周期图法功率谱估计------窗口效应
- 格式:ppt
- 大小:497.50 KB
- 文档页数:17
FFT和功率谱估计1.用Fourier变换求取信号的功率谱---周期图法clf;Fs=1000;N=256;Nfft=256;%数据的长度和FFT所用的数据长度n=0:N-1;t=n/Fs;%采用的时间序列xn=sin(2*pi*50*t)+2*sin(2*pi*120*t)+randn(1,N);Pxx=10*log10(abs(fft(xn,Nfft).^2)/N);%Fourier振幅谱平方的平均值,并转化为dBf=(0:length(Pxx)-1)*Fs/length(Pxx);%给出频率序列subplot(2,1,1),plot(f,Pxx);%绘制功率谱曲线xlabel('频率/Hz');ylabel('功率谱/dB');title('周期图 N=256');grid on;Fs=1000;N=1024;Nfft=1024;%数据的长度和FFT所用的数据长度n=0:N-1;t=n/Fs;%采用的时间序列xn=sin(2*pi*50*t)+2*sin(2*pi*120*t)+randn(1,N);Pxx=10*log10(abs(fft(xn,Nfft).^2)/N);%Fourier振幅谱平方的平均值,并转化为dBf=(0:length(Pxx)-1)*Fs/length(Pxx);%给出频率序列subplot(2,1,2),plot(f,Pxx);%绘制功率谱曲线xlabel('频率/Hz');ylabel('功率谱/dB');title('周期图 N=256');grid on;2.用Fourier变换求取信号的功率谱---分段周期图法%思想:把信号分为重叠或不重叠的小段,对每小段信号序列进行功率谱估计,然后取平均值作为整个序列的功率谱clf;Fs=1000;N=1024;Nsec=256;%数据的长度和FFT所用的数据长度n=0:N-1;t=n/Fs;%采用的时间序列randn('state',0);xn=sin(2*pi*50*t)+2*sin(2*pi*120*t)+randn(1,N);Pxx1=abs(fft(xn(1:256),Nsec).^2)/Nsec; %第一段功率谱Pxx2=abs(fft(xn(257:512),Nsec).^2)/Nsec;%第二段功率谱Pxx3=abs(fft(xn(513:768),Nsec).^2)/Nsec;%第三段功率谱Pxx4=abs(fft(xn(769:1024),Nsec).^2)/Nsec;%第四段功率谱Pxx=10*log10(Pxx1+Pxx2+Pxx3+Pxx4/4);%Fourier振幅谱平方的平均值,并转化为dBf=(0:length(Pxx)-1)*Fs/length(Pxx);%给出频率序列subplot(2,1,1),plot(f(1:Nsec/2),Pxx(1:Nsec/2));%绘制功率谱曲线xlabel('频率/Hz');ylabel('功率谱/dB');title('平均周期图(无重叠) N=4*256');grid on;%运用信号重叠分段估计功率谱Pxx1=abs(fft(xn(1:256),Nsec).^2)/Nsec; %第一段功率谱Pxx2=abs(fft(xn(129:384),Nsec).^2)/Nsec;%第二段功率谱Pxx3=abs(fft(xn(257:512),Nsec).^2)/Nsec;%第三段功率谱Pxx4=abs(fft(xn(385:640),Nsec).^2)/Nsec;%第四段功率谱Pxx5=abs(fft(xn(513:768),Nsec).^2)/Nsec;%第四段功率谱Pxx6=abs(fft(xn(641:896),Nsec).^2)/Nsec;%第四段功率谱Pxx7=abs(fft(xn(769:1024),Nsec).^2)/Nsec;%第四段功率谱Pxx=10*log10(Pxx1+Pxx2+Pxx3+Pxx4+Pxx5+Pxx6+Pxx7/7);%Fourier振幅谱平方的平均值,并转化为dBf=(0:length(Pxx)-1)*Fs/length(Pxx);%给出频率序列subplot(2,1,2),plot(f(1:Nsec/2),Pxx(1:Nsec/2));%绘制功率谱曲线xlabel('频率/Hz');ylabel('功率谱/dB');title('平均周期图(重叠1/2) N=1024');grid on;3.用Fourier变换求取信号的功率谱---welch方法%思想:welch法采用信号重叠分段,加窗函数和FFT算法等计算一个信号序列的自功率谱(PSD)和两个信号序列的互功率谱(CSD),采用MATLAB自%带的函数psdclf;Fs=1000;N=1024;Nfft=256;n=0:N-1;t=n/Fs;window=hanning(256);noverlap=128;dflag='none';randn('state',0);xn=sin(2*pi*50*t)+2*sin(2*pi*120*t)+randn(1,N);Pxx=psd(xn,Nfft,Fs,window,noverlap,dflag);f=(0:Nfft/2)*Fs/Nfft;plot(f,10*log10(Pxx));xlabel('频率/Hz');ylabel('功率谱/dB');title('PSD--Welch方法');grid on;4.功率谱估计----多窗口法(multitaper method ,MTM法)%思想:利用多个正交窗口获得各自独立的近似功率谱估计,综合这些得到一个序列的功率谱估计;相对于普通的周期图有更大的自由度;MTM法采用一个参数:时间带%宽积NW,这个参数用以定义计算功率谱所用窗的数目为2*NW-1,NW越大,时间域分辨率越高而频率分辨率越低,使得功率谱估计的波动减小;随着NW 的增大%,每次估计中谱泄露增多,总功率谱估计的偏差增大clf;Fs=1000;N=1024;Nfft=256;n=0:N-1;t=n/Fs;randn('state',0);xn=sin(2*pi*50*t)+2*sin(2*pi*120*t)+randn(1,N);[Pxx1,f]=pmtm(xn,4,Nfft,Fs); %此处有问题subplot(2,1,1),plot(f,10*log10(Pxx1));xlabel('频率/Hz');ylabel('功率谱/dB');title('多窗口法(MTM)NW=4');grid on;[Pxx,f]=pmtm(xn,2,Nfft,Fs);subplot(2,1,2),plot(f,10*log10(Pxx));xlabel('频率/Hz');ylabel('功率谱/dB');title('多窗口法(MTM)NW=2');grid on;5.功率谱估计----最大熵法(maxmum entmpy method,MEM法)%思想:假定随机序列为平稳高斯过程利用已知的自相关序列rxx(0),rxx(1),rxx(2)...rxx(p)为基础,外推自相关序列rxx(p+1),rxx(p+2)...保证信息熵最大clf;Fs=1000;N=1024;Nfft=256;n=0:N-1;t=n/Fs;window=hanning(256);randn('state',0);xn=sin(2*pi*50*t)+2*sin(2*pi*120*t)+randn(1,N);[Pxx1,f]=pmem(xn,14,Nfft,Fs); %此处有问题subplot(2,1,1),plot(f,10*log10(Pxx1));xlabel('频率/Hz');ylabel('功率谱/dB');title('最大熵法(MEM)Order=14');grid on;%采用Welch方法估计功率谱noverlap=128;dflag='none';subplot(2,1,2)psd(xn,Nfft,Fs,window,noverlap,dflag);xlabel('频率/Hz');ylabel('功率谱/dB');title('Welch方法估计功率谱');grid on;6.功率谱估计----多信号分类法(multiple signal classification,music法)%注:适用于白白噪声中的多正弦波频率估计%思想:将数据自相关矩阵看成是由信号自相关矩阵和噪声自相关矩阵两部分组成,求他们的矩阵特征值向量clf;Fs=1000;N=1024;Nfft=256;n=0:N-1;t=n/Fs;randn('state',0);xn=sin(2*pi*100*t)+2*sin(2*pi*200*t)+randn(1,N);pmusic(xn,[7,1.1],Nfft,Fs,32,16);xlabel('频率/KHz');ylabel('功率谱/dB'); title('Welch方法估计功率谱');grid on;。
现代信号处理作业实验题目:设信号)()8.0cos(25.0)47.0cos()35.0cos()(321n v n n n n x ++++++=θπθπθπ,其中321,,θθθ是[]ππ,-内的独立随机变量,v(n)是单位高斯白噪声。
1.利用周期图法对序列进行功率谱估计。
数据窗采用汉明窗。
2.利用BT 法对序列进行功率谱估计,自相关函数的最大相关长度为M=64,128,256,512采用BARTLETT 窗。
3.利用Welch 法对序列进行功率谱估计,50%重叠,采用汉明窗,L=256,128,64。
4.利用Burg 法对序列进行AR 模型功率谱估计,阶数分别为10,13.要求每个实验都取1024个点,fft 作为谱估计,取50个样本序列的算术平均,画出平均的功率谱图。
实验原理:1)。
周期图法:又称间接法,它把随机信号的N 个观察值x N (n)直接进行傅里叶变换,得到X N (e jw ),然后取其幅值的平方,再除以N ,作为对x (n )真实功率谱的估计。
2^)(1)(jw e X Nw P N per =, 其中∑-=-=1)()(N n jwn N jwN e n x e X 2)。
BT 法:对于N 个观察值x(0),x(1),。
,x(N-1),令x N (n)=a(n)x(n)。
计算r x (m )为∑--=-≤+=mN n N Nx N m m n x n xN m r 101),()(1)(,计算其傅里叶变换∑-=--≤=MMm jwm xBT N M e m rm v w P 1 ,)()()(^^,作为观察值的功率谱的估计。
其中v(m)是平滑窗。
3)。
Welch 法:假定观察数据是x(n),n=0,1,2...,N-1,现将其分段,每段长度为M,段与段之间的重叠为M-K,第i 个数据段经加窗后可表示为 1,...,1,0 )()()(-=+=M i iK n x n a n x i M其中K 为一整数,L 为分段数,该数据段的周期图为2)(1)(^w X MU w P i M iper =,其中∑-=-=10)()(M n j w n iM i M e n x w X 。
功率谱估计方法的比较1.周期图法周期图法是最简单直观的功率谱估计方法之一,通过将信号分成多个长为N的区间,计算每个区间内信号的一维傅里叶变换,然后将这些变换结果平方并取平均得到功率谱。
该方法简单快速,但由于其需要使用多个区间的数据进行平均,因此对信号长度有较高的要求,且在信号存在非平稳性时,该方法不适用。
2.自相关法自相关法是一种经典的功率谱估计方法,通过计算信号的自相关函数来估计功率谱。
具体步骤是将信号与其自身的延迟序列进行点乘,并取平均得到自相关函数。
然后对自相关函数进行傅里叶变换,得到功率谱估计值。
该方法计算简单,但精度一般,且在信号长度较长时计算复杂度较高。
3.傅里叶变换法傅里叶变换法是一种经典的功率谱估计方法,通过对信号直接进行傅里叶变换得到功率谱。
该方法计算简单,精确度高,但对信号的长度存在要求,较长的信号长度能提供更高的分辨率。
此外,傅里叶变换法只适用于周期性信号。
4.平均周期图法平均周期图法是一种对周期图法的改进。
它将信号分为多段,并对每一段进行周期图计算,然后将计算结果平均得到平均周期图。
与周期图法相比,平均周期图法可以降低误差,提高估计精度。
然而,该方法仍然对信号长度有一定要求,并且计算复杂度较高。
5.移动平均法移动平均法是一种基于滑动窗口的功率谱估计方法,其基本思想是通过对信号进行多次滑动窗口处理,将窗口内信号的傅里叶变换结果平方并取平均得到功率谱估计值。
该方法在计算复杂度上较低,适用于非平稳信号的功率谱估计。
但是,由于窗口大小的选择存在权衡,需要根据实际情况进行合理设置。
总结起来,各种功率谱估计方法各有优劣。
周期图法和自相关法计算简单,但方法的精度较低,受信号长度限制且无法处理非平稳信号。
傅里叶变换法具有较高的计算精度,但对信号的长度和周期性要求较高。
平均周期图法和移动平均法对周期图法进行了改进,在精度上有所提高,但计算复杂度较高。
因此,在实际应用中,需要根据具体的信号特点和处理要求选取合适的功率谱估计方法。
功率谱估计的方法
功率谱估计是信号处理中常用的一种方法,用于分析信号在频域内的特点,通常可以分为以下几种方法:
一、经典方法
1.傅里叶变换法:将时域信号通过傅里叶变换变换到频域,然后计算功率谱密度。
2.自相关法:通过自相关函数反映信号的统计平稳性,然后通过傅里叶变换计算功率谱密度。
3.周期图法:将信号分解为若干个周期波形,然后对每个周期波形进行傅里叶变换计算周期功率谱,最后汇总得到整个信号的功率谱。
二、非经典方法
1. 时-频分析法:如短时傅里叶变换(STFT)、小波变换等,将信号分解为时域和频域两个维度的分量,从而可以分析信号在时间和频率上的变化。
2. 基于协方差矩阵的特征值分解法:通过建立协方差矩阵,在张成空
间中求解特征向量,从而达到计算信号功率谱的目的。
3. 基于频率锁定法:如MUSIC法、ESPRIT法等,是一种利用特定信号空间中的特定模式进行处理的方法。
以上方法各有特点,根据实际需求选择不同的方法可以得到相应的功率谱估计结果。
随机信号的功率谱估计方法随机信号的功率谱估计方法介绍随机信号是指信号的每个值都是随机的,即在同一时刻下,其取值可以是不同的。
由于随机性导致了随机信号的分布不确定,因此分析随机信号的机理比较复杂。
一个优秀的信号分析方法是估计随机信号的功率谱。
功率谱是一个很有用的统计量,它描述了信号在不同频率上的能量分布。
估计功率谱可以帮助我们了解信号的构成、将信号分解成不同的频率分量、对信号的特征进行定量分析,以及在通信和控制系统中使用。
本文将介绍几种常见的随机信号功率谱估计方法,包括周期图法、自相关函数法、半岭功率谱估计法和最大熵谱估计法。
方法一、周期图法周期图法经常用于信号频谱估计。
当我们有大量采样数据时,可以通过对信号进行傅里叶变换来计算功率谱。
但是,当信号是随机过程时,它的频谱也是一个随机变量,因此我们必须通过使用大量的测量值来确定频谱估计的不确定性。
由此带来的问题是,我们要计算的是随机过程信号的平均功率谱密度函数,而不仅仅是单次测量结果的功率谱。
周期图法通过将数据分成多个重叠的子段,然后计算每个子段的傅立叶变换来估计平均功率谱密度函数。
二、自相关函数法自相关函数法采用的是自相关函数相关的频谱估计方法。
通过对随机信号进行卷积,可以获得信号的自相关函数。
自相关函数是指信号与自身的延迟信号的乘积。
自相关函数可以通过傅立叶变换来计算功率谱密度函数。
这种方法可以用于非平稳和平稳信号,并且在信号较长的情况下效果良好。
三、半岭功率谱估计法半岭功率谱估计法是利用谱曲线的形状确定能量的集中程度。
半岭是谱曲线上右侧的谷底点。
我们可以将信号的谱曲线绘制出来,并计算它到半岭的近似功率谱曲线。
该方法可以适用于处理非平稳信号,需要进行多次计算才能获得准确结果。
四、最大熵谱估计法最大熵谱估计法可以通过最小化误差来估计功率谱密度函数。
该方法通过将信号视为时间序列,然后利用最大熵原理来进行谱估计。
最大熵原理是指在不知道任何关于信号的先验信息的情况下,使用最少的假设来描述数据的过程。
功率谱密度估计
功率谱密度估计是一种用于估计信号的功率谱密度的方法。
功率谱密度指的是一个信号在频域上的能量分布情况。
常见的功率谱密度估计方法有:
1. 周期图法:将信号分成一系列周期为N的子段,对每个子
段进行傅里叶变换,然后求平均得到估计的功率谱密度。
2. 平均势谱法:将信号分成若干个重叠的子段,对每个子段进行傅里叶变换,然后对各个子段的功率谱密度进行平均得到估计的功率谱密度。
3. Welch方法:在平均势谱法的基础上,将信号分成多个子段,并对每个子段进行窗函数加权处理,然后对加权后的子段功率谱密度进行平均得到估计的功率谱密度。
4. 自相关法:通过计算信号的自相关函数来估计功率谱密度。
自相关函数表示信号的不同时间点之间的相关性。
这些方法在实际应用中有各自的优缺点,选择合适的方法需要考虑信号的特点以及其他要求,例如信号的长度、频率分辨率等。