第四章 方差分析
- 格式:ppt
- 大小:533.00 KB
- 文档页数:42
§4 方差分析¾问题的提出[引例1] 为研究光照条件对某种有机物降解速度的影响,在人工控制的六种不同光强条件下,测定了该有机物24小时内的降解速度。
光强条件重复测定结果117.724.827.925.224.3219.422.62722.123320.72120.518.818.6417.319.419.116.920.851719.49.111.915.8614.312.411.811.614.2光照条件是否影响该有机物的降解速度?-不同的光照条件下降解速度是否存在显著性差异?单因素方差分析¾问题的提出[引例2] 为比较3种松树在4个不同地区的生长情况有无差别,在每个地区对每种松树随机地选取5株,测量它们的胸径。
在不同地区松树的胸径是否存在显著性差异?双因素等重复方差分析¾问题的提出[引例3]为研究3种不同作物对污泥中镉吸收能力的差别,选择了4个地块进行栽培试验。
将每一个地块划分成三个小区,三种作物随机地分种在每个地块的三个小区上。
在所有地块上施用同等数量的污泥,作物收获后分别测定了其中镉的积累量(ug/kg):不同作物对镉的吸收是否有显著性差异?不同地块下作物对镉的吸收是否有显著性差异?双因素无重复方差分析§4 方差分析¾研究论文¾利用t 检验进行2个以上总体均值比较的弊端¾检验过程烦琐¾无统一的试验误差,犯第I类错误的概率增大=2510C ααα−10.4’10=0.05=(1-)=¾方法的提出英国统计学家R.A.Fisher于1923年提出方差分析方法(analysis of variance,ANOVA)。
方差分析的基本思想是:把全部数据关于总均值的离差平方和分解成几部分,每一部分表示某因素诸水平作用所产生的效应,将各部分均方与误差均方相比较,从而确认或否认某些因素或交互作用的重要性。
方差分析可用于多个样本均值的比较、分析多个因素的交互作用、方差的同质性检验、回归方程的显著性检验。
第4章方差分析(ANOV A)实验设计和分析Catherine Potvin4.1生态学问题弄懂生态学问题需要将各种环境因子的影响分开,生态工作者用实验来解决这个问题。
不论在野外还是在控制环境条件下,可控实验都可以让生态工作者们只变化一个因子来检验其影响。
例如,生长箱能使生物体生长在完全相同的温度而不同的光周期的条件下,或相同的光强而不同温度条件下的实验成为可能。
在控制实验中,通常最希望的情况是环境‘背景’,即所有的影响因子, 不是自由地变化,而是精确地得到控制,这样就能够保证在改变目标变量时,观测的反应不会受到其它因素的影响。
因而控制环境条件, 例如使用生长箱和温室,成为植物生态学的一个常用的方法,如同动物生态学中使用的生长柜和水族槽一样。
本章第一部分,我要讲一下作为实验生态学基本工具的方差分析(ANOV A)。
本章重点放在实验设计上。
虽然人们一般认为生长箱会提供同一环境条件,但不论在一个生长箱内还是生长箱间都存在环境异质性(Lee和Rawlings 1982;Potvin等1990a),因而能够充分处理环境异质性的实验设计将在本章中述及。
尽管我的论述主要是以生长箱实验为基础,其原理在其它类型的控制或野外环境的实验研究中同样适用(第5,15和16章)。
我还要讨论错误实验设计的代价。
本章应视为实验设计的起步点,这个起步点就是要考虑各种影响因素。
实验者通常进行的实验比这里展开的要复杂。
但是一旦懂得了基本原理,讨论各种实验设计就相对简单一些。
更详细的论述请见Cochran & Cox(1957)和Winter(1991)。
4.2 统计问题:环境变化与统计分析正如Underwood(1997)建议的一样,生态实验设计的第一步是建立一个线性模型使研究者能够将感兴趣的变量(因素)独立出来。
由于实验设计支配误差项,建立线性模型取决于所研究的因子以及具体的实验设计。
在任何一个实验开始时,最基本的是要检验空间与时间变化的格局。
第四章 t检验和单因素方差分析命令与输出结果说明·单因素方差分析单因素方差分析又称为Oneway ANOVA,用于比较多组样本的均数是否相同,并假定:每组的数据服从正态分布,具有相同的方差,且相互独立,则无效假设。
原假设:H0:各组总体均数相同。
在STATA中可用命令:oneway 观察变量分组变量[, means bonferroni]其中子命令bonferroni是用于多组样本均数的两两比较检验。
例:测定健康男子各年龄组的淋巴细胞转化率(%),结果见表,问:各组的淋巴细胞转化率的均数之间的差别有无显著性?健康男子各年龄组淋巴细胞转化率(%)的测定结果:11-20 岁组:58 61 61 62 63 68 70 70 74 7841-50 岁组:54 57 57 58 60 60 63 64 6661-75 岁组:43 52 55 56 60用变量x 表示这些淋巴细胞转化率以及用分组变量group=1,2,3分别表示11-20岁组,41-50岁组和61-75岁组,即:数据表示为:x 58 61 61 62 63 68 70 70 74 78 54 57 group 1 1 1 1 1 1 1 1 1 1 2 2x 57 58 60 60 63 64 66 43 52 55 56 60 group 2 2 2 2 2 2 2 3 3 3 3 3则用 STATA 命令:oneway x group, mean bonferroni| Summary of xgroup | Mean ①-------------+------------1 | 66.52 | 59.8888893 | 53.2------+------------Total | 61.25 ②Analysis of VarianceSource SS df MS F Prob > F-------------------------------------------------------------------------------Between groups 616.311111③ 2 ④ 308.155556⑤ 9.77⑥ 0.0010⑦Within groups 662.188889⑧ 21⑨ 31.5328042⑴-------------------------------------------------------------------------------Total 1278.50 23 55.586956(2)Bartlett's test for equal variances:chi2(2) = 2.1977 (3)Prob>chi2=0.333Comparison of x by group(Bonferroni)Row Mean- |Col Mean | 1 2-------------- --|--------------------------------------2 | -6.61111 (4)| 0.054 (5)|3 | -13.3 (6) -6.68889(8)| 0.001 (7) 0.134 (9)①对应三个年龄组的淋巴细胞转化率的均数;②三组合并在一起的总的样本均数;③组间离均差平方和;④组间离均差平方和的自由度;⑤组间均方和(即:⑤=③/④);⑧组内离均差平方和;⑨组内离均差平方和的自由度;(1)组内均方和(即:(1)=⑧/⑨);⑥为F 统计值(即为⑤/(1));⑦为相应的p值;(2)为方差齐性的Bartlett检验;(3)方差齐性检验相应的p值;(4)第二组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(5)第二和第一组均数差的显著性检验所对应p 值;(6)第三组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(7)第三和第一组均数差的显著性检验所对应的 p 值;(8)第三组的淋巴细胞转化率样本均数—第二组的淋巴细胞转化率的样本均数的差;(9)第三和第二组均数差的显著性检验所对应的p 值。
第四章多个样本均数比较的方差分析方差分析的基本思想是通过比较各组或处理的均值差异与各组内的个体间差异来判断是否存在显著差异。
在进行方差分析之前,需要满足一些前提条件,如对总体的抽样是简单随机抽样、各样本之间是独立的等。
这些前提条件的满足保证了方差分析的可靠性。
多个样本的方差分析是通过计算组间离差平方和(SSTr)、组内离差平方和(SSE)和总离差平方和(SST)来比较各组或处理之间的差异。
计算公式为:SSTr = Σni(x̄i - x̄)²SSE = ΣΣ(xij - x̄i)²SST=SSTr+SSE其中,n是每组或处理的样本个数,ni是第i组或处理的样本个数,x̄i是第i组或处理的样本均值,x̄是全部样本的均值,xij是第i组或处理的第j个样本值。
通过计算SSTr和SSE,可以得到均方值(MS):MStr = SSTr / (r - 1)MSE=SSE/(N-r)其中,r是组或处理的个数,N是总样本个数。
接下来,需要计算F值,用于判断各组或处理均值是否有显著差异:F = MStr / MSE根据F值和自由度,可以查找F表来确定是否存在显著差异。
如果F 计算值大于F临界值,则拒绝原假设,表示均值之间存在显著差异。
方差分析还可以进行多重比较,用于确定具体哪些组或处理之间存在显著差异。
常用的多重比较方法有Tukey的HSD(最大均值差异)和Bonferroni方法。
方差分析的优点是可以同时比较多个样本的均值差异,具有较好的统计效应。
然而,方差分析也存在一些限制,如对正态性和方差齐性的要求较高。
总之,多个样本均数比较的方差分析是一种常用的统计方法,在科学研究和实验设计中得到广泛应用。
它可以帮助研究人员确定不同处理或组之间的差异,为决策提供支持。