y,z,x1,y1,'v4');meshc(x1,y1,z1)pausez1(z1>=5)=nan; %将水深大于5的置为nan,这样绘图就不会显示出来meshc(x1,y1,z1)运行结果:150二、 数据拟合拟合最常用的方法为最小二乘法。
原理是:因变量的实际值与拟合值之差,称为残差(拟合误差),将所有残差平方后相加,即得误差平方和,“最好”拟合效果就是使误差平方和最小,于是运用极值原理,将“求最好拟合问题”转换为“求误差平方和最小”问题。
Matlab 实现: 1. 多项式拟合f (x )=a 1x m + …+a m x +a m+1语法:150a = polyfit(x0, y0, m);y = polyval(a, x);注:(1)x,y的长度相同,m为拟合多项式次数,m=1时,一次多项式对应一条直线,也称为线性拟合(一元线性回归);(2)a返回的是拟合多项式的系数:[a1, a2, …, am];(3)polyval函数用来计算拟合多项式在x点处的取值;(4)拟合多项式的次数一般为1-3次,不宜过高,否则有龙格现象(两端出现很大误差)。
例4 1949年—1994年我国人口数据资料如下:分析我国人口增长的规律,预报2005年我国人口数。
代码:x0=[1949 1954 1959 1964 1969 1974 1979 1984 1989 1994];y0=[5.4 6.0 6.7 7.0 8.1 9.1 9.8 10.3 11.3 11.8];a=polyfit(x0,y0,1); % 线性拟合x1=[1949:0.5:1994];y1=polyval(a,x1);% 或者直接用多项式计算:y1 = a(1)*x1 + a(2);y1_2005=polyval(a,2005)b=polyfit(x0,log(y0),1); % 指数函数拟合y2=exp(b(2))*exp(b(1)*x1);y2_2005=exp(b(2))*exp(b(1)*2005)plot(x0,y0,'*')hold onplot(x1,y1,'--r')hold onplot(x1,y2,'-k')legend('原数据散点图','线性拟合曲线','指数拟合曲线')运行结果:y1_2005 = 13.5080 y2_2005 = 15.0596注:(1)实际2005年人口是13.3 亿,可见线性拟合效果更好; (2)人口指数增长模型为:bx y a e =⋅,两边取ln 得ln y = ln a + bx令Y=ln y ,A=ln a ,B=b ,则转化为直线方程:Y = A + Bx故可以作线性拟合得到A ,B 值,从而得到A Bx y e e =⋅. 一般可以转化为直线方程的曲线有:5678910111213(Logistic 生长曲线,就是S 型曲线)2. 多元线性回归011n n y x x βββε=++++Lβi 为回归系数,ε为残差。
n=1时为线性回归。
Matlab 实现:[b, bint, r, rint, stats] = regress(y, x, α);注:(1)整体是一个假设检验(是否符合多元线性关系):原假设H 0:βi =0(即不存在线性关系)备择假设H 1:βi ≠0(回归式成立);(2)若有常数项β0,则x 的第一列必须全为1;(3)α为显著性水平的概率,默认是0.05;(4)b 返回β0, β1,…βn 值的点估计,bint 返回β0, β1,…βn 值的区间估计,r 返回残差的点估计,rint 返回残差的区间估计;(5)stats 返回4个数:相关系数平方r 2 (越大越好,若小于0.5结果无价值) F 统计量(用于计算概率)拒绝原假设的概率(< α时拒绝) (越小越好)剩余方差=残差平方和/[数据个数-(n+1)] (越小越好)其中,n+1为回归系数β0, β1,…βn 的个数。
例5 已知某动物的进食量与体重数据为拟合直线y=β0+ β1x.代码:food=[1.5 2 3 4.5 7.5 9.1 10.5 12];n=length(food);x=[ones(n,1), food'];y=[5.6 6.6 7.2 7.8 10.1 10.8 13.5 16.5]';[b,bint,r,rint,stat] = regress(y,x,0.05)运行结果:b = 4.15750.8950 ——>回归方程:y= 4.1575 + 0.8950xbint = 2.4692 5.8458 ——> 4.1575∈[2.4692, 5.8458]0.6644 0.6644 ——> 0.8950∈[0.6644, 0.6644]r = 0.1000 ——> 残差1: 5.6-(4.1575 + 0.8950*1.5)=0.10.65250.3575-0.3850-0.7701-1.5021-0.05511.6024rint = -2.1283 2.3283 ——> 0.1000 ∈[-2.1283, 2.3283]-1.5282 2.8332-2.0074 2.7223-2.8445 2.0744-3.1401 1.5999-3.2935 0.2893-2.3519 2.24170.4846 2.7201stat = 0.9376 90.1871 0.0001 1.0220——> r2=0.9376 > 0.5(说明结果很好)0.0001 < α = 0.05 (拒绝原假设,接受备择假设)【残差r的平方和/[数据个数-(n+1)]】:(0.10002+0.65252+…+1.60242)/[8-(1+1)]=1.02203.一般曲线拟合(非线性回归)曲线形式y=f(a, x)已知,但其中a=[a1, a2, …] 为未知的待定系数。