多晶体金属变形的特性
- 格式:doc
- 大小:12.58 KB
- 文档页数:2
1. 弹性变形与塑性变形弹性变形金属如果受应力较低,金属内原子间的方位与距离只产生微小的变化,当外力去除后原子会自行返回原位,变形随即消失。
塑性变形:当金属所受应力达到和超过某临界值(屈服强度),除了产生弹性变形外,还会产生卸载后不可恢复的永久变形。
滑移在外力作用下,晶体中一部分晶体相对于另一部分晶体沿着一定晶面产生相对滑动。
金属最重要的塑性变形机制。
滑移孪生孪生在外力作用下,晶体中一部分晶体相对于另一部分晶体沿着一定晶面产生相对转动。
1)滑移在超过某临界值的切应力下发生。
2)滑移常常沿晶体中最密排面及最密排方向发生。
此时原子间距最大,结合力最弱。
晶面间距示意图有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)滑移系: 滑移面(密排晶面)+滑移方向(密排晶向)较多的滑移系意味着有较好的塑性实际晶体的滑移机制: 依靠位错滑移。
如果晶体中存在位错,那么塑性变形 依靠位错的滑移进行,比依靠滑移面两侧晶体的整体滑动,阻力小得多。
塑性变形的位错滑移机制示意图3)滑移在晶体表面形成滑移线和滑移带滑移线和滑移带示意图滑移带金相照片有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)2. 单晶体塑性变形:孪生机制孪生孪生面孪晶密排立方和体心立方的金属容易发生孪生变形;一般金属在低温和冲击载荷下容易发生孪生变形。
3. 多晶体的塑性变形•各晶粒在变形过程中相互约束;•大量晶界的存在对位错运动形成障碍。
3. 多晶体的塑性变形:晶粒取向对塑性变形的影响•软取向晶粒在一定的外加应力下能够滑移变形的晶粒;•硬取向晶粒在一定的外加应力下不能滑移变形的晶粒多晶体的塑性变形存在很大的微观不均匀性,并且变形抗力明显高于单晶体。
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)3. 多晶体的塑性变形:晶界对塑性变形的影响细晶强化(晶界强化)晶界阻碍位错的通过,产生强化效果。
晶界越多,即晶粒越细小,不仅材料强度越高,而且由于增加晶粒数量,使得软取向晶粒更多,分布更均匀,改善微观变形的不均匀性,从而改善材料的塑性。
金属塑性成形原理1:试述塑性成型的一般分类。
1按成形特点分;块料和板料成形。
其中块料成形分为一次加工和2次加工。
一次加工包括轧制、挤压、拉拔等加工方法。
二次加工包括自由锻、模锻等加工方法。
2按成形时工件的温度分为热成形,冷成形,温成形。
2:在冷态下塑性变形的主要形式是什么?为什么?1在冷态条件下,多晶体的塑性变形是晶内变形,而晶内变形的主要方式是滑移。
2这是因为晶界存在各种缺陷,能量较高,在外力作用下不易变形,在冷态下条件下,晶界强度高于晶内,其变形比晶内困难,还由于晶粒在生成过程中,各晶粒相互接触,形成犬牙交错状态,造成对晶界滑移机械的阻碍作用,如果晶界变形,容易引起晶界结构的破坏,和裂纹产生,因此晶间变形只能很小。
3:多晶体金属塑性变形的特点是什么?1各晶粒变形的不同时性,2,各晶粒变形具有相互协调性。
3晶粒与晶粒之间,晶粒内部与晶界附近区域之间的变形具有不均匀性。
4:细晶对变形抗力的影响?1,滑移是由一个晶粒转移到另一个晶粒,主要取决于晶粒、晶界附近位错塞积群产生的产力场是否能够激发相晶粒中的位错源开动起来,以进行协调性的次滑移,而位错塞积群应力场的强弱与塞积位错数目n有关,n越大,应力场就越大,位错源开动的时间就越长,位错数也就越大,因此,粗晶金属的变形比较容易,而细晶粒则需要更大的外力作用才能使相邻晶粒发生塑性变形,即晶粒越细小,金属的变形抗力越大。
5:细晶对金属塑性的影响?1,在一定的体积内,细晶粒的数目多于粗晶粒的数目,因而塑性变形是位向有利的晶粒也较多,变形能均匀地分散到各个晶粒上。
2从每个晶粒的应变分布来看,细晶粒时,晶界的影响区域相对加大,使得晶粒心部的应变与晶界处的应变差异性减小,细晶粒金属的变形不均匀性也较小,因此引起的应力集中必然减小,内应力较均匀,因而金属断裂前可以承受塑性变形量更大。
6:冷塑性变形对金属组织的影响?1,晶粒形状的变化,金属经冷变形加工后,晶粒形状变化趋势与金属宏观变形一致,2,晶粒内部产生亚结构,3晶粒位向改变,产生变形织构。
多晶体金属的塑性变形
本质上,与单晶体无区别。
实际上,存在晶界及晶粒之间的位向差,变形过程复杂,变形抗力高的多。
一、晶粒取向的影响
多晶体相邻晶粒位向不同,导致多晶体金属塑性变形有以下两个特点:各晶粒变形的不同时性;
各晶粒变形的相互协调性。
各晶粒变形的不同时性
软取向的晶粒,首先开始滑移;
周围晶粒位向不同,滑移系取向不同,运动的位错不能越过晶界,在晶界处产生位错塞积。
位错塞积造成很高的应力集中,使相邻晶粒中某些滑移系开动,使应力集中松弛,变形从一个晶粒传向另一个晶粒。
随着变形,各晶粒发生转动和旋转,原软取向→硬取向,而停止滑移,同时原硬取向→软取向,而发生滑移。
随外力的持续,多晶体金属中的晶粒分批地、逐步地发生塑性变形。
各晶粒变形的相互协调性
多晶体的每个晶粒都处于其他晶粒的包围之中。
多晶体金属变形的特性
多晶体金属变形的一个重要特点是构成多晶体金属的
所有晶体变形具有非同时性。
由无数同相晶粒或不同相晶粒构成的金属。
由于各晶体的取向不同,在外力作用下,它们的变形不可能同时开始,而是那些滑移面阳适宜滑动的晶粒最先开始发生塑性变形,因此变形总是从那些比较弱的晶粒率先开始。
多晶体拉伸变形曲线变形的不均一性是多晶体塑性变形的第二个特点。
这种变形的不均一性不仅体现在同相不同晶粒之间,也表现在不同相之间。
即基体金属晶粒和第二相晶粒之间。
更进一步说,即使在同一晶粒几部变形也不均匀。
多晶体模型
时间性是多晶体金属塑性变形的第三个特点。
正国为多晶体金属塑性变形行为具有时间性,因此,对高温条件下服役的金属,通常采用应力、应变和时间三个变形来来描述金属的失效行为。
多晶体塑性变形模型
多晶体金属在塑性变形过程中,金属的机械性能和其它性能变化是多金属晶体变形的第四个特点,最突出的现象就是加工硬化现象。
位错的透射电镜形貌多晶体塑性变形的第五个特点是晶界所表现的行为,在低温条件多晶体金属发生塑性变形时,变形通常在晶内进行。
高温时晶粒会沿着晶界动力,甚至导致开裂。
多晶体金属塑性变形开裂,孪晶界开裂。