第二章液压油与流体力学基础(4)概述
- 格式:ppt
- 大小:1.09 MB
- 文档页数:44
第2章 液压流体力学基础液压传动以液体作为工作介质来传递能量和运动。
因此,了解液体的主要物理性质,掌握液体平衡和运动的规律等主要力学特性,对于正确理解液压传动原理、液压元件的工作原理,以及合理设计、调整、使用和维护液压系统都是十分重要的。
2.1液体的物理性质液体是液压传动的工作介质,同时它还起到润滑、冷却和防锈作用。
液压系统能否可靠、有效地进行工作,在很大程度上取决于系统中所用的液压油液的物理性质。
2.1.1液体的密度液体的密度定义为dV dm V m V =∆∆=→∆0limρ (2.1) 式中 ρ——液体的密度(kg/m 3);ΔV ——液体中所任取的微小体积(m 3);Δm ——体积ΔV 中的液体质量(kg );在数学上的ΔV 趋近于0的极限,在物理上是指趋近于空间中的一个点,应理解为体积为无穷小的液体质点,该点的体积同所研究的液体体积相比完全可以忽略不计,但它实际上包含足够多的液体分子。
因此,密度的物理含义是,质量在空间点上的密集程度。
对于均质液体,其密度是指其单位体积内所含的液体质量。
V m =ρ (2.2) 式中 m ——液体的质量(kg );V ——液体的体积(m 3)。
液压传动常用液压油的密度数值见表2.1。
表2.1 液压传动液压油液的密度变化忽略不计。
一般计算中,石油基液压油的密度可取为ρ=900kg/m 3。
2.1.2液体的可压缩性液体受压力作用时,其体积减小的性质称为液体的可压缩性。
液体可压缩性的大小可以用体积压缩系数k 来表示,其定义为:受压液体在发生单位压力变化时的体积相对变化量,即VV p k ∆∆-=1 (2.3) 式中 V ——压力变化前,液体的体积;Δp ——压力变化值;ΔV ——在Δp 作用下,液体体积的变化值。
由于压力增大时液体的体积减小,因此上式右边必须冠一负号,以使k 成为正值。
液体体积压缩系数的倒数,称为体积弹性模量K ,简称体积模量。
V K p V=-∆∆ (2.4) 体积弹性模量K 的物理意义是液体产生单位体积相对变化量所需要的压力。
第二章液压油与液压流体力学基础2.1重点、难点分析本章是液压与气压传动课程的理论基础。
其主要内容包括:一种介质、两项参数、三个方程、三种现象。
一种介质就是液压油的性质及其选用;两个参数就是压力和流量的相关概念;三个方程就是连续性方程、伯努利方程、动量方程;三种现象就是液体流态、液压冲击、空穴现象的形态及其判别。
在上述内容中重点内容为:液压油的粘性和粘度;液体压力的相关概念如压力的表达、压力的分布、压力的传递、压力的损失;流量的相关概念如:流量的计算、小孔流量、缝隙流量;三个方程的内涵与应用。
其中,液压油的粘度与粘性、压力相关概念、伯努利方程的含义与应用、小孔流量的分析是本章重点的重点也是本章的难点。
1.液压油的粘性是液体流动时由于内摩擦阻力而阻碍液层间相对运动的性质,粘度是粘性的度量。
液压油的粘度分为动力粘度、运动粘度和相对粘度。
动力粘度描述了牛顿液体的内摩擦应力与速度梯度间的关系,物理意义明确但是难以实际测量;运动粘度是动力粘度与密度的比值,国产油的标号就是用运动粘度的平均厘斯值的表达,实用性强,直接测量难;相对粘度就是实测粘度,其中恩氏粘度就是用恩氏粘度计测量油液与对比液体流经粘度计小孔时间参数的比值,直观性强,物理意义明确,操作简便。
在一般情况下,动力粘度用作粘度的定义,运动粘度用作油品的标号,相对粘度用作粘度的测量。
三者的换算关系可以用教材中所提供的公式解算,也可通过关手册所提供的线图查取。
影响粘度的因素主要有温度和压力,其中温度的影响较大。
在选用液压油时,除考虑环境因素和设备载荷性质外,主要分析元件的运动速度、精度以及温度变化等因素的影响。
2.液压系统中的压力就是物理学中的压强,压力分静止液体的压力和流动液体的压力两种;按参照基准不同,压力表达为绝对压力、表压力和真空度;在液压系统中,压力的大小取决于负载(广义负载);压力的传递遵循帕斯卡原理,对于静止液体压力的变化量等值传递,对于流动液体压力传递时要考虑到压力损失的因素;压力分布的规律就是伯努利方程在静止液体内的一种表述形式。
第二章 液压油与液压流体力学基础 液压传动是以液体作为工作介质进行能量传递的,因此,了解液体的物理性质,掌握液体在静止和运动过程中的基本力学规律,对于正确理解液压传动的基本原理,合理设计和使用液压系统都是非常重要的。
第一节 液体的物理性质一、 液体密度单位体积液体的质量称为液体的密度,通常用ρ(kg/3m )表示ρ=M /ν。
式中 v ——液体的体积(3m );M ——液体的质量(㎏)。
密度是液体的一个重要的物理参数。
密度的大小随着液体的温度或压力的变化会产生一定的变化,但其变化量较小,一般可以忽略不计。
常用液压油的密度约为900 kg/3m 。
二、 液体的可压缩性液体受压力作用而使体积减小的性质成为液体的可压缩性。
体积为V 的液体,当压力增大p ∆时,体积减小v ∆,则液体在单位压力变化下的体积相对变化量为K= 1VP V -∆∆式中。
K 为体积的压缩系数。
由于压力增大时,液体的体积减小,即p ∆与v ∆的符号始终相反,为保证K 为正值,在上式的右边加一负号。
K 的倒数成为液体的体积模量,以K 表示,即K= 1K = V P V -∆∆K 表示液体产生单位体积相对量所需要的压力增量。
在常温下,纯净液压油的体积模量K=(1.4~2.0) ×910P a 。
在变动压力下,液压油的可压缩性的作用极像一个弹簧,即压力升高,油液体积减小;压力降低,油液体积增大。
当作用在封闭液体上的压力发生∆F 的变化时,如液体承压面积A 不变,则液柱的长度必有∆ι的变化(见图2-1).在这里,体积变化为V A l ∆=∆,压力变化为/p F A ∆=∆,即2V F K A l -∆=∆ 或 2h F p A A k K l l V-∆-∆===∆∆, 式中h k ——“液压弹簧”的刚度。
三、液体的粘性1.粘性的意义液体在外力作用下流动时,液体分子间的内聚力会阻碍其分子的相对运动,既具有一定的内摩擦力,这种性质称为液体的粘性。