matlab 软件拟合与插值运算实验报告
- 格式:doc
- 大小:275.00 KB
- 文档页数:11
湖南大学电气与信息工程学院 《数值计算》课程 上机实验报告姓名: 班级: 学号: 日期:指导老师:本次实验题号:第 3 次实验1) 实验目的:1) 用MATLAB 实现拉格朗日插值和分段线性插值。
2) 了解matlab 实现曲线拟合方法的实际应用。
二. 实验内容:1) 插值算法的应用:题目:用拉格朗日插值程序,分段线形插值函数分别研究f (X )的数据表,计算f(0.472) X 0.46 0.47 0.48 0.49 Y0.48465550.49375420.50274980.51166832) 曲线拟合方法的实际应用用电压V=10V 的电池给电容器充电,电容器上t 时刻的电压v(t)=V-(V-V0)e^(-t/T),其中V0是电容器的初始电压,T 是充电常数。
实验测量了一组数据如下,请根据数据表确定V0和T 的大小。
t 0.5 1 2 3 4 5 7 9 V(t) 6.366.487.268.228.668.999.439.63三. 算法介绍或方法基础1.1 拉格朗日插值法对于已给定的点 00(,),...,(,)k k x y x y 和待估计的点的横坐标x ,如上述理论,将其值代入1100,011()()()()():......()()()()kj j i k j i i j j i j j j j j j kx x x x x x x x x x l x x x x x x x x x x x -+=≠-+-----==-----∏计算出插值基函数的值,然后根据公式:():()ki i j L x y l x ==∑计算出纵坐标的估计值,由此完成对该点的插值过程,其中k 为该点插值的阶数。
1.2 线性分段插值利用已给定的点 00(,),...,(,)k k x y x y 对插值区间分为1k -段,将每段的端点(,)i i x y 与 11(,)i i x y ++作为数据点利用公式100010()()()()()f x f x p x f x x x x x -=+--在所构成的区间进行线性插值。
一、实验目的用matlab测试数据的拟合与插值二、实验原理1 拟合(1)polyfit函数MATLAB的polyfit函数用于多项式拟合,其语法为:p = polyfit(x, y, k);其中,x,y分别是横纵坐标向量,它们不仅元素个数相同,而且同为行向量或同为列向量。
k为非负整数,是待拟合的多项式的最高次数。
p是输出项,为待拟合的多项式的系数向量(由高次到低次排列)。
在进行多项式拟合时,必须注意的是,拟合的精度是有限的,一般而言,需要满足以下条件:记m为不重复的横坐标的数目,则拟合次数k <= m - 1,在此前提下尽量使用低次多项式进行拟合。
(2)polyval函数polyval,顾名思义就是“多项式的值”,该函数的功能是将已知数据代入拟合得的多项式求值。
语法格式:y = polyval(p, x);其中,p是已经拟合的多项式(比如说(1)中的p),x是自变量组成的向量,y是所求值组成的向量。
(3)计算多项式拟合的方差已知原始数据x和y,拟合得到多项式p,判断拟合效果好坏的一个重要指标是方差,方差的计算方法是e = sum((y - polyval(p, x)).^2).polyval(p, x)得到拟合值向量,y是真实值向量,两者相减得到真实值和拟合值的差值向量,“.^2”表示对矩阵中的每一个元素进行平方运算,于是得到差值向量中每一个元素的平方,sum是求和函数,显然就是求差值向量元素的平方和,而这就是方差。
2 插值法:插值法又称“内插法”,是利用函数f (x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f(x)的近似值,这种方法称为插值法。
三、实验设备、仪器及材料Windows7 ,matlab软件四、实验步骤(按照实际操作过程)(1)开启软件平台——MATLAB,开启MATLAB编辑窗口(2)根据各种数值解法步骤编写M文件(3)保存文件并运行(4)观察运行结果(数值或图形)(5)根据观察到的结果写出实验报告,并浅谈学习心得体会五、实验过程记录(程序)(1)在MATLAB的命令窗口输入以下代码:>> x = [1, 2, 3, 4];>> y = [3, 5, 7, 9];>> p = polyfit(x, y, 1)敲击回车键,得到输出结果:p =2.0000 1.0000所以拟合得的函数就是:y = 2.0000X + 1.0000.在进行多项式拟合时,必须注意的是,拟合的精度是有限的,一般而言,需要满足以下条件:记m为不重复的横坐标的数目,则拟合次数k <= m - 1,在此前提下尽量使用低次多项式进行拟合。
数值分析matlab实验报告数值分析MATLAB实验报告引言:数值分析是一门研究利用计算机进行数值计算和解决数学问题的学科。
它在科学计算、工程技术、金融等领域中有着广泛的应用。
本实验旨在通过使用MATLAB软件,探索数值分析的基本概念和方法,并通过实际案例来验证其有效性。
一、插值与拟合插值和拟合是数值分析中常用的处理数据的方法。
插值是通过已知数据点之间的函数关系,来估计未知数据点的值。
拟合则是通过一个函数来逼近一组数据点的分布。
在MATLAB中,我们可以使用interp1函数进行插值计算。
例如,给定一组离散的数据点,我们可以使用线性插值、多项式插值或样条插值等方法,来估计在两个数据点之间的未知数据点的值。
拟合则可以使用polyfit函数来实现。
例如,给定一组数据点,我们可以通过最小二乘法拟合出一个多项式函数,来逼近这组数据的分布。
二、数值积分数值积分是数值分析中用于计算函数定积分的方法。
在实际问题中,往往无法通过解析的方式求得一个函数的积分。
这时,我们可以使用数值积分的方法来近似计算。
在MATLAB中,我们可以使用quad函数进行数值积分。
例如,给定一个函数和积分区间,我们可以使用quad函数来计算出该函数在给定区间上的定积分值。
quad函数使用自适应的方法,可以在给定的误差限下,自动调整步长,以保证积分结果的精度。
三、常微分方程数值解常微分方程数值解是数值分析中研究微分方程数值解法的一部分。
在科学和工程中,我们经常遇到各种各样的微分方程问题。
而解析求解微分方程往往是困难的,甚至是不可能的。
因此,我们需要使用数值方法来近似求解微分方程。
在MATLAB中,我们可以使用ode45函数进行常微分方程数值解。
例如,给定一个微分方程和初始条件,我们可以使用ode45函数来计算出在给定时间范围内的解。
ode45函数使用龙格-库塔方法,可以在给定的误差限下,自动调整步长,以保证数值解的精度。
结论:本实验通过使用MATLAB软件,探索了数值分析的基本概念和方法,并通过实际案例验证了其有效性。
新乡学院数学与信息科学系实验报告实验名称插值与拟合所属课程数学软件与实验实验类型综合型实验专业信息与计算科学班级2011级1班学号11111021012姓名李欢丽指导教师朱耀生一、实验概述【实验目的】学会用一维插值函数yi=interp1(xo,yo,x,’menthod ’)求出函数在插值点处的函数值,和用二维函数plot()作图。
用二维插值函数zi=interp2(x0,y0,z0,x,y,’method ’)求其在网格节点数据的插值,和用三维函数surfc()作图.【实验原理】1,一维插值函数yi=interp1(xo,yo,x,’menthod ’),yi 被插值点处的函数值,xo,yo 插值节点,x 被插值点,nearest 最邻近插值,linear 线性插值,spline 三次样条插值,cubic 立方插值,缺省时,为分段线性插值.2,二维作图函数plot(x,y),x ,y 都是向量时,则以x 中元素为横坐标,y 中元素为纵坐标,且x ,y 长度相同。
x,y 都是矩阵,x 列与y 列结合,绘制多条平面曲线,且必同大小。
3,用作网格节点数据的插值zi=interp2(x0,y0,z0,x,y,’method ’),zi 为被插值点的函数值,x0,y0,z0点,x,y 被插值点,’method ’中’nearest ’为最邻近差值,’linear ’为双线性插值,’cubic ’为双三次插值,缺省时为双线性插值。
4,网格生成函数[X,Y]meshgrid(x,y),x,y 为给定的向量,X,Y 是网格划分后得到的网格矩阵绘制三维曲面图;三维曲面绘制函数surfc(x,y,z)【实验环境】MatlabR2010b二、实验内容问题1 对函数21()1f x x =+,x ∈[-5,5],分别用分段线性插值和三次样条插值作插值(其中插值节点不少于20),并分别作出每种插值方法的误差曲线.1.分析问题通过一维插值函数yi=interp1(xo,yo,x,’menthod ’)求出函数在插值点处的函数值,然后用二维函数plot()作图。
实验二:插值与拟合
实验目的:
1. 掌握用MATLAB 计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。
2. 掌握用MATLAB 作线性最小二乘的方法。
3. 通过实例学习如何用插值方法与拟合方法解决实际问题,注意两者的联系与区别。
实验要求:
1. 编制计算拉格朗日插值的m 文件。
2. 练习interp1与interp2使用方法。
3. 通过实例,对三种插值结果进行比较。
4. 最小二乘拟合进行参数估计,并作图进行比较。
实验内容:
1. 选择一些函数,在n 个节点上(n 不要太大,如,5-11)用拉格朗日、分段线性、三次样条三种插值方法,计算m 个插值点的函数值(m 要适中,如50-100),通过数值和图形输出,将三种插值结果与精确值进行比较,通过增加n ,再作比较,由此作初步分析。
(1)π20,sin ≤≤=x x y (2)11,)1(2
1
2≤≤--=x x y (3)22,cos 10≤≤-=x x y (4)22),exp(2≤≤--=x x y
2. 用给定的多项式,如35623-+-=x x x y ,产生一组数据(x i ,y i ,
i=1,2,…,n),再在y i上添加随机干扰(可用rand产生),然后用x i 和添加了随机干扰的y i作3次多项式拟合,与原系数比较,如果作2或4次多项式拟合,结果如何?
3.在化工生产中,常常需要知道丙烷在各种温度T和压力P下的导
热系数K,下面是实验得到的一组数据:
试求T=99和P=10.3下的K。
程序设计实验报告(matlab)实验一: 程序设计基础实验目的:初步掌握机器人编程语言Matlab。
实验内容:运用Matlab进行简单的程序设计。
实验方法:基于Matlab环境下的简单程序设计。
实验结果:成功掌握简单的程序设计和Matlab基本编程语法。
实验二:多项式拟合与插值实验目的:学习多项式拟合和插值的方法,并能进行相关计算。
实验内容:在Matlab环境下进行多项式拟合和插值的计算。
实验方法:结合Matlab的插值工具箱,进行相关的计算。
实验结果:深入理解多项式拟合和插值的实现原理,成功掌握Matlab的插值工具箱。
实验三:最小二乘法实验目的:了解最小二乘法的基本原理和算法,并能够通过Matlab进行计算。
实验内容:利用Matlab进行最小二乘法计算。
实验方法:基于Matlab的线性代数计算库,进行最小二乘法的计算。
实验结果:成功掌握最小二乘法的计算方法,并了解其在实际应用中的作用。
实验六:常微分方程实验目的:了解ODE的基本概念和解法,并通过Matlab进行计算。
实验内容:利用Matlab求解ODE的一阶微分方程组、变系数ODE、高阶ODE等问题。
实验方法:基于Matlab的ODE工具箱,进行ODE求解。
实验结果:深入理解ODE的基本概念和解法,掌握多种ODE求解方法,熟练掌握Matlab的ODE求解工具箱的使用方法。
总结在Matlab环境下进行程序设计实验,使我对Matlab有了更深刻的认识和了解,也使我对计算机科学在实践中的应用有了更加深入的了解。
通过这些实验的学习,我能够灵活应用Matlab进行各种计算和数值分析,同时也能够深入理解相关的数学原理和算法。
这些知识和技能对我未来的学习和工作都将有着重要的帮助。
matlab插值实验报告Matlab插值实验报告引言:在数学和工程领域中,插值是一种常见的数据处理方法。
它通过已知数据点之间的推断来填补数据的空缺部分,从而获得连续的函数或曲线。
Matlab是一种功能强大的数值计算软件,具备丰富的插值函数和工具包。
本实验旨在通过使用Matlab进行插值实验,探索插值方法的原理和应用。
实验步骤:1. 数据准备首先,我们需要准备一组实验数据。
以一个简单的二维函数为例,我们选择f(x) = sin(x),并在区间[0, 2π]上取若干个等间隔的点作为已知数据点。
2. 线性插值线性插值是插值方法中最简单的一种。
它假设函数在两个已知数据点之间是线性变化的。
在Matlab中,可以使用interp1函数进行线性插值。
我们将已知数据点和插值结果绘制在同一张图上,以比较它们之间的差异。
3. 多项式插值多项式插值是一种常用的插值方法,它通过已知数据点构造一个多项式函数来逼近原始函数。
在Matlab中,polyfit函数可以用来拟合多项式。
我们可以选择不同的多项式次数进行插值,并观察插值结果与原始函数之间的差异。
4. 样条插值样条插值是一种更为精确的插值方法,它通过在每个小区间内构造局部多项式函数来逼近原始函数。
在Matlab中,可以使用spline函数进行样条插值。
我们可以选择不同的插值节点数目,并比较插值结果的平滑程度和逼近效果。
5. 拉格朗日插值拉格朗日插值是一种基于多项式的插值方法,它通过构造插值多项式来逼近原始函数。
在Matlab中,可以使用polyval函数进行拉格朗日插值。
我们可以选择不同的插值节点数目,并观察插值结果与原始函数之间的差异。
实验结果:通过实验,我们得到了不同插值方法的结果,并将其与原始函数进行了比较。
在线性插值中,我们观察到插值结果与原始函数之间存在一定的误差,特别是在函数变化较快的区域。
而多项式插值和样条插值在逼近原始函数方面表现更好,特别是在插值节点数目较多的情况下。
插值法和拟合实验报告一、实验目的1.通过实验了解插值法和拟合法在数值计算中的应用;2.掌握拉格朗日插值法、牛顿插值法和分段线性插值法的原理和使用方法;3.学会使用最小二乘法进行数据拟合。
二、实验仪器和材料1.一台计算机;2. Matlab或其他适合的计算软件。
三、实验原理1.插值法插值法是一种在给定的数据点之间“插值”的方法,即根据已知的数据点,求一些点的函数值。
常用的插值法有拉格朗日插值法、牛顿插值法和分段线性插值法。
-拉格朗日插值法:通过一个n次多项式,将给定的n+1个数据点连起来,构造出一个插值函数。
-牛顿插值法:通过递推公式,将给定的n+1个数据点连起来,构造出一个插值函数。
-分段线性插值法:通过将给定的n+1个数据点的连线延长,将整个区间分为多个小区间,在每个小区间上进行线性插值,构造出一个插值函数。
2.拟合法拟合法是一种通过一个函数,逼近已知的数据点的方法。
常用的拟合法有最小二乘法。
-最小二乘法:通过最小化实际观测值与拟合函数的差距,找到最优的参数,使得拟合函数与数据点尽可能接近。
四、实验步骤1.插值法的实验步骤:-根据实验提供的数据点,利用拉格朗日插值法、牛顿插值法、分段线性插值法,分别求出要插值的点的函数值;-比较三种插值法的插值结果,评价其精度和适用性。
2.拟合法的实验步骤:-根据实验提供的数据点,利用最小二乘法,拟合出一个合适的函数;-比较拟合函数与实际数据点的差距,评价拟合效果。
五、实验结果与分析1.插值法的结果分析:-比较三种插值法的插值结果,评价其精度和适用性。
根据实验数据和插值函数的图形,可以判断插值函数是否能较好地逼近实际的曲线。
-比较不同插值方法的计算时间和计算复杂度,评价其使用的效率和适用范围。
2.拟合法的结果分析:-比较拟合函数与实际数据点的差距,评价拟合效果。
可以使用均方根误差(RMSE)等指标来进行评价。
-根据实际数据点和拟合函数的图形,可以判断拟合函数是否能较好地描述实际的数据趋势。
建模中数据处理和分析班级 学号 姓名 实验地点 完成日期 成绩(一)实验目的与要求应用matlab 处理数据并分析,主要学会并熟练掌握数据拟合和插值。
(二)实验内容1. 用下面一组数据拟合ktbea t c 02.0)(-+=中的参数a ,b ,k2.在某山区测得一些地点的高程如下表。
平面区域为 1200<=x<=4000,1200<=y<=3600) 试作出该山区的地貌图X Y 120016002000240028003200360040001200 1130 1250 1280 1230 1040 900 500 700 1600 1320 1450 1420 1400 1300 700 900 850 2000 1390 1500 1500 1400 900 1100 1060 950 2400 1500 1200 1100 1350 1450 1200 1150 1010 2800 1500 1200 1100 1550 1600 1550 1380 1070 3200 1500 1550 1600 1550 1600 1600 1600 1550 36001480 1500 1550 1510 1430 1300 1200 980(三)实验具体步骤 实验1要先建立一个M 文件,文件中代码如下: function F=myfun(x,xdata) F=x(1)+x(2)*exp(-0.02*x(3)*xdata) 接下来在command window 中输入如下代码: Clc Clearxdata=[100:100:1000];ydata=[4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59]/1000; x0=[0.2 0.05 0.05];[x,resnorm]=lsqcurvefit(@myfun,x0,xdata,ydata) 接着MATLAB 会进行若干次运算,并给出结果:所以拟合的结果是a=0.0063,b=-0.0034,c=0.2542 然后,我们作图看看拟合的结果,输入代码plot(xdata,0.0063-0.0034*exp(-0.02*0.2542*xdata),xdata,ydata,'o') 得到图像如下:实验二建立一个m 文件,在其中输入代码如下: x=1200:400:4000;y=1200:400:3600;100200300400500600700800900100044.555.566.57x 10-3temps=[1130 1250 1280 1230 1040 900 500 700;1320 1450 1420 1400 1300 700 900 850;1390 1500 1500 1400 900 1100 1060 950;1500 1200 1100 1350 1450 1200 1150 1010;1500 1200 1100 1550 1600 1550 1380 1070;1500 1550 1600 1550 1600 1600 1600 1550;1480 1500 1550 1510 1430 1300 1200 980];mesh(x,y,temps)xi=1200:30:4000;yi=1200:30:3600;zi=interp2(x,y,temps,xi',yi,'cubic');mesh(xi,yi,zi)meshz(xi,yi,zi)colordef black运行后打开图形窗口的属性设置对话框,对背景,颜色等属性进行设置,得到下图:(四)实验结果实验中顺利得到拟合结果以及一个三维图像,虽然过程艰辛,但结果十分美好。
实验6 数据拟合&插值
一.实验目的
学会MATLAB软件中软件拟合与插值运算的方法。
二.实验内容与要求
在生产和科学实验中,自变量x与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。
当要求知道观测点之外的函数值时,需要估计函数值在该点的值。
要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。
根据测量数据的类型有如下两种处理观测数据的方法。
(1)测量值是准确的,没有误差,一般用插值。
(2)测量值与真实值有误差,一般用曲线拟合。
MATLAB中提供了众多的数据处理命令,有插值命令,拟合命令。
1.曲线拟合
>> x=[0.5,1.0,1.5,2.0,2.5,3.0];
>> y=[1.75,2.45,3.81,4.80,7.00,8.60];
>> p=polyfit (x,y,2);
>> x1=0.5:0.05:3.0;
>> y1=polyval(p,x1 );
>> plot(x,y,'*r',x1,y1,'-b')
2.一维插值
>> year=[1900,1910,1920,1930,1940,1990,2000,2010];
>> product = [75.995,91.972,105.711,123.203,131.669,249.633,256.344,267.893 ]; >> p2005=interp1(year,product,2005)
p2005 =
262.1185
>> y= interp1(year,product,x, 'cubic');
>> plot(year,product,'o',x,y)
3.二维插值
>> years=1950:10:1990;
>> service=10:10:30;
>>
wage=[150.697,199.592,187.625;179.323,195.072,250.287;203.212,179.092,322.767;226.505,15 3.706,426.730;249.636,120.281,598.243];
>> w=interp2(service,years,wage,15,1975)
w =
190.6288
[例1.98]
x=1:6;y=1:4;
t=[12,10,11,11,13,15;16,22,28,35,27,20;18,21,26,32,28,25;20,25,30,33,32,30];
subplot(1,2,1)
mesh(x,y,t)
x1=1:0.1:6;
y1=1:0.1:4;
[x2,y2]=meshgrid(x1,y1);
t1=interp2(x,y,t,x2,y2,'cubic');
subplot(1,2,2)
mesh(x1,y1,t1)
三,练习与思考
1)已知x=[1.2,1.8,2.1,2.4,2.6,3.0,3.3],y=[4.85,5.2,5.6,6.2,6.5,7.0,7.5],求对x和y进行6阶多项式拟合的系数.
x=[1.2,1.8,2.1,2.4,2.6,3.0,3.3];
y=[4.85,5.2,5.6,6.2,6.5,7.0,7.5];
>> p=polyfit(x,y,6)
p =
-2.0107 29.0005 -170.6763 523.2180 -878.3092 763.9307 -263.4667
x1=0.5:0.05:3.0;
>> y1=polyval(p,x1);
>> plot(x,y,'*r',x1,y1,'-b')
2)分别用2,3,4,5阶多项式来逼近[0,3]上的正弦函数sin x,并做出拟合曲线及sin x函数曲线图,了解多项式的逼近程度和有效拟合区间随多项式的阶数有何变化.
(2)
2阶:
>> x=0:0.01:3;
>> y=sin(x);
>> p=polyfit(x,y,2);
>> x1=0:0.01:3;
>> y1=polyval(p,x1);
>> plot(x,y,'*r',x1,y1,'-b')
>>
3阶:
>> p=polyfit(x,y,3); >> x1=0:0.01:3;
>> y1=polyval(p,x1); >> plot(x,y,'*r',x1,y1,'-b') >>
4阶:
>> p=polyfit(x,y,4); >> x1=0:0.01:3;
>> y1=polyval(p,x1); >> plot(x,y,'*r',x1,y1,'-b') >>
5阶:
>> p=polyfit(x,y,5); >> x1=0:0.01:3;
>> y1=polyval(p,x1); >> plot(x,y,'*r',x1,y1,'-b') >>
3)已知x=[0.1,0.8,1.3,1.9,2.5,3.1],y=[1.2,1.6,2.7,2.0,1.3,0.5],用不同的方法求x=2点的插值,并分析所得结果有何不同.
>> x=[0.1,0.8,1.3,1.9,2.5,3.1];y=[1.2,1.6,2.7,2.0,1.3,0.5];
>> p=interp1(x,y,2)
p =
1.8833
>> x=[0.1,0.8,1.3,1.9,2.5,3.1];
y=[1.2,1.6,2.7,2.0,1.3,0.5];
>> z=interp1(x,y,2,'cubic')
z =
1.8844
四,提高内容
1.三维数据插值
[x,y,z,v]=flow(20);
[xx,yy,zz]=meshgrid(0.1:0.25:10,-3:0.25:3,-3:0.25:3); vv=interp3(x,y,z,v,xx,yy,zz);
slice(xx,yy,zz,vv,[6,9.5],[1,2],[-2,0.2]);
shading interp
colormap cool
3.三次样条数据插值
x=[0 2 4 5 6 12 12.8 17.2 19.9 20];
y=exp(x).*sin(x);
xx=0:.25:20;
yy=spline(x,y,xx);
plot(x,y,'o',xx,yy)。