第2章 流体力学基础[2011版]
- 格式:ppt
- 大小:2.38 MB
- 文档页数:47
目录摘要: (1)关键词: (1)第1章引言: (1)第2章流体流动的数学模型: (1)2.1 三维质量守恒: (2)2.2 三维动量方程: (2)2.3 三维能量方程: (3)2.4 牛顿流体的N-S方程: (3)第3章偏微分方程的数值离散方法: (4)3.1 有限差分法: (4)3.1.1 基本的有限差分格式: (4)3.2 有限体积法: (5)3.2.1 纯扩散问题: (5)3.2.2 对流扩散问题: (6)3.3 有限元法: (8)3.4 谱方法: (8)第4章SIMPLE算法: (8)4.1 SIMPLE算法的假设条件: (8)4.2 SIMPLE算法的计算步骤 (9)第5章Fluent的应用: (12)5.1 FLUENT的计算步骤: (13)5.2 FLUENT中可用的通用的多相流模型 (14)5.2.1 Mixture模型: (14)5.2.2 Eulerian模型: (14)5.2.3 VOF模型(V olume of Fluid(OVF) Model): (14)第6章总结: (15)致谢: (15)参考文献: (15)摘要:本文简单介绍计算流体力学的基础理论知识,建立控制方程组,确定边界条件的近似描述和数学表达,包括:守恒方程式以及SIMPLE算法,差分格式,多项流模型。
关键词:计算流体力学、守恒方程、有限差分,有限体积法、SIMPLE算法、多相流模型。
第1章引言:流体力学和其他学科一样,是通过理论分析和实验研究两种手段发展起来的。
很早就已有理论流体力学和实验流体力学两大分支。
理论分析是用数学方法求出问题的定量结果。
但能用这种方法求出结果的问题毕竟是少数,计算流体力学正是为弥补分析方法的不足而发展起来的,计算流体力学是目前国际上一个强有力的研究领域,是进行传热、传质、动量传递及燃烧、多相流和化学反应研究的核心和重要技术。
第2章流体流动的数学模型:流体力学的基本假设:流体力学有一些基本假设,基本假设以方程的形式表示。
流体力学II(Viscous Fluid and Gas Dynamics)讲义第一章、粘性不可压缩流体运动基本方程组(学时数:6)1-1.绪论流体力学是力学的一个重要分支,主要研究流体介质(液体、气体、等离子体)的特性、状态,在各种力的作用下发生的对流、扩散、旋涡、波动现象和质量、动量、能量传输,以及同化学、生物等其他运动形式之间的相互作用。
它既是一门经典学科,又是一门现代学科,对自然科学和工程技术具有先导作用。
历史上,力学包括流体力学,曾经经历基于直观实践经验的古代力学、基于严密数学理论的经典力学、基于物理洞察能力的近代力学三个阶段。
在人类早期的生产活动过程中,力学即与数学、天文学一起发展。
17世纪,Newton基于前人的天文观测和力学实验,发明了微积分,并总结出机械运动三大定律和万有引力定律,发表了著名的《自然哲学的数学原理》一书。
由于原理是普适自然与工程领域的规律,从而使力学成为自然科学的先导。
从17世纪开始,人们逐步建立了流体力学的基本理论体系,从Pascal定律、Newton粘性定律、Pitot 管测速,到Euler方程和Bernoulli方程,标志着流体动力学正式成为力学的一个分支学科。
18世纪,人们着重发展无粘流体的位势理论。
到了19世纪,为了解决工程实际问题,开始注重粘性的影响,Navier-Stokes方程的建立为流体力学的进一步发展奠定了完整的理论基础,但该方程解的存在性与光滑性的证明至今仍是一大难题。
20世纪初,Prandtl凭借出色的物理洞察能力,提出边界层理论,从而开创了流体力学的近代发展阶段,使力学成为人类实现“飞天”梦想的重要理论先导。
60年代以来,由于超级计算机、先进测试技术的发展和应用,力学进一步凸显宏微观结合和学科交叉的特征,进入现代力学发展新阶段。
刚刚过去的2011年,人类遭遇了一系列极端事件:日本海底地震导致海啸和福岛核电站泄露事故;澳大利亚飓风;我国干旱洪水灾害等异常气候问题。
《流体力学》课程教学大纲一、课程基本信息二、课程目标(一)总体目标:本课程是一门重要的基础理论课程,同时也是机械工程等相关专业的专业技能基础课。
通过学习本课程,学生将能够正确理解和掌握流体力学的基本概念、基本理论和基本方法。
这将有助于培养学生独立地分析和解决从工程实践中简化出来的流体力学问题的能力,为进一步学习专业课程、从事技术工作、拓展新知识、进行涉及流体的科学研究以及解决机械领域复杂工程问题奠定坚实的基础。
(二)课程目标:课程目标1:1.掌握流体在静止状态下的力学分析方法,了解流体与固体之间的相互作用力,熟悉流体运动的数学描述和几何表示方法。
培养学生对流体微团运动变形的分析能力,熟练运用连续方程求解简易模型的流体特性。
具备在机械设计领域建立数学模型并求解的能力。
1.2 掌握雷诺运输公式,根据质量、动量和能量守恒原理,推导连续方程、能量方程和动量方程的微分和积分形式;熟悉理想流体运动欧拉方程、伯努利方程及其积分和微分形式。
通过这些知识,培养学生在机械设计和测控方面的实际技能,确保他们能够运用流体力学知识建立数学模型并解决复杂的工程问题。
课程目标2:2.1 熟悉流体力学中的量纲分析方法和动力相似分析方法,了解通过实验和理论相结合的方式来探索流动过程规律。
培养学生运用量纲分析和动力相似理论解决简单流动问题的能力;并能运用流体力学原理,识别和提炼机械产品设计方面的复杂工程问题。
2.2掌握不可压缩粘性流体的N-S方程,明确湍流的概念;掌握圆管湍流运动特性和管道阻力的计算,以及流体的阻力和阻力系数的计算;借助流体力学实验,具备机械工程中测控领域复杂工程问题的提炼和解决能力。
课程目标3:掌握流体力学相关实验,了解现代流体力学模拟技术的最新动态,了解主流计算流体力学(CFD)工业领域的应用;能针对具体的机械工程专业中的流体力学问题,开发或选用合适的计算软件、仿真软件等进行模拟和预测。
(三)课程目标与毕业要求、课程内容的对应关系表1:课程目标与课程内容、毕业要求的对应关系表三、教学内容(四号黑体)(具体描述各章节教学目标、教学内容等。