人教A版(2019)高中数学必修第一册2.3一元二次函数、方程和不等式 学案
- 格式:doc
- 大小:673.47 KB
- 文档页数:10
2.3二次函数与一元二次方程,不等式教学目标理解二次函数的零点与一元二次方程的解的关系能用二次函数观点解一元二次不等式教学难点用函数的观点解决方程不等式问题基础知识一元二次不等式定义一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是ax2+bx+c>0或者ax2+bx+c<0,其中a,b,c为常数,且a≠0.一元二次不等式的解法步骤○1将不等式化为右边为0,左边二二次项系数大于零的不等式ax2+bx+c>0或者ax2+bx+c<0(a>0)○2求出相对应的一元二次方程的根○3结合二次函数的图像与x轴的交点确定一元二次不等式的解集一元二次不等式不等式与二次函数关系如下常用结论一元二次不等式恒成立问题○1不等式ax2+bx+c>0(a≠0),x∈R恒成立⇔a>0,且∆<0○2不等式ax2+bx+c<0(a≠0),x∈R恒成立⇔a<0,且∆<0○3若a可以为0,需要分类讨论,且优先考虑a=0的情形思考若不等式ax2+bx+c>0(a≠0)改为ax2+bx+c≥(或者≤)0(a≠0)x∈R恒成立,那么__________经典例题例题1解下列不等式(1)3x2+x-4>0 (2) -x2+3x+18<0 (3)0<x2-x-2≤4例题2解不等式ax2-(a+1)x+1<0 (a>0)例2改编(提高篇)解不等式ax2-(a+1)x+1<0例题3若不等式(a-2)x 2+2(a-2)x-4<0对一切x ∈R 恒成立,则实数a 的取值范围是A.](,2-∞B.[]2,2-C.](2,2-D.(),2-∞-答案C例题4若对任意的x 属于[]-12,,都有x 2-2x+a ≤0(a 为常数),则a 的取值范围是( ) A. ](,3-∞- B. ](,0-∞ C. )1,+∞⎡⎣ D. ](,1-∞答案A例题5 求使不等式x 2+(a-6)x+9-3a >0(a 1≤)恒成立的x 的取值范围(提示:给定参数范围求x 的范围的恒成立问题时,一般情况下知道谁的范围就选谁当主元,求谁的范围谁就是参数,然后构造新的函数)答案()()-24+∞∞,,题组训练1.不等式的解集为 A .(-2,3)B .(-3,2)C .()--32+∞∞,(,)D. ()--23+∞∞,(,)2.不等式102x x -≥+的解集为 A .[]2,1-B .(]2,1-C .()(),21,-∞-+∞D .(](),21,-∞-+∞3.函数的定义域是 .4.解下列不等式:(1)2230x x --+≥ (2)24410x x +≤+.5.若不等式-3x2+a(6-a)x+c的解集是(-1,4)求实数a,c6.解不等式ax2-(2a+1)x+2≤0(a>0)7.(1)若对于x∈R,21-- <0恒成立,求实数m的取值范围;mx mx(2)若对于x∈[1,3],21-- <5-m恒成立,求实数m的取值范围.mx mx8已知函数.(优等提高)(1)若,且函数与x轴有交点,求实数的取值范围;(2)当时,解关于的不等式<0(3)若正数满足,且对于任意的,≥0恒成立,求实数的值.。
【新教材】人教统编版高中数学必修一A版第二章教案教学设计2.1《等式性质与不等式性质》教案教材分析:等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.教学目标与核心素养:课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小.3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。
数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。
教学重难点:重点:掌握不等式性质及其应用.难点:不等式性质的应用.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:一、情景导入在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、轻与重、不超过或不少于等.举例说明生活中的相等关系和不等关系.要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本37-42页,思考并完成以下问题 1.不等式的基本性质是?2.比较两个多项式(实数)大小的方法有哪些?3.重要不等式是?4.等式的基本性质?5.类比等式的基本性质猜测不等式的基本性质?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、 两个实数比较大小的方法 作差法 {a −b >0⟺a >ba −b =0⟺a =b a −b <0⟺a <b作商法{ ab >1⟺a >b ab =1⟺a =b ab <1⟺a <b2.不等式的基本性质3.重要不等式四、典例分析、举一反三 题型一 不等式性质应用 例1 判断下列命题是否正确:(1)c a b c b a >⇒>>,( ) (2)22bc ac b a >⇒> ( ) (3)bd ac d c b a >⇒>>,( ) (4)b a cb c a >⇒>22 ( ) (5) 22b a b a >⇒> ( ) (6)22b a b a >⇒> ( ) (7) dbc ad c b a >⇒>>>>0,0 ( ) 【答案】(1)× (2) × (3)× (4)√ (5)× (6) √ (7 )×解题技巧:(不等式性质应用)可用特殊值代入验证,也可用不等式的性质推证. 跟踪训练一1、用不等号“>”或“<”填空:(1)如果a>b ,c<d ,那么a-c ______ b-d ; (2)如果a>b>0,c<d<0,那么ac______bd ; (3)如果a>b>0,那么1a 2 ______1b 2 (4)如果a>b>c>0,那么ca _______ cb【答案】(1) > (2) < (3) < (4) < 题型二 比较大小例2 (1).比较(x+2)(x+3)和(x+1)(x+4)的大小 (2).已知a >b >0,c >0,求ca >cb 。
必修第一册第二章一元二次函数、方程和不等式2.2.3 二次函数与一元二次方程、不等式(第1课时)教材分析本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第二章第3节《二次函数与一元二次方程、不等式》第1课时。
从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。
从思想层面看,本节课突出体现了数形结合思想。
同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。
学情分析学生在初中已经学习了一元一次不等式、一元二次方程和二次函数的相关知识,对不等式的性质有了初步了解,但因我校学生基础普遍较差,逻辑推理和抽象思维能力仍需提高,还需依赖具体形象的内容理解抽象的逻辑关系。
教学目的1. 理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;2. 经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
教学重点一元二次不等式的解法教学难点理解一元二次方程、一元二次不等式及二次函数三者之间的关系教学过程一、情境导入问题园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的矩形区域的面积要大于20m2,则这个矩形的边长为多少米?设这个矩形的一条边长为xm,则另一条边长为(12-x)m.由题意,得:(12-x)x>20(0<x<12)整理得x2-12x+20<0(0<x<12)。
①求得不等式①的解集,就得到了问题的答案。
思考:类比一元一次不等式,这个不等式有什么特点?能否给这类不等式起个名字,并写出它的一般形式?由此导出课题。
一元二次不等式的定义:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是ax2+bx+c>0 或ax2+bx+c<0 ,其中a,b,c均为常数,a≠0.思考:为什么要规定a≠0?二、探索新知探究1:回顾一次函数与一元一次方程、不等式的关系请学生画出一次函数y=2x-6的图象,并回答下列问题:1.函数y=2x-6与x轴的交点为;2.方程2x-6=0的根为;3.不等式2x-6>0的解为;4.不等式2x-6<0的解为;师生完成上述问题后小结:三个“一次”的关系。
教学设计课程基本信息学科数学年级高一学期秋季课题第二章一元二次函数、方程和不等式小结教科书书名:普通高中教科书数学必修第一册A版教材出版社:人民教育出版社教学目标1. 掌握不等式性质、基本不等式和二次不等式的知识框架和逻辑联系。
2. 通过具体的例子,复习巩固比较两数(式)大小的方法、分析法证明不等式、二次不等式的解法和利用基本不等式求最值的方法。
3. 在回顾知识和具体问题的求解过程中,体会并应用类比的研究方法,用联系的观点看待不同问题并解决简单的最值问题和不等式问题。
教学内容教学重点:1.不等式的性质。
2.基本不等式及利用基本不等式求最值。
3.一元二次不等式。
教学难点:1.利用基本不等式求最值。
2.用函数的思想统领方程和不等式。
教学过程一、情景引入展示火星细节照片,介绍天问一号突破发射速度大于第二宇宙速度的关键技术和我国航空航天取得辉煌成就。
【设计意图】1.通过发射速度大于第二宇宙速度,引入不等关系和不等式;2.激发学生学习兴趣;3.增强学生爱国主义情感!二、知识结构展示知识结构图,并解释:不等关系和不等式的数学表达即为等式(方程)和不等式,初中学习了简单方程的求解,理论依据为等式的性质。
类比等式的性质,研究不等式的性质。
本章主要研究了一元二次方程和二次不等式,依然类比初中一元一次不等式的解法,得到利用二次函数的观点理解二次方程和不等式,得到一元二次不等式的一般解法。
本章还学习了一个具体的不等式即基本不等式。
在本章的学习中利用了类比的研究方法和联系的观点去研究问题。
【设计意图】1.帮助学生建立知识的逻辑关系和联系,便于学生从整体把握本章的知识。
2.回顾本学学习中的思想方法,帮助学生梳理学习新知识的一般性方法,以形成学生的创新能力,发展学科素养。
三、知识应用和总结(一)不等式性质的应用园艺师打算在绿地上用栅栏围成一个矩形区域种植花卉.设该矩形的长为x米,宽为y米(x >y).若后期修改方案:把长增加1米,宽减少1米.比较修改前后的矩形面积大小.分别展示作差法、利用不等式性质比较大小,其中第二种方法证明过程采用分析法。
第二章一元二次函数、方程和不等式2.1等式性质与不等式性质教学设计学过程二.知识探究【师】某钢铁厂要把长度为4000mm的钢管截成500mum和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍.怎样写出满足上述所有不等关系的不等式呢?分析:假设截得500mm的钢管x根,截得600mm的钢管y根.根据题意,应有如下的不等关系:归纳小结:数运算性质与大小顺序之间的关系2比较两个实数a,b大小的方法;(1)作差a-b-—变形—与0比较—得出结论,1.(2)作商ab———变形-一与1比较一得出结论(作商的前提是两个数同号)三、典例分析:试比较下列各组数的大小,其中x R∈(1)61x+与42x x+61x+42()x x-+6421x x x=--+422(1)(1)x x x=---24(1)(1)x x=--222(1)(1)x x=-+当1x=±时, 61x+42()x x=+;当1x≠±,61x+42()x x>+.(2) a ba b与b aa b(1)解得两种钢管的总长度不能超过4000mm;(2)截得600mm钢管的数量不能超过500mm钢管数量的3倍;(3)解得两钟钢管的数量都不能为负.1.由以上不等关系,可得不等式组:学生分组讨论自主探究,教师巡视指导,作出评价。
培养学生分析,抽象能力、感受不等式发现和推导过程。
引导学生共同分析解决问题,熟悉并强化理解。
分析:设该班共有x 人,这笔开学费用共y 元,则⎪⎪⎩⎪⎪⎨⎧∈=-=-.,4011,10,8412*N x y x y x y x <.引导学生学会自己总结,让学生进一步体会知识的形成、发展、完善的过程.板书设计等式性质与不等式性质引入知识探究方法归纳不等式和基本性质典例分析小结课堂练习。
2.3 二次函数与一元二次方程、不等式(教师独具内容)课程标准:1.理解一元二次不等式和一元二次不等式的解集的概念.2.理解一元二次方程、一元二次不等式与一元二次函数的关系.3.熟练掌握一元二次不等式的两种解法.4.能从实际情境中抽象出一元二次不等式,并通过解一元二次不等式解决实际问题.教学重点:1.一元二次方程、一元二次不等式与一元二次函数之间的关系.2.一元二次不等式的解法.3.利用一元二次不等式解决实际问题.教学难点:1.一元二次方程、一元二次不等式与一元二次函数之间的关系.2.从实际问题中抽象出一元二次不等式模型.【知识导学】知识点一一元二次不等式的概念01一个未知数,并且未知数的□02最高次数是2的不等式,称为一一般地,我们把只含有□元二次不等式,即形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a,b,c均为常数,a≠0)的不等式都是一元二次不等式.知识点二二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c的□01零点.知识点三一元二次不等式的解集的概念02解使一元二次不等式成立的所有未知数的值组成的□01集合叫做这个一元二次不等式的□集.知识点四二次函数与一元二次方程、不等式的解的对应关系知识点五利用不等式解决实际问题的一般步骤(1)选取合适的□01字母表示题中的□02未知数;(2)由题中给出的不等关系,列出□03关于未知数的不等式(组);04求解所列出的不等式(组);(3)□(4)结合题目的□05实际意义确定答案.【新知拓展】1.解一元二次不等式的方法与步骤(1)解一元二次不等式的常用方法①图象法:由一元二次方程、一元二次不等式及二次函数的关系,可以得到解一元二次不等式的一般步骤:(ⅰ)化不等式为标准形式:ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0);(ⅱ)求方程ax2+bx+c=0(a>0)的根,并画出对应函数y=ax2+bx+c的图象简图;(ⅲ)由图象得出不等式的解集.②代数法:将所给不等式化为一般式后借助分解因式或配方法求解.当m<n时,若(x-m)(x-n)>0,则可得x>n或x<m;若(x-m)(x-n)<0,则可得m<x<n.有口诀如下:大于取两边,小于取中间.(2)含有参数的一元二次型的不等式在解含有参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑:①关于不等式类型的讨论:二次项系数a>0,a<0,a=0.②关于不等式对应的方程根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0).③关于不等式对应的方程根的大小的讨论:x1>x2,x1=x2,x1<x2.2.利用不等式解决实际问题需注意以下四点(1)阅读理解材料:应用题所用语言多为文字语言,而且不少应用题文字叙述篇幅较长.阅读理解材料要达到的目的是将实际问题抽象成数学模型,这就要求解题者领悟问题的实际背景,确定问题中量与量之间的关系,初步形成用怎样的模型能够解决问题的思路,明确解题方向.(2)建立数学模型:根据(1)中的分析,把实际问题用“符号语言”“图形语言”抽象成数学模型,并且,建立所得数学模型与已知数学模型的对应关系,以便确立下一步的努力方向.(3)讨论不等关系:根据(2)中建立起来的数学模型和题目要求,讨论与结论有关的不等关系,得到有关理论参数的值.(4)作出问题结论:根据(3)中得到的理论参数的值,结合题目要求作出问题的结论.1.判一判(正确的打“√”,错误的打“×”)(1)一元二次方程的根就是相应函数的图象与x轴的交点.( )(2)(x+a)(x+a+1)<0是一元二次不等式.( )(3)设二次方程ax2+bx+c=0的两解为x1,x2(x1<x2),则一元二次不等式ax2+bx+c>0的解集不可能为{x|x1<x<x2}.( )(4)用不等式解决实际问题最后要结合题目的实际意义确定答案.( )答案(1)×(2)√(3)×(4)√2.做一做(请把正确的答案写在横线上)(1)不等式x2-2x+3>0的解集为________.(2)不等式-x2-3x+4>0的解集为________.(3)当a>0时,若ax2+bx+c>0的解集为R,则Δ应满足的条件为________.(4)已知不等式ax 2-bx +2<0的解集为{x |1<x <2},则a +b =________.(5)有纯农药液一桶,倒出8升后用水补满,然后又倒出4升后再用水补满,此时桶中的纯农药液不超过容积的28%,则桶的容积的取值范围是________.答案 (1)R (2){x |-4<x <1} (3)Δ<0 (4)4 (5)大于8小于等于403题型一 不含参数的一元二次不等式的解法 例1 求下列不等式的解集:(1)2x 2+7x +3>0;(2)-x 2+8x -3>0; (3)x 2-4x -5≤0;(4)-4x 2+18x -814≥0;(5)-12x 2+3x -5>0;(6)-2x 2+3x -2<0.[解] (1)因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不等实根x 1=-3,x 2=-12,又二次函数y =2x 2+7x +3的图象开口向上,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-12或x <-3. (2)因为Δ=82-4×(-1)×(-3)=52>0,所以方程-x 2+8x -3=0有两个不等实根x 1=4-13,x 2=4+13,又二次函数y =-x 2+8x -3的图象开口向下,所以原不等式的解集为{x |4-13<x <4+13}.(3)原不等式可化为(x -5)(x +1)≤0,所以原不等式的解集为{x |-1≤x ≤5}.(4)原不等式可化为⎝ ⎛⎭⎪⎫2x -922≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =94. (5)原不等式可化为x 2-6x +10<0,因为Δ=62-40=-4<0,所以原不等式的解集为∅. (6)原不等式可化为2x 2-3x +2>0,因为Δ=9-4×2×2=-7<0,所以原不等式的解集为R .金版点睛解不含参数的一元二次不等式的一般步骤(1)通过对不等式的变形,使不等式右侧为0,使二次项系数为正. (2)对不等式左侧因式分解,若不易分解,则计算对应方程的判别式. (3)求出相应的一元二次方程的根或根据判别式说明方程有无实根. (4)根据一元二次方程根的情况画出对应的二次函数的草图. (5)根据图象写出不等式的解集.[跟踪训练1] 求下列不等式的解集: (1)x 2-3x +1≤0;(2)3x 2+5x -2>0; (3)-9x 2+6x -1<0;(4)x 2-4x +5>0; (5)2x 2+x +1<0.解 (1)因为Δ=9-4=5>0,所以方程x 2-3x +1=0有两个不等实数根x 1=3-52,x 2=3+52,所以原不等式的解集为{|x 3-52≤x ≤3+52. (2)原不等式可化为(3x -1)(x +2)>0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >13或x <-2. (3)原不等式可化为(3x -1)2>0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠13,x ∈R .(4)因为Δ=(-4)2-4×5=-4<0,所以原不等式的解集为R . (5)因为Δ=12-4×2=-7<0,所以原不等式的解集为∅. 题型二 含参数的一元二次不等式的解法 例2 解关于x 的不等式(a ∈R ): (1)2x 2+ax +2>0; (2)ax 2-(a +1)x +1<0.[解] (1)Δ=a 2-16,下面分情况讨论:①当Δ<0,即-4<a <4时,方程2x 2+ax +2=0无实根,所以原不等式的解集为R . ②当Δ≥0,即a ≥4或a ≤-4时,方程2x 2+ax +2=0的两个根为x 1=14(-a -a 2-16),x 2=14(-a +a 2-16).当a =-4时,原不等式的解集为{x |x ∈R ,且x ≠1};当a >4或a <-4时,原不等式的解集为{|x x <14(-a -a 2-16)或x >14(-a +a 2-16);当a =4时,原不等式的解集为{x |x ∈R ,且x ≠-1}. (2)若a =0,原不等式为-x +1<0,解得x >1;若a <0,原不等式可化为⎝ ⎛⎭⎪⎫x -1a (x -1)>0,解得x <1a或x >1;若a >0,原不等式可化为⎝⎛⎭⎪⎫x -1a (x -1)<0,(*)其解的情况应由1a与1的大小关系决定,故①当a =1时,由(*)式可得x ∈∅;②当a >1时,由(*)式可得1a<x <1;③当0<a <1时,由(*)式可得1<x <1a.综上所述,当a <0时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1a 或x >1;当a =0时,解集为{x |x >1};当0<a <1时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <1a ;当a =1时,解集为∅;当a >1时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a<x <1. 金版点睛解含参数的一元二次不等式的一般步骤(1)讨论二次项系数:二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程根的个数:讨论判别式Δ与0的关系.(3)写出解集:确定无根时可直接写出解集;确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.[跟踪训练2] 解关于x 的不等式x 2-(a +a 2)x +a 3>0. 解 原不等式可化为(x -a )(x -a 2)>0.方程x 2-(a +a 2)x +a 3=0的两根为x 1=a ,x 2=a 2. 由a 2-a =a (a -1)可知: ①当a <0或a >1时,a 2>a . 解原不等式得x >a 2或x <a . ②当0<a <1时,a 2<a , 解原不等式得x >a 或x <a 2.③当a =0时,原不等式为x 2>0,∴x ≠0. ④当a =1时,原不等式为(x -1)2>0,∴x ≠1. 综上可知:当a <0或a >1时,原不等式的解集为{x |x <a 或x >a 2}; 当0<a <1时,原不等式的解集为{x |x <a 2或x >a }; 当a =0时,原不等式的解集为{x |x ≠0}; 当a =1时,原不等式的解集为{x |x ≠1}. 题型三 “三个二次”之间的转化关系例3 若不等式ax 2+bx +c >0的解集为{x |-3<x <4},求不等式bx 2+2ax -c -3b <0的解集.[解] 因为ax 2+bx +c >0的解集为{x |-3<x <4},所以a <0且-3和4是方程ax 2+bx +c=0的两根,由一元二次方程根与系数的关系可得⎩⎪⎨⎪⎧-3+4=-ba ,-3×4=c a,即⎩⎪⎨⎪⎧b =-a ,c =-12a .所以不等式bx 2+2ax -c -3b <0,即为-ax 2+2ax +15a <0,即x 2-2x -15<0, 故所求的不等式的解集为{x |-3<x <5}.[条件探究] 本例中把{x |-3<x <4}改为{x |x <-3或x >4},其他条件不变,则不等式的解集又如何?解 因为ax 2+bx +c >0的解集为{x |x <-3或x >4},所以a >0且-3和4是方程ax 2+bx +c =0的两根,由一元二次方程根与系数的关系可得⎩⎪⎨⎪⎧-3+4=-b a ,-3×4=c a,即⎩⎪⎨⎪⎧b =-a ,c =-12a ,所以不等式bx 2+2ax -c -3b <0,即为-ax 2+2ax +15a <0,即x 2-2x -15>0,解得x <-3或x >5,故所求不等式的解集为{x |x <-3或x >5}. 金版点睛三个“二次”之间的关系(1)三个“二次”中,一元二次函数是主体,讨论一元二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的一元二次函数相联系,通过一元二次函数的图象及性质来解决问题,关系如下:[跟踪训练3] (1)已知关于x 的不等式ax 2+bx +c <0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-2或x >-12,则ax 2-bx +c >0的解集为________;(2)已知方程ax 2+bx +2=0的两根为-12和2,则不等式ax 2+bx -1>0的解集为________.答案 (1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <2(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <1解析 (1)由题意-2,-12是方程ax 2+bx +c =0的两根,且a <0,故⎩⎪⎨⎪⎧-2+⎝ ⎛⎭⎪⎫-12=-b a ,(-2)×⎝ ⎛⎭⎪⎫-12=c a ,解得a =c ,b =52c ,所以不等式ax 2-bx +c >0即为2x 2-5x +2<0,解得12<x <2.(2)∵方程ax 2+bx +2=0的两根为-12和2,由根与系数的关系可得⎩⎪⎨⎪⎧-12+2=-b a ,-12×2=2a ,∴a =-2,b =3,ax 2+bx -1>0可变为-2x 2+3x -1>0,即2x 2-3x +1<0,解得12<x <1.题型四 利用一元二次不等式判断车速例4 某种汽车在水泥路面上的刹车距离(刹车距离是指汽车刹车后由于惯性往前滑行的距离)s m 和汽车车速x km/h 有如下关系:s =120x +1180x 2.在一次交通事故中,测得这种车的刹车距离大于39.5 m ,那么这辆汽车刹车前的车速至少为多少?(精确到0.01 km/h ,28521≈168.88)[解] 设这辆汽车刹车前的车速为x km/h , 根据题意,得120x +1180x 2>39.5.移项整理,得x 2+9x -7110>0.显然Δ>0,x 2+9x -7110=0有两个实数根, 即x 1≈-88.94,x 2≈79.94.然后,根据二次函数y =x 2+9x -7110的图象, 得不等式的解集为{x |x <-88.94或x >79.94}.在这个实际问题中,x >0,所以这辆汽车刹车前的车速至少为79.94 km/h. 金版点睛一元二次不等式的应用题常以二次函数为模型,解题时要审清题意,准确找出其中的不等关系,再利用一元二次不等式求解,确定答案时应注意变量具有的“实际含义”.[跟踪训练4] 汽车在行驶中,由于惯性作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速40 km/h 以内的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了,事发后现场测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m ,又知甲、乙两种车型的刹车距离s (m)与车速x (km/h)之间有如下关系:s 甲=0.1x +0.01x 2,s乙=0.05x +0.005x 2.问:超速行驶应负主要责任的是谁?解 由题意知,对于甲车,有0.1x +0.01x 2>12,即x 2+10x -1200>0, 解得x >30或x <-40(不符合实际意义,舍去),这表明甲车的车速超过30 km/h.但根据题意刹车距离略超过12 m ,由此估计甲车车速不会超过限速40 km/h.对于乙车,有0.05x +0.005x 2>10,即x 2+10x -2000>0, 解得x >40或x <-50(不符合实际意义,舍去), 这表明乙车的车速超过40 km/h ,即超过规定限速, 所以乙应负主要责任.题型五 利用一元二次不等式解决利润问题例5 某摩托车生产企业,上年度生产摩托车投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.75x ,同时预计年销售量增加的比例为0.6x .设年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内? [解] (1)依题意,得y =[1.2(1+0.75x )-(1+x )]×1000×(1+0.6x )=1000(-0.06x 2+0.02x +0.2).∴所求关系式为y =1000(-0.06x 2+0.02x +0.2)(0<x <1). (2)依题意,得1000(-0.06x 2+0.02x +0.2)>(1.2-1)×1000. 化简,得3x 2-x <0.解得0<x <13.∴投入成本增加的比例x 的范围是0<x <13.金版点睛解不等式应用题,一般可按四步进行:①审题,找出关键量和不等关系;②引进数学符号,用不等式表示不等关系(或表示成函数关系);③解不等式(或求函数最值);④回归到实际问题.[跟踪训练5] 将进货单价为40元的商品按50元售出时,能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个.问为了使赚得的利润不少于8000元,售价应定在多少范围?这时应进货又在什么范围?解 如果按单价50元售出,每个利润是10元,卖出500个,只能赚得5000元.为了使赚得的利润不少于8000元,只能涨价,但要适度,否则销售量就少得太多.设该商品涨价x 元,则该商品销售时的单价是(50+x )元,每个商品的利润是[(50+x )-40]元,销售量是(500-10x )个.由题意可列不等式为[(50+x )-40](500-10x )≥8000.整理,得x 2-40x +300≤0.解这个一元二次不等式,得10≤x ≤30.故该商品销售时的单价应定在大于等于60小于等于80之间. 因为销售量和该商品涨价x 元之间是一次函数关系,且当该商品销售时的单价为60元时,其销售量是500-10×10=400(个); 当该商品销售时的单价为80元时,其销售量是500-10×30=200(个). 故这时应进货的范围为大于等于200小于等于400.1.在下列不等式中,解集是∅的是( ) A .x 2-3x +5>0 B .x 2+4x +4≤0 C .4-4x -x 2<0 D .-2+3x -2x 2>0 答案 D解析 A 的解集为R ;B 的解集是{x |x =-2};C 的解集为{x |x >-2+22或x <-2-22},用排除法应选D.2.在R 上定义运算⊙:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .0<x <2B .-2<x <1C .x <-2或x >1D .-1<x <2答案 B解析 ∵x ⊙(x -2)=x (x -2)+2x +x -2<0, ∴x 2+x -2<0即(x -1)(x +2)<0, 解得-2<x <1.∴选B.3.若t >2,则关于x 的不等式(x -t )⎝⎛⎭⎪⎫x -1t <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1t<x <t B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1t或x <t- 11 - C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <1t 或x >t D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ t <x <1t 答案 A解析 ∵t >2,∴t >1t, ∴(x -t )⎝ ⎛⎭⎪⎫x -1t <0,解得1t<x <t . 4.在一幅长60 cm ,宽40 cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积不大于2816 cm 2,设金色纸边的宽为x cm ,那么x 满足的不等式是( )A .(60+2x )(40+2x )≤2816B .(60+x )(40+x )≥2816C .(60+2x )(40+x )>2816D .(60+x )(40+2x )<2816答案 A解析 “不大于”就是“≤”,所以根据题意可列出不等式为(60+2x )(40+2x )≤2816.5.某小型服装厂生产一种风衣,日销售量x 件与单价p 元/件之间的关系为p =160-2x ,生产x 件这种风衣所需成本为c =500+30x 元,假设所生产的这种风衣能够全部售出,问:该厂日产量多大时,可使该厂日获利不少于1300元?解 设该厂日产量为x 件时,日获利为y 元,则y =(160-2x )x -(500+30x )=-2x 2+130x -500,由题意可得-2x 2+130x -500≥1300.解得20≤x ≤45.∴当该厂日产量x 满足20≤x ≤45时,可使该厂日获利不少于1300元.。
2.3 二次函数与一元二次方程、不等式学习目标:1. 理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;2.能根据“三个二次”之间的关系解决简单问题核心素养:1.通过一元二次不等式的学习,培养数学运算素养2. 一元二次方程、一元二次不等式与二次函数的关系得到二次不等式的解培养数学抽象素养学习过程:【知识导学】知识点一一元二次不等式的概念一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,即形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a,b,c均为常数,a≠0)的不等式都是一元二次不等式.知识点二.一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集知识点三三个“二次”的关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c (a>0)的图像一元二次方程ax2+bx +c=0 (a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a没有实数根一元二次不等式ax2+bx+c>0 (a>0)的解集{x|x<x1或x>x2}⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪x≠-b2a{x|x∈R}一元二次不等式ax2+bx+c<0 (a>0)的解集{x|x1< x<x2} ∅∅【名师点拨】.解一元二次不等式①首先化不等式为标准形式:ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0);②再由图象得出不等式的解集口诀:大于取两边,小于取中间. 【初试身手】(1)(2020·山西太原高一期末)不等式()10x x ->的解集是( ) A .()(),01,-∞⋃+∞ B .()0,1 C .(),0-∞D .()1,+∞【答案】A 【解析】解二次不等式()10x x ->,得0x <或1x >, 因此,不等式()10x x ->的解集()(),01,-∞⋃+∞. 故选:A.(2)(2020·福建高一期末)不等式2560x x --<的解集是( ) A .{|6x x >或1}x <- B .{}|16x x -<< C .{|1x x >或6}x <- D .{}|61x x -<< 【答案】B 【解析】由2560x x --<可得(6)(1)0x x -+<,16x ∴-<<,故不等式的解集为{}|16x x -<<, 故选:B(3)(2020·全国高一课时练习)解不等式2230x x -+-<________ 【答案】不等式的解集为R【解析】由题意,不等式2230x x -+-<可化为2230x x -+>, 因为2(2)4380∆=--⨯=-<,所以方程2230x x -+=无实数解,又由函数223y x x =-+的图象开口向上,所以原不等式的解集是R . (4)不等式-3x 2+5x -4>0的解集为________.【答案】∅【解析】 原不等式变形为3x 2-5x +4<0.因为Δ=(-5)2-4×3×4=-23<0,所以3x 2-5x +4=0无解.由函数y =3x 2-5x +4的图象可知,3x 2-5x +4<0的解集为∅.](5)(2020·齐齐哈尔市朝鲜族学校高一期中)不等式250ax x c -+<的解集为11|32x x ⎧⎫<<⎨⎬⎩⎭,则a ,c 的值为( ) A .6a =,1c = B .6a =-,1c =- C .1a =,6c = D .1a =-,6c =-【答案】A【解析】不等式250ax x c -+<的解集为11|32x x ⎧⎫<<⎨⎬⎩⎭, 故不等式对应方程的系数满足:115321132ac a⎧+=⎪⎪⎨⎪⨯=⎪⎩,解得6a =,1c =.故选:A.例题讲解:例1. 解下列不等式: (1)2x 2+7x +3>0; (2)-4x 2+18x -814≥0;(3)-2x 2+3x -2<0.【答案】(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-12或x <-3(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =94 (3)R . 【解析】 (1)因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不等实根x 1=-3,x 2=-12.又二次函数y =2x 2+7x +3的图象开口向上,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-12或x <-3. (2)原不等式可化为⎝ ⎛⎭⎪⎫2x -922≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =94.(3)原不等式可化为2x 2-3x +2>0,因为Δ=9-4×2×2=-7<0,所以方程2x 2-3x +2=0无实根,又二次函数y =2x 2-3x +2的图象开口向上,所以原不等式的解集为R . [方法技巧]解一元二次不等式的一般步骤(1)化标准.通过对不等式的变形,使不等式右侧为0,使二次项系数为正. (2)判别式.对不等式左侧因式分解,若不易分解,则计算对应方程的判别式. (3)求实根.求出相应的一元二次方程的根或根据判别式说明方程有无实根. (4)画草图.根据一元二次方程根的情况画出对应的二次函数的草图. (5)写解集.根据图象写出不等式的解集. [变式训练]求下列不等式的解集:(1)x 2-3x +1≤0; (2)-9x 2+6x -1<0;(3)x 2-4x +5>0; (4)2x 2+x +1<0. (5)0<x 2-x -2≤4【答案】(1){|x 3-52≤x ≤3+52. }(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠13,x ∈R (3)R (4)∅.(5){x |-2≤x <-1或2<x ≤3}【解析】(1)因为Δ=9-4=5>0,所以方程x 2-3x +1=0有两个不等实数根x 1=3-52,x 2=3+52,所以原不等式的解集为{|x 3-52≤x ≤3+52. }(2)原不等式可化为(3x -1)2>0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠13,x ∈R .(3)因为Δ=(-4)2-4×5=-4<0,所以原不等式的解集为R . (4)因为Δ=12-4×2=-7<0,所以原不等式的解集为∅. (5)原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4,则⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0,可得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,∴原不等式的解集为{x |-2≤x <-1或2<x ≤3}.例2(1)(2020·怀仁市第一中学校云东校区高一期末(理))解关于x 的不等式:22(2)20().ax a x a a R -++>∈ (2)2x 2+ax +2>0;【答案】(1)当0a =时,解集为 {}0x x <;当0a <<时,解集为2{|x x a>或}x a <;当a >{|x x a >或2}x a <;当 0a <<时,解集为2{|}x x a a <<;当 a <2{|}x a x a<<; 当a ={|x x ≠;当a =∅;(2)当-4<a <4时不等式的解集为R .,当a =-4时,原不等式的解集为{x |x ∈R ,且x ≠1};当a >4或a <-4时,原不等式的解集为{|x x <14(-a -a 2-16)或x >14(-a +a 2-16);当a =4时,原不等式的解集为{x |x ∈R ,且x ≠-1} 【解析】(1)由22(2)20().ax a x a a R -++>∈则(2)()0ax x a --> 因为a R ∈,故对a 分情况讨论当0a =时,则20x ->,所以0x <,不等式的解集为{}0x x <当0a << 时,由(2)()0ax x a -->,不等式的解集2{|x x a>或}x a <当a >{|x x a >或2}x a <当 0a <<时,不等式的解集为2{|}x x a a<<当 a <2{|}x a x a<<当a ={|x x ≠当a =∅(2)Δ=a 2-16,下面分情况讨论:①当Δ<0,即-4<a <4时,方程2x 2+ax +2=0无实根,所以原不等式的解集为R . ②当Δ≥0,即a ≥4或a ≤-4时,方程2x 2+ax +2=0的两个根为x 1=14(-a -a 2-16),x 2=14(-a +a 2-16).当a =-4时,原不等式的解集为{x |x ∈R ,且x ≠1};当a >4或a <-4时,原不等式的解集为{|x x <14(-a -a 2-16)或x >14(-a +a 2-16);当a =4时,原不等式的解集为{x |x ∈R ,且x ≠-1}[方法技巧]解含参数的一元二次不等式的一般步骤(1)讨论二次项系数:二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程根的个数:讨论判别式Δ与0的关系.(3)写出解集:确定无根时可直接写出解集;确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.注意:对参数分类讨论的每一种情况是相互独立的一元二次不等式的解集,不能合并 [变式训练](2020·上海高一课时练习)解关于x 的不等式:()2230x a a x a-++>.【答案】见解析 【解析】将不等式()2230x a ax a-++>变形为()()20x a x a -->.当a <0或1a >时,有a < a 2,所以不等式的解集为{|x x a <或2}x a >; 当a =0或1a =时,a = a 2=0,所以不等式的解集为{|,x x R ∈且}x a ≠;当0< a <1时,有a > a 2,所以不等式的解集为2{|x x a <或}x a >;【例3】 已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},求关于x 的不等式cx 2+bx +a <0的解集.【答案】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >12 【解析】法一:由不等式ax 2+bx +c >0的解集为{x |2<x <3}可知,a <0,且2和3是方程ax2+bx +c =0的两根,由根与系数的关系可知b a =-5,c a =6.由a <0知c <0,b c =-56,故不等式cx 2+bx +a <0,即x 2+b c x +a c >0,即x 2-56x +16>0,解得x <13或x >12,所以不等式cx 2+bx+a <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >12. 法二:由不等式ax 2+bx +c >0的解集为{x |2<x <3}可知,a <0,且2和3是方程ax 2+bx +c =0的两根,所以ax 2+bx +c =a (x -2)(x -3)=ax 2-5ax +6a ⇒b =-5a ,c =6a ,故不等式cx 2+bx +a <0,即6ax 2-5ax +a <0⇒6a ⎝ ⎛⎭⎪⎫x -13⎝ ⎛⎭⎪⎫x -12<0,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >12. [方法技巧]已知以a ,b ,c 为参数的不等式(如ax 2+bx +c >0)的解集,求解其他不等式的解集时, (1)根据解集来判断二次项系数的符号;(2)根据根与系数的关系把b ,c 用a 表示出来并代入所要解的不等式; (3)约去 a ,将不等式化为具体的一元二次不等式求解. [变式训练](2020·上海高三专题练习)已知一元二次不等式20ax bx c ++>的解集为{}x x αβ<<,且0αβ<<,求不等式20cx bx a ++<的解集. 【答案】1{x x α>或1}x β<【解析】因为不等式20ax bx c ++>(0a ≠)的解为x αβ<<,其中0βα>>,所以有b a αβ+=-,caαβ=且0a <,0c <.设方程20cx bx a ++=的两根为m ,n ,且m n <.则11b m n c αβαβαβ++=-==+,111a mn c αβαβ===⋅所以可得1n α=,1m β=且11αβ>又因为0c <,∴不等式20cx bx a ++<的解集1{x x α>或1}x β<.课堂小结:1.一元二次方程、一元二次不等式及二次函数图像密切相关,解一元二次不等式的一般步骤如下:①化不等式为标准形式:ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0);②求方程ax 2+bx +c =0(a >0)的根,并画出对应函数y =ax 2+bx +c 图象的简图; ③由图象得出不等式的解集. 2.含参数的一元二次型的不等式在解含参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑(1)关于不等式类型的讨论:二次项系数a >0,a <0,a =0.(2)关于不等式对应的方程根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0). (3)关于不等式对应的方程根的大小的讨论:x 1>x 2,x 1=x 2,x 1<x 2. 3.由一元二次不等式的解集可以逆推二次函数的开口及与x 轴的交点坐标.课堂达标检测:(1)(2020·上海高一开学考试)不等式11023x x ⎛⎫⎛⎫-->⎪⎪⎝⎭⎝⎭的解集为( )A .11|32x x ⎧⎫<<⎨⎬⎩⎭ B .1|2x x ⎧⎫>⎨⎬⎩⎭C .1|3x x ⎧⎫<⎨⎬⎩⎭D .11|32x x x ⎧⎫<>⎨⎬⎩⎭或 【答案】A 【解析】∵11023x x ⎛⎫⎛⎫-->⎪⎪⎝⎭⎝⎭∴11023x x ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭< 解得:1132x <<,即不等式11023x x ⎛⎫⎛⎫--> ⎪⎪⎝⎭⎝⎭的解集为11|32x x ⎧⎫<<⎨⎬⎩⎭故选:A(2)已知不等式210ax bx --≥的解集是11[,]23--,则不等式20x bx a --<的解集是( ) A .(2,3) B .(,2)(3,)-∞⋃+∞ C .11(,)32D .11(,)(,)32-∞⋃+∞【答案】A【解析】∵不等式210ax bx --≥的解集是1123⎡⎤--⎢⎥⎣⎦,, ∴1123x x =-=-,是方程210ax bx --=的两根,∴1152361111236b a a⎧⎛⎫=-+-=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪-=-⨯-=⎪⎪⎝⎭⎩,解得65a b =-⎧⎨=⎩.∴不等式20x bx a --<为2560x x -+<, 解得23x <<,∴不等式的解集为()23,.故选A . (3)(2020·全国高一课时练习)若0<t <1,则关于x 的不等式(t -x )1x t ⎛⎫- ⎪⎝⎭>0的解集是( ) A .1xx t t ⎧⎫<<⎨⎬⎩⎭ B .1x x t ⎧>⎨⎩或}x t < C .1x x t⎧<⎨⎩或}x t > D .1x t x t ⎧⎫<<⎨⎬⎩⎭【答案】D 【解析】∵0<t <1,∴1t >1,∴1t>t .∴(t -x )1x t ⎛⎫- ⎪⎝⎭ >0⇔(x -t )1x t ⎛⎫- ⎪⎝⎭ <0⇔t <x <1t .故选:D(4)(2020·山东省滕州市第二中学高一月考)解关于x 的不等式22(1)40()ax a x a R -++>∈.【答案】分类讨论,答案见解析. 【解析】当0a =时,不等式240x -+>的解为2x <;当0a ≠时,不等式对应方程的根为2ax =或2, ①当0a <时,不等式22(1)40()ax a x a R -++>∈即()()220ax x --+<的解集为2,2a ⎛⎫ ⎪⎝⎭; ②当01a <<时,不等式()()220ax x -->的解集为2(,2),a ⎛⎫-∞⋃+∞ ⎪⎝⎭; ③当1a =时,不等式()220x +>的解集为(,2)(2,)-∞⋃+∞; ④当1a >时,不等式()()220ax x -->的解集为2,(2,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭. 综上所述,当0a =时,不等式解集为(),2-∞;当0a <时,不等式的解集为2,2a ⎛⎫⎪⎝⎭;当01a <<时,不等式的解集为2(,2),a ⎛⎫-∞⋃+∞ ⎪⎝⎭;当1a =时,不等式的解集为(,2)(2,)-∞⋃+∞;当1a >时,不等式的解集为2,(2,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭.。