第4章多元方差分析
- 格式:ppt
- 大小:884.50 KB
- 文档页数:73
第四章 方差分量线性回归模型本章考虑的线性模型不仅有固定效应、随机误差,而且有随机效应。
我们先从随机效应角度理解回归概念,导出方差分量模型,然后研究模型三种主要解法。
最后本章介绍关于方差分量模型的两个前沿研究成果,是作者近期在《应用数学学报》与国际数学杂志《Communications in Statistics 》上发表的。
第一节 随机效应与方差分量模型一、随机效应回归模型前面所介绍的回归模型不仅都是线性的,而且自变量看作是固定效应。
我们从资料对npi i i X X Y 11},,{ 出发建立回归模型,过去一直是把Y 看作随机的,X 1,…,X p 看作非随机的。
但是实际上,自变量也经常是随机的,而并不是我们可以事先设计好的设计矩阵。
我们把自变量也是随机变量的回归模型称为随机效应回归模型。
究竟一个回归模型的自变量是随机的还是非随机的,要视具体情况而定。
比如一般情况下消费函数可写为)(0T X b C C(4.1.1)这里X 是居民收入,T 是税收,C 0是生存基本消费,b 是待估系数。
加上随机扰动项,就是一元线性回归模型)(0T X b C C(4.1.2)那么自变量到底是固定效应还是随机效应?那要看你采样情况。
如果你是按一定收入的家庭去调查他的消费,那是取设计矩阵,固定效应。
如果你是随机抽取一些家庭,不管他收入如何都登记他的收入与消费,那就是随机效应。
对于随机效应的回归模型,我们可以从条件期望的角度推导出与最小二乘法则等价的回归函数。
我们希望通过X 预测Y ,也就是要寻找一个函数),,()(1p X X M X M Y ,当X 的观察值为x 时,这个预测的误差平均起来应达到最小,即22)]([min )]([X L Y E X M Y E L(4.1.3)这里min 是对一切X 的可测函数L(X)取极小。
由于当)|()(X Y E X M(4.1.4)时,容易证明0)]()()][([ X L X M X M Y E(4.1.5)故当)|()(X Y E X M 时,222)]()([)]([)]([X L X M E X M Y E X L Y E(4.1.6)要使上式左边极小,只有取)|()()(X Y E X M X L 。
多元统计实验四多元方差分析多元方差分析(MANOVA,Multivariate Analysis of Variance)是一种统计方法,用于比较两个或多个组之间在多个连续性因变量上的平均差异。
它是单因素方差分析(ANOVA,Analysis of Variance)在多个因变量上的扩展。
多元方差分析可以通过比较组间和组内的变异来评估组间差异的显著性。
与单因素方差分析相比,多元方差分析更加全面和准确,因为它考虑了多个因变量之间的关系。
多元方差分析有两种基本形式:一元多元方差分析和多元多元方差分析。
一元多元方差分析适用于只有一个自变量(组别)和多个连续性因变量的情况。
它的目的是确定组别(自变量)对于多个因变量是否有显著差异,并确定哪些因变量对组别之间的差异起到重要作用。
多元多元方差分析适用于有多个自变量和多个连续性因变量的情况。
它的目的是通过考虑多个自变量之间的交互作用,确定自变量对于多个因变量是否有显著差异,并确定哪些因变量和自变量之间的交互作用对差异起到重要作用。
在进行多元方差分析之前,需要验证几个假设:1.因变量在组内是正态分布的。
2.因变量在不同组别的方差相等。
3.因变量之间不存在相关关系。
4.因变量和自变量之间存在线性关系。
如果上述假设不成立,可以考虑进行数据转换,或者使用非参数方法。
在进行多元方差分析时,可以使用Wilks' Lambda检验、Roy's Largest Root检验、Pillai's Trace检验或Hotelling-Lawley Trace检验来判断组别之间的差异是否显著。
多元方差分析的优点是可以同时考虑多个因变量之间的关系,并且可以检验不同组别在多个因变量上的平均差异。
然而,它也有一些限制,比如对样本量要求较高,对实验设计的要求较高,以及对数据的假设有一定的要求。
总而言之,多元方差分析是一种强大的统计方法,能够有效比较多个组别在多个因变量上的差异,为研究者提供了更全面和准确的数据分析工具。
第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
方差分析的概念与应用方差分析(Analysis of Variance,简称ANOVA)是一种统计分析方法,用于比较两个或两个以上样本均值是否存在显著差异。
通过对不同组之间的方差进行比较,判断样本均值之间是否存在显著性差异。
方差分析广泛应用于实验设计和数据分析中,是一种重要的统计工具。
一、方差分析的基本概念方差分析是一种用于比较多个总体均值是否相等的统计方法。
在进行方差分析时,我们通常将数据分为不同的组别,然后比较这些组别之间的均值差异是否显著。
方差分析的基本思想是通过比较组间变异与组内变异的大小,来判断总体均值是否存在显著差异。
在方差分析中,有三种不同的方差:1. 总体方差(Total Variance):所有数据点与总体均值之间的离差平方和。
2. 组间方差(Between-group Variance):各组均值与总体均值之间的离差平方和,反映了不同组别之间的差异。
3. 组内方差(Within-group Variance):各组内部数据点与各自组均值之间的离差平方和,反映了组内数据的离散程度。
二、方差分析的应用领域1. 实验设计:方差分析广泛应用于实验设计中,用于比较不同处理组之间的均值差异,判断实验处理是否显著。
2. 医学研究:在医学研究中,方差分析常用于比较不同药物治疗组的疗效差异,评估治疗效果的显著性。
3. 市场调研:在市场调研中,方差分析可用于比较不同产品或广告策略对消费者行为的影响,帮助企业制定营销策略。
4. 教育评估:在教育领域,方差分析可用于比较不同教学方法或教育政策对学生成绩的影响,评估教育改革效果。
三、方差分析的步骤进行方差分析时,通常需要按照以下步骤进行:1. 提出假设:明确研究问题,提出原假设(各组均值相等)和备择假设(至少有一组均值不相等)。
2. 收集数据:根据研究设计,收集各组数据。
3. 方差分析:计算总体方差、组间方差和组内方差,进行方差分析。
4. 判断显著性:通过计算F值,比较P值与显著性水平,判断各组均值是否存在显著差异。
第 3 章多元正态总体的假设检验与方差分析从本章开始,我们开始转入多元统计方法和统计模型的学习。
统计学分析处理的对象是带有随机性的数据。
按照随机排列、重复、局部控制、正交等原则设计一个试验,通过试验结果形成样本信息(通常以数据的形式),再根据样本进行统计推断,是自然科学和工程技术领域常用的一种研究方法。
由于试验指标常为多个数量指标,故常设试验结果所形成的总体为多元正态总体,这是本章理论方法研究的出发点。
所谓统计推断就是根据从总体中观测到的部分数据对总体中我们感兴趣的未知部分作出推测,这种推测必然伴有某种程度的不确定性,需要用概率来表明其可靠程度。
统计推断的任务是“观察现象,提取信息,建立模型,作出推断”。
统计推断有参数估计和假设检验两大类问题,其统计推断目的不同。
参数估计问题回答诸如“未知参数的值有多大?”之类的问题, 而假设检验回答诸如“未知参数的值是吗?”之类的问题。
本章主要讨论多元正态总体的假设检验方法及其实际应用,我们将对一元正态总体情形作一简单回顾,然后将介绍单个总体均值的推断,两个总体均值的比较推断,多个总体均值的比较检验和协方差阵的推断等。
3.1 一元正态总体情形的回顾一、假设检验在假设检验问题中通常有两个统计假设(简称假设), 一个作为原假设(或称零假设),另一个作为备择假设(或称对立假设),分别记为和。
1、显著性检验2为便于表述,假定考虑假设检验问题:设X1, X2,…,X n来自总体N(,)的样本,我们要检验假设3.1)原假设H。
与备择假设H i应相互排斥,两者有且只有一个正确。
备择假设的意思是,一旦否定原假设H0 ,我们就选择已准备的假设H1。
2当 已知时,用统计量 z在原假设H 。
成立下,统计量z 服从正态分布z 〜N (0 ,1),通过查表,查得N(0 ,1)的上对于检验问题(3.1.1,我们制定这样一个检验规则(简称检验)(3.2)分位点z 2。
当z z 2时,拒绝H 0 ; 当z z 2时,接受H o 。
第四章 判别分析4、1 简述欧几里得距离与马氏距离得区别与联系。
答: 设p 维欧几里得空间中得两点X =与Y =。
则欧几里得距离为。
欧几里得距离得局限有①在多元数据分析中,其度量不合理。
②会受到实际问题中量纲得影响。
设X,Y 就是来自均值向量为,协方差为得总体G 中得p 维样本。
则马氏距离为D(X,Y)=。
当即单位阵时,D(X,Y)==即欧几里得距离。
因此,在一定程度上,欧几里得距离就是马氏距离得特殊情况,马氏距离就是欧几里得距离得推广。
4、2 试述判别分析得实质。
答:判别分析就就是希望利用已经测得得变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别得样本点尽可能地区别开来。
设R1,R2,…,Rk 就是p 维空间R p 得k 个子集,如果它们互不相交,且它们得与集为,则称为得一个划分。
判别分析问题实质上就就是在某种意义上,以最优得性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。
4、3 简述距离判别法得基本思想与方法。
答:距离判别问题分为①两个总体得距离判别问题与②多个总体得判别问题。
其基本思想都就是分别计算样本与各个总体得距离(马氏距离),将距离近得判别为一类。
①两个总体得距离判别问题设有协方差矩阵∑相等得两个总体G 1与G 2,其均值分别就是μ1与μ 2,对于一个新得样品X ,要判断它来自哪个总体。
计算新样品X 到两个总体得马氏距离D 2(X,G 1)与D 2(X,G 2),则X ,D 2(X ,G 1)D 2(X ,G 2)X ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,111122111111111222111211122()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ记 则判别规则为X ,W(X) X ,W(X)<0②多个总体得判别问题。