第三章 电阻电路的一般分析方法
- 格式:doc
- 大小:2.85 MB
- 文档页数:8
第三章电阻电路的一般分析电路的一般分析是指方程分析法,它是以电路元件的约束特性(VCR)和电路的拓扑约束特性(KCL,KVL)为依据,建立以支路电流或回路电流,或结点电压为变量的回路方程组,从中解出所要求的电流、电压、功率等。
方程分析法的特点是:(1)具有普遍适用性,即无论线性和非线性电路都适用;(2)具有系统性,表现在不改变电路结构,应用KCL,KVL,元件的VCR建立电路变量方程,方程的建立有一套固定不变的步骤和格式,便于编程和用计算机计算。
本章的重点是会用观察电路的方法,熟练运用支路法、回路法和结点电压法的“方程通式”写出支路电流方程、回路方程和结点电压方程,并加以求解。
3-1 在一下两种情况下,画出图示电路的图,并说明其节点数和支路数(1)每个元件作为一条支路处理;(2)电压源(独立或受控)和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理。
解:(1)每个元件作为一条支路处理时,图(a)和(b)所示电路的图分别为题解3-1图(a1)和(b1)。
图(a1)中节点数6b==n,支路数11图(b1)中节点数7=bn,支路数12=(2)电压源和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理时,图(a)和图(b)所示电路的图分别为题解图(a2)和(b2)。
图(a2)中节点数4b=n,支路数8=图(b2)中节点数15b=n,支路数9=3-2指出题3-1中两种情况下,KCL,KVL独立方程数各为多少?解:题3-1中的图(a)电路,在两种情况下,独立的KCL方程数分别为(1)51==4n1--1=6-1-=n (2)3独立的KVL方程数分别为(1)61=84+--n+=1b1=111b (2)5+6+--n=图(b)电路在两种情况下,独立的KCL方程数为(1)61=5-=1n-7n (2)41=1-=-独立的KVL方程数分别为(1)6+1=95b1-n+=-=1271b (2)51=-n++-3-3对题图(a)和(b)所示G,各画出4个不同的树,树支数各为多少?解:一个连通图G 的树T 是这样定义的:(1) T 包含G 的全部结点和部分支路;(2) T 本身是连通的且又不包含回路。
第三章电阻电路的一般分析◆重点:1、支路法2、节点法3、网孔法和回路法◆难点:1、熟练掌握支路法、网孔法和割集分析法的计算思路,会用这几种方法列写电路方程。
2、熟练地运用节点法和回路法分析计算电路。
3-1 电网络中的基本概念网络图论与矩阵论、计算方法等构成电路的计算机辅助分析的基础。
其中网络图论主要讨论电路分析中的拓扑规律性,从而便于电路方程的列写。
1.支路——Branch流过同一个电流的电路部分为一条支路。
2.节点——node三条或者三条以上支路的汇集称为节点。
4.网络的图——graph节点和支路的集合,称为图,每一条支路的两端都连接到相应的节点上。
6.回路——loop电路中的任意闭合路径,称为回路。
8.网孔——mesh一般是指内网孔。
平面图中自然的“孔”,它所限定的区域不再有支路。
例如:在下图中,支路数6,节点数4,网孔数3,回路数79.树一个连通图G的树T是指G的一个连通子图,它包含G的全部节点,但不含任何回路。
树中的支路称为“树支”——tree branch,图G中不属于T 的其他支路称为“连支”——link,其集合称为“树余”。
一个连通图的树可能存在多种选择方法。
10.基本回路只含一条连支的回路称为单连支回路,它们的总和为一组独立回路,称为“基本回路”。
树一经选定,基本回路唯一地确定下来。
对于平面电路而言,其全部网孔是一组独立回路。
3-2 2B 法与1B 法3.2.1 支路法(2B 法)介绍1.方法概述以支路电压和支路电流作为变量,对节点列写电流(KCL )方程,对回路列写电压(KVL )方程,再对各个支路写出其电压电流关系方程,简称支路方程。
从而得到含2b 个变量的2b 个独立方程。
又称为“2b 法”。
2.思路由上述方法可见,“2b 法”实际上清晰地体现了求解电路的两个不可或缺的方面,即电路的解一是要满足网络的拓扑约束,二是要满足电路中各个元件的伏安关系约束。
3.方程结构b 个支路方程,)1(-n 个电流(KCL )方程,))1((--n b 个电压(KVL )方程。
第三章电路的基本分析⽅法第三章电阻电路的⼀般分析⼀、教学基本要求电路的⼀般分析是指⽅程分析法,是以电路元件的约束特性(VCR)和电路的拓补约束特性(KCL、KVL)为依据,建⽴以⽀路电流或回路电流或结点电压为变量的电路⽅程组,解出所求的电压、电流和功率。
⽅程分析法的特点是:(1)具有普遍适⽤性,即⽆论线性和⾮线性电路都适⽤;(2)具有系统性,表现在不改变电路结构,应⽤KCL,KVL,元件的VCR建⽴电路变量⽅程,⽅程的建⽴有⼀套固定不变的步骤和格式,便于编程和⽤计算机计算。
本章学习的内容有:电路的图,KCL和KVL的独⽴⽅程数,⽀路电流法,⽹孔电流法,回路电流法,结点电压法。
本章内容以基尔霍夫定律为基础。
介绍的⽀路电流法、回路电流法和节点电压法适⽤于所有线性电路问题的分析,在后⾯章节中都要⽤到。
内容重点:会⽤观察电路的⽅法,熟练应⽤⽀路电流法,回路电流法,结点电压法的“⽅程通式”写出⽀路电流⽅程,回路电流⽅程,结点电压⽅程,并求解。
预习知识:线性代数⽅程的求解难点:1. 独⽴回路的确定2. 正确理解每⼀种⽅法的依据3. 含独⽴电流源和受控电流源的电路的回路电流⽅程的列写4. 含独⽴电压源和受控电压源的电路的结点电压⽅程的列写三、教学内容3.1电路的图⼀、电阻电路的分析⽅法1、简单电路利⽤等效变换,逐步化简电路。
2、复杂电路不改变电路的结构,选择电路变量(电流和/或电压),根据KCL和KVL以及元件的电流、电压关系,建⽴起电路变量的⽅程,从⽅程中解出电路变量。
电路的图: 将电路图中的元件略去, 只反映出元件的连接情况的图(*拓扑关系)(电压源、电阻的串联和电流源、电阻的并联都看成⼀条⽀路。
)有向图: 在图上标明电流和电压⽅向的图⽆向图: 在图上没有标明电流和电压⽅向的图3.2 KCL 和KVL 的独⽴⽅程数⼀、KCL 独⽴⽅程数对结点1、2、3、4分别列出KCL ⽅程 i 1-i 4-i 6=0①-i 1-i 2+i 3=0② i 2+i 5+i 6=0③-i 3+i 4-i 5=0④,因为①+②+③=-④对有n 个结点的电路列KCL ⽅程,独⽴⽅程数为n-1个。