第三章 电阻电路的一般分析方法.
- 格式:ppt
- 大小:402.50 KB
- 文档页数:25
第三章电阻电路的一般分析电路的一般分析是指方程分析法,它是以电路元件的约束特性(VCR)和电路的拓扑约束特性(KCL,KVL)为依据,建立以支路电流或回路电流,或结点电压为变量的回路方程组,从中解出所要求的电流、电压、功率等。
方程分析法的特点是:(1)具有普遍适用性,即无论线性和非线性电路都适用;(2)具有系统性,表现在不改变电路结构,应用KCL,KVL,元件的VCR建立电路变量方程,方程的建立有一套固定不变的步骤和格式,便于编程和用计算机计算。
本章的重点是会用观察电路的方法,熟练运用支路法、回路法和结点电压法的“方程通式”写出支路电流方程、回路方程和结点电压方程,并加以求解。
3-1 在一下两种情况下,画出图示电路的图,并说明其节点数和支路数(1)每个元件作为一条支路处理;(2)电压源(独立或受控)和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理。
解:(1)每个元件作为一条支路处理时,图(a)和(b)所示电路的图分别为题解3-1图(a1)和(b1)。
图(a1)中节点数6b==n,支路数11图(b1)中节点数7=bn,支路数12=(2)电压源和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理时,图(a)和图(b)所示电路的图分别为题解图(a2)和(b2)。
图(a2)中节点数4b=n,支路数8=图(b2)中节点数15b=n,支路数9=3-2指出题3-1中两种情况下,KCL,KVL独立方程数各为多少?解:题3-1中的图(a)电路,在两种情况下,独立的KCL方程数分别为(1)51==4n1--1=6-1-=n (2)3独立的KVL方程数分别为(1)61=84+--n+=1b1=111b (2)5+6+--n=图(b)电路在两种情况下,独立的KCL方程数为(1)61=5-=1n-7n (2)41=1-=-独立的KVL方程数分别为(1)6+1=95b1-n+=-=1271b (2)51=-n++-3-3对题图(a)和(b)所示G,各画出4个不同的树,树支数各为多少?解:一个连通图G 的树T 是这样定义的:(1) T 包含G 的全部结点和部分支路;(2) T 本身是连通的且又不包含回路。
第三章电阻电路的一般分析◆重点:1、支路法2、节点法3、网孔法和回路法◆难点:1、熟练掌握支路法、网孔法和割集分析法的计算思路,会用这几种方法列写电路方程。
2、熟练地运用节点法和回路法分析计算电路。
3-1 电网络中的基本概念网络图论与矩阵论、计算方法等构成电路的计算机辅助分析的基础。
其中网络图论主要讨论电路分析中的拓扑规律性,从而便于电路方程的列写。
1.支路——Branch流过同一个电流的电路部分为一条支路。
2.节点——node三条或者三条以上支路的汇集称为节点。
4.网络的图——graph节点和支路的集合,称为图,每一条支路的两端都连接到相应的节点上。
6.回路——loop电路中的任意闭合路径,称为回路。
8.网孔——mesh一般是指内网孔。
平面图中自然的“孔”,它所限定的区域不再有支路。
例如:在下图中,支路数6,节点数4,网孔数3,回路数79.树一个连通图G的树T是指G的一个连通子图,它包含G的全部节点,但不含任何回路。
树中的支路称为“树支”——tree branch,图G中不属于T 的其他支路称为“连支”——link,其集合称为“树余”。
一个连通图的树可能存在多种选择方法。
10.基本回路只含一条连支的回路称为单连支回路,它们的总和为一组独立回路,称为“基本回路”。
树一经选定,基本回路唯一地确定下来。
对于平面电路而言,其全部网孔是一组独立回路。
3-2 2B 法与1B 法3.2.1 支路法(2B 法)介绍1.方法概述以支路电压和支路电流作为变量,对节点列写电流(KCL )方程,对回路列写电压(KVL )方程,再对各个支路写出其电压电流关系方程,简称支路方程。
从而得到含2b 个变量的2b 个独立方程。
又称为“2b 法”。
2.思路由上述方法可见,“2b 法”实际上清晰地体现了求解电路的两个不可或缺的方面,即电路的解一是要满足网络的拓扑约束,二是要满足电路中各个元件的伏安关系约束。
3.方程结构b 个支路方程,)1(-n 个电流(KCL )方程,))1((--n b 个电压(KVL )方程。
第三章 电阻电路的一般分析一、基本要求1、学生通过学习本章会熟练运用结点电压法求解电路,包括含有理想电压源,受控源的电路。
2、会运用支路电流法、网孔电流法、回路电流法求解电路,包括含有理想电流源,受控源的电路。
二、本章要点本章主要介绍求解电路的一般分析方法,这种方法不要求改变电路结构。
首先选择一组合适的电路变量(电流或电压),根据KCL 和KVL 及元件的电压、电流关系(VCR )建立该组变量的独立方程组,然后从方程组中解出电路变量。
1、支路电流法:是以支路电路作为未知量的求解方法。
分析电路时,对于n 个结点,b 条支路的电路根据KCL ,列出(n-1)个结点电流方程,同时根据KVL 列出m=b-(n-1)个独立回路电压方程,于是,总共得到以支路电流为未知量(即变量)的b 独立方程。
必须指出:如果电路的某一个支路含有恒流源,则此支路电流即为该恒流源的电流,在列含有恒流源回路的电压方程时,可设恒流源的端电压U 为未知量。
2、网孔电流法:是以“假想网孔电流”作为独立变量求解电路的方法,称为网孔电流法。
它仅使用于平面电路。
对具有m 个网孔的平面电路,网孔电路的一般形式有:R 11i m1+R 12i m2+R 13i m3+..+R 1m i mm =u S11 R 21i m1+R 22i m2+R 23i m3+..+R 2m i mm =u S22……………………………………………………………R m1i m1+R m2i m2+R m3i m3+...+R mm i mm =u Smm 3. 回路电流法是以“假想回路电流”作为独立变量的求解电路的方法称为回路电流法。
网孔电流法仅适用于平面电路,回路电流法, 则无此限制,它适用于平面或非平面电。
对于b 条支路,n 个结点的电路,回路数(l=b-n+1)与网孔电流法方程(3-1)相似,可以写出回路电流方程的一般形式,有R 11i l1+R 12i l2+R 13i l3+……+R 1l i ll =u S11R 21i l1+R 22i l2+R 23i l3+……+R 2l i ll =u S22……………………………………………… R l1i l1+R l2i L2+R l3i l3+……+R ll i ll =u Sll(3-1) (3-2)(1)式(3-1)和(3-2)中有相同下标的电阻R 11,R 22,R 33等是各网孔和各回路的自阻,有不同下标的电阻R 12,R 23,R 31等是各网孔和回路的互阻。