高中数学 第一章 常用逻辑用语 1.1 命题及其关系 1.1.2 四种命题 1.1.3 四种命题间的
- 格式:doc
- 大小:133.00 KB
- 文档页数:8
织金二中高二年级数学组集体备课教案执笔人:李武松 田海斌参加人:陈元凤 方健 吕招贵 周越 余平 李承华 朱枝涛 程佳 班银 教学内容:选修2-1 第一章 常用逻辑用语 课时安排:8课时 课时内容:1.1命题及其关系 第1课时 1.1.1 命题一、教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p ,则q ”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
二、教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假三、教学过程<一>复习引入 1.回顾初中已学过命题的知识,请同学们回顾:什么叫做命题? 2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗? (1)若直线b a //,则直线a 与直线b 没有公共点 . (2)2+4=7.(3)垂直于同一条直线的两个平面平行. (4)若12=x ,则1=x .(5)两个全等三角形的面积相等. (6)3能被2整除. 3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。
其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。
教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。
<二>探讨新知4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.例题解析(P例1)2判断下列语句是否为命题?(解略)(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(-=-2.(6)15x.>让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?通过对此问的思考,学生将清晰地认识到定理、推论都是命题.过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。
1.1.2四种命题整体设计教材分析本节依次介绍了四种命题:原命题、逆命题、否命题和逆否命题.命题“若p,则q”反映了条件p对于结论q的因果关系.为了更深入的掌握p与q之间的关系,往往不仅研究原命题“若p,则q”,而且还要研究它的各种形变.要注意的是,对于一个一般的数学命题,由于命题的条件和结论可能未清楚的给出,写出其逆命题就是一个容易混淆的问题.在此,只要求考虑明确地给出条件和结论的命题.课时分配1课时教学目标知识与技能让学生理解四种命题的概念,掌握命题的表示形式.能写出原命题的逆命题、否命题、逆否命题.过程与方法通过实例分析及类比方法进行探索研究.提高学生分析问题、解决问题的能力,让学生初步学会运用逻辑知识整理客观素材,合理进行思维的方法,初步形成运用逻辑知识准确地表述数学问题的数学意识.情感、态度与价值观增强数学美学意识,培养唯物主义世界观.重点难点教学重点:逆命题、否命题、逆否命题的概念及写法.教学难点:不容易区分条件和结论的简单命题和较复杂的命题(一个条件多个结论型的命题和多个条件一个结论型的命题)的逆命题、否命题和逆否命题的改写方法.教学过程引入新课请听故事(多媒体)歌德是18世纪德国的一位著名文艺大师,一天,他与一位批评家“狭路相逢”,这位文艺批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,一边高兴地往前走,一边大声说道:“我从来不给傻子让路!”而对如此尴尬的局面,歌德只是笑容可掬,谦恭地闪在一旁,一边有礼貌地回答道:“呵呵,我可恰相反.”结果故作聪明的批评家,反倒自讨没趣.同学们能分析此故事中歌德与批评家的言行语句吗?活动设计:学生独立思考,然后小组交流.学情预测:学生容易分析出歌德的语句含义:(1)我给傻子让路;(2)批评家是傻子;(3)我给批评家让路.教师提问:批评家的语句含义是什么?学情预测:学生会很快给出结果:(1)我不给傻子让路;(2)歌德是傻子;(3)我不给歌德让路.教师:同学们分析得很好.设计意图:通过创造愉悦的情景,使学生了解逻辑在生活中的应用,引起学生的学习兴趣,在轻松欢快的气氛中探索问题,解决问题.探究新知请同学们观察下面四个命题:命题(1):若f(x)是正弦函数,则f(x)是周期函数;命题(2):若f(x)是周期函数,则f(x)是正弦函数;命题(3):若f(x)不是正弦函数,则f(x)不是周期函数;命题(4):若f(x)不是周期函数,则f(x)不是正弦函数.提出问题问题1:命题(1)(2)的条件、结论有何关系?活动设计:鼓励先完成思考的同学将结果和全班同学交流,其他学生补充.学情预测:课堂宁静,学生在积极思考,片刻,有学生举手回答且回答准确.活动结果:命题(2)的条件是命题(1)的结论,而命题(2)的结论恰好是命题(1)的条件.在两个命题中,如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,则称这两个命题为互逆命题;如果把其中一个命题称为原命题,那么另一个命题叫做原命题的逆命题,如把(1)命题叫做原命题,则(2)叫做它的逆命题.这样一来,将一个已知命题的条件和结论互换,就可以得到一个新的命题,它是已知命题的逆命题.注:1.互逆命题有几个命题?2.怎样理解“互”?互就是互相的意思.我们回顾一下,哪些概念中也出现过“互”?互为倒数,互为相反数;例如:2与-2互为相反数,就是指2的相反数是-2,-2的相反数是2,这里的“互”也是一样的意思.命题②是命题①的逆命题,命题①是命题②的逆命题.设计意图:在具体实例分析的基础上进行抽象提炼,使学生掌握逆命题的概念.问题2:同学们再观察(1)和(3)的条件、结论有何关系?活动设计:学生观察、归纳、概括,发表自己的看法.学情预测:学生在积极思考,片刻,有学生举手回答且回答准确.活动结果:在命题(1)与命题(3)中,一个命题的条件和结论分别是另一个命题条件的否定和结论的否定,这样的两个命题称互否命题,把其中一个称为原命题,另一个就是原命题的否命题.如,把命题(1)称为原命题,那么命题(3)就是它的否命题.设计意图:在具体实例分析的基础上进行抽象提炼,使学生掌握否命题的概念.同学们继续观察命题(1)(4)的条件与结论的关系.活动设计:学生观察、归纳、概括,发表自己的看法.学情预测:学生积极思考,片刻,有学生举手回答且回答准确.活动结果:在命题(1)和(4)中,一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题,如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆否命题.设计意图:在具体实例分析的基础上进行抽象提炼,使学生掌握逆否命题的概念.问题3:一般地,用p和q分别表示原命题的条件和结论,用p和q分别表示p和q 的否定,同学们能写出命题的四种形式吗?活动设计:鼓励学生独立思考,教师引导,个别交流,培养学生的自主探索意识,合作学习的精神;推举代表叙述结论并板演,其他同学补充.学情预测:给学生思考的空间,让学生自主探索,有的同学回答不完全正确,有的同学回答完全正确.活动结果:原命题:若p,则q;逆命题:若q,则p;否命题:若p,则q ;逆否命题:若q ,则p.设计意图:教科书给出了典型的具有互逆、互否、互为逆否关系的四个命题,学生通过观察,对于四种命题有一个初步的认识,有利于后继内容的教学.理解新知问题4:1.举出一些互逆命题的例子,并判断原命题与逆命题的真假.2.如果原命题是真命题,那么它的逆命题一定是真命题吗?活动设计:一学生举例,另一学生说出逆命题,并判断命题的真假.教师强调要分清条件和结论,把原命题写成“若p,则q”的形式.学情预测:学生的回答多种多样,有的同学可能举出不是命题的例子.活动结果:学生举出了很多例子,如:1.命题“若a>b,则b<a”的逆命题为若b<a,则a>b.2.命题“中国北京是2008年奥运会的举办城市”的逆命题为2008年奥运会的举办城市是中国北京.3.命题:“同位角相等,两直线平行”的逆命题是“两直线平行,同位角相等”.并得出结论:若原命题是真命题,则它的逆命题不一定是真命题.设计意图:通过举例让学生掌握逆命题的概念,能求一般命题的逆命题.问题5:1.举出一些互否命题的例子,并判断原命题与否命题的真假.2.如果原命题是真命题,那么它的否命题一定是真命题吗?活动设计:一学生举例,另一学生说出否命题,并判断命题的真假.教师在练习中重复否命题的概念,强调分清条件和结论,把原命题写成“若p,则q”的形式.教师也可给出一些例子让学生回答,如:“平行线相交”的否命题是“平行线不相交”吗?学情预测:学生的回答多种多样,有的同学可能举出不是命题的例子.活动结果:学生举出了很多例子,如:1.命题:“同位角相等,两直线平行”的否命题是“同位角不相等,两直线不平行”.2.命题“对顶角相等”写成“若p,则q”的形式为:若两个角是对顶角,则这两个角相等.它的否命题为:不是对顶角的两个角不相等.3.命题“在二次函数y=ax2+bx+c中,若b2-4ac≥0,则该二次函数的图象与x轴有公共点”的否命题为:在二次函数y=ax2+bx+c中,若b2-4ac<0,则该二次函数的图象与x轴没有公共点.注:指出“≥”的否定是“<”.并得出结论:若原命题是真命题,则它的否命题不一定是真命题.设计意图:通过举例让学生掌握否命题的概念,能求一般命题的否命题.问题6:1.举出一些互为逆否命题的例子,并判断原命题与逆否命题的真假.2.如果原命题是真命题,那么它的逆否命题一定是真命题吗?活动设计:一学生举例,另一学生说出逆否命题,并判断命题的真假.教师强调要分清条件和结论,把原命题写成“若p,则q”的形式.学情预测:学生的回答多种多样,有的同学可能举不出例子.活动结果:学生举出例子,如:1.命题“三角形的内角和等于180°”写成“若p,则q”的形式为:若一个图形是三角形,则它的内角和等于180°.它的逆否命题为:内角和不等于180°的图形不是三角形.2.命题“正方形的四条边相等”的逆否命题为:四条边不相等的四边形不是正方形.并得出结论:若原命题是真命题,则它的逆否命题一定是真命题.设计意图:通过举例让学生掌握逆否命题的概念,能求一般命题的逆否命题.运用新知1写出命题“负数的平方是正数”的逆命题、否命题与逆否命题.思路分析:解答本题应先分清命题的条件和结论,改写成“若p,则q”的形式,再写出它的逆命题、否命题与逆否命题.解:原命题:若一个数是负数,则它的平方是正数;逆命题:若一个数的平方是正数,则它是负数;否命题:若一个数不是负数,则它的平方不是正数;逆否命题:若一个数的平方不是正数,则它不是负数.点评:这一类题型的基本步骤是:原命题→改写成“若p,则q”形式→写出p,q→得逆命题,否命题,逆否命题.巩固练习1.命题“若x2<1,则-1<x<1”的逆否命题是()A.若x2≥1,则x≥1或x≤-1 B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1 D.若x≥1或x≤-1,则x2≥1答案:D2写出命题“若a和b都是偶数,则a+b是偶数”的逆命题、否命题和逆否命题.思路分析:(1)“a和b都是偶数”是条件,“a+b是偶数”是结论.(2)“a和b都是偶数”的否定包含三种情况,“a是偶数,b不是偶数”或“a不是偶数,b是偶数”或“a不是偶数,b也不是偶数”.所以综合起来它的否定即为“a和b不都是偶数”.解:逆命题为:若a+b是偶数,则a和b都是偶数;否命题为:若a和b不都是偶数,则a+b不是偶数;逆否命题为:若a+b不是偶数,则a和b不都是偶数.点评:本例是两个条件一个结论的类型,让学生了解“且”的否定是“或”.变练演编变式1、写出命题“若ab=0,则a=0或b=0”的逆命题、否命题和逆否命题.变式2、写出命题“若x2+y2=0,则x,y全为零”的逆命题、否命题和逆否命题.变式3、写出命题“若x,y都是奇数,则x+y是奇数”的否命题.变式4、自己写出一个命题,并写出该命题的逆命题、否命题和逆否命题.活动设计:学生思考,很快发现和例2是同一实质,可用同样的方法解决.活动成果:变式1、逆命题为:若a=0或b=0,则ab=0;否命题为:若ab≠0,则a≠0且b≠0;逆否命题为:若a≠0或b≠0,则ab≠0.变式2、逆命题为:若x,y全为零,则x2+y2=0;否命题为:若x2+y2≠0,则x,y不全为零;逆否命题为:若x,y不全为零,则x2+y2≠0.变式3、若x,y不都是奇数,则x+y不是奇数.变式4、答案不唯一,要注意学生写的是否是命题.设计意图:给学生提供相对复杂的问题,在探讨中使思维更严谨,视野更开阔.变式4通过让学生自己设计命题,激发学生的潜能,培养学生的发散思维能力和创新意识.达标检测1.填空:(1)命题“线段的垂直平分线上的点与这条线段两个端点的距离相等”的逆命题是________________________________.(2)命题“到圆心的距离不等于半径的直线不是圆的切线”的逆否命题是_______________________________________________________________________.(3)命题“若xy≠0,则x≠0且y≠0”的逆否命题为__________________.(4)把命题“弦的垂直平分线经过圆心,并平分弦所对应的弧”写成“若p,则q”的形式为____________________________.2.把命题“等式的两边都乘以同一个数,所得的结果仍是等式”写成“若p,则q”的形式,并写出它的逆否命题.1.答案:(1)与一条线段两个端点距离相等的点在这条线段的垂直平分线上(2)圆的切线到圆心的距离等于圆的半径(3)若x=0或y=0,则xy=0(4)若一条直线是弦的垂直平分线,则这条直线经过圆心且平分弦所对的弧2.解:原命题为“在等式的两边分别乘以一个数,若这两个数是同一个数,则所得的结果是等式”或“在一个式子两边都乘以同一个数,若这个式子是等式,则所得的结果是等式”或“若一个式子是等式且两边都乘以同一个数,则所得的结果为等式”相应的逆否命题分别为“若等式两边乘以一个数所得的结果不是等式,则这两个数不相同”或“若在一个式子两边都乘以同一个数,所得的结果是不等式,则这个式子是不等式”或“若一个式子两边分别乘以一个数,所得的结果是不等式,则这个式子是不等式或两边乘的不是同一个数”.课堂小结1.知识收获:四种命题的概念;命题的逆命题、否命题、逆否命题.2.方法收获:类比方法.3.思维收获:类比思想.布置作业1.课本本节练习2.课本习题1.1A组2,3补充练习基础练习1.命题“若a>b,则a-5>b-5”的逆否命题是()A.若a<b,则a-5<b-5 B.若a-5>b-5,则a>bC.若a≤b,则a-5≤b-5 D.若a-5≤b-5,则a≤b2.命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的()A.逆命题B.否命题C.逆否命题D.以上均不对3.若命题p的否命题为r,命题r的逆命题为s,则s是p的逆命题t的()A.逆否命题B.逆命题C.否命题D.原命题4.命题“△ABC中,如果∠C=90°,那么c2=a2+b2”的逆否命题是________.答案:1.D 2.A 3.C4.△ABC中,如果c2≠ a2+b2,那么∠C≠90°.(注:“△ABC中”是大前提,在写这类命题的逆命题、否命题和逆否命题时,一般保持不变)拓展练习5.小红、小芳、小新三个同学中有一个帮助生病的小青补好了笔记,当小青问起谁干的好事时,小红说:“小芳干的”,小芳说:“不是我干的”,小新说“也不是我干的”.如果知道三个人中有两人说假话,有一人说真话,能判断是谁做的好事吗?6.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是()A.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数D.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数答案:5.小新做的 6.B设计说明设计思想使学生在学习的过程中,体会数学的应用意识,增强用数学的意识,提高学生分析问题解决问题的能力.设计意图高中数学学习过程,是知识与技能形成的过程,是体验过程掌握方法的过程,更是获得正确的人生观与价值观的过程.设计特点在新课程理念的指导下,从学生的学习实际和需要出发,以促进学生“怎样有效地学”为设计核心,重点解决学生“学什么”“怎么学”“学到什么程度”“采用什么方式学”等问题,并使学生在课堂上带着一定的情感、态度、价值观去主动地学习、主动地发展.备课资料当代逻辑的新领域——制约逻辑二千三百年前,古希腊的伟大思想家亚里士多德(Aristotelés前384~前322年)以《工具论》创立了传统形式逻辑,为逻辑发展史树起了第一座丰碑.从19世纪中叶到20世纪初,经过英国数学家布尔、德国数学家弗雷格、英国哲学家、数学家罗素等人接连不断的努力,吸收莱布尼兹的成果,建立了后来作为电子计算机理论基础的“正统数理逻辑”的现代公理系统,这是逻辑学发展史上的第二座里程碑.1968年,中国形式逻辑研究会理事、北京开关厂工程师林邦谨创立了一门新的逻辑学说——制约逻辑,向前两座丰碑提出了挑战.1978年,在我国逻辑学界元老沈有鼎教授的举荐下,经华裔美籍逻辑学家王浩教授推荐,林邦谨在美国数学会刊物《文摘》上发表论文《制约逻辑简介》.1985年12月,林邦谨的专著《制约逻辑》在国内正式出版.制约逻辑独树一帜,震动了逻辑学界,引起了国内外学者的关注.制约逻辑是传统的形式逻辑与正统数理逻辑(现代逻辑)有机结合的产物,它运用现代逻辑提供的严格精密的数学方法,去构造一个能确切地体现传统形式逻辑的深刻正确的主导思想的非正统的逻辑制约系统.林邦谨认为,传统形式逻辑密切结合人类普通思维和自然语言实际,把从已知进入未知的推理格式作为自己的主要研究对象,坚持贯彻不许循环论证,这是它的深刻而正确的主导思想.但它对一些极简单的推理却不能从理论上加以分析,演算技术也十分简陋、陈旧,远不能满足现代的需要.正统数理逻辑系统地采用了现代数学方法,论证严谨,演算精密,但它却舍弃了推理格式中起决定作用的非数学的逻辑含义这一精髓,将其处理成真值函数、个体—真值函数关系,因而远离了传统形式逻辑的主导思想.林邦谨大胆地综合融汇了上述两种逻辑的优点而摈弃二者之缺陷,创造出自外于传统两家的新逻辑体系——制约逻辑学说,即继承形式逻辑的正确主导思想和有效的推理格式,并采用数理逻辑所提供的数学方法来处理科学研究和社会生活中的各种逻辑问题.它是久盛不衰的传统形式逻辑的现代发展.制约逻辑学说指出,制约关系就是刻划清楚后的充分条件关系.制约关系事实上构成了传统形式逻辑中可据以进行不循环论证的推理格式的理论核心:推理式的前后件之间必定满足普遍有效的制约关系,而在前件或后件中也必定出现制约关系.制约逻辑体系由语义学、语构学、语用学三者组成.制约逻辑语义学研究客观世界的逻辑结构和逻辑规律,而以其中的客观的制约关系和有关制约关系的客观的逻辑规律为主要研究对象.制约逻辑语构学研究刻划客观的逻辑结构和规律的表意的人工符号的机械的排列结构和变形规则.制约逻辑语用学研究在指谓同一的原则下符号语言与自然语言的互相翻译.总的说来,制约逻辑所研究的领域是:现实世界对象域上的个体、集、一元或多元函数、一元或多元关系、关系间的真值函数关系、关系间的充分条件(即制约) 关系,和上述种种关系的客观规律,以及它们在意识中的反映——概念(词)、命题和推理.其中,制约(充分条件)关系为研究核心.(设计者:李海水)。
高三理科党整合,仅供高三复习全部书参考,以及高一二订正,不建议直接抄袭。
只要努力一切来得及在高考吧里零基础学生逆袭高考仅一年时间考上一本重点的例子不少。
课本是一切知识的基础,万变不离其宗! 望广大学子加油考上自己理想的大学!感谢各位提供资料的老师与同学。
答案包括选修2-1 2-2 2-3 4-4极坐标与参数方程4-5 不等式- 7 左整合人教版数学选修2—1第一章常用逻辑用语1.1.命题及其关系1.1.1命题1.1.2 四种命题1.C 2.C 3.D 4.若A不是B的子集,则A∪B≠B 5.① 6.逆7.(1)若一个数为一个实数的平方,则这个数为非负数.真命题(2)若两个三角形等底等高,则这两个三角形全等.假命题8.原命题:在平面中,若两条直线平行,则这两条直线不相交.逆命题:在平面中,若两条直线不相交,则这两条直线平行.否命题:在平面中,若两条直线不平行,则这两条直线相交.逆否命题:在平面中?若两条直线相交,则这两条直线不平行。
以上均为真命题9.若ab≠0,则a,b都不为零.真命题10.逆否命题:已知函数f(x)在R上为增函数,a,b∈R,若f(a)+f(b)<f(-a)+f(-b),则a+b<0,真命题.证明略11.甲1.1.3 四种命题间的相互关系1.C 2.D 3.B 4.0个、2个或4个 5.原命题和逆否命题6.若a+b是奇数,则a,b至少有一个是偶数;真7.逆命题:若a^2=b^2,则a=b.假命题.否命题:若a≠b,则a^2≠b^2.假命题.逆否命题:若a^2≠b^2,则a≠b.真命题8.用原命题与逆否命题的等价性来证.假设a,b,c都是奇数,则a^2,b^2,c2也都是奇数,又a^2+b^2=c^2,则两个奇数之和为奇数,这显然不可能,所以假设不成立,即a,b,c不可能都是奇数9.否命题:若a^2+b^2≠0,则a≠0或b≠0.真命题.逆否命题:若a≠0,或b≠0,则a2+b2≠0.真命题10.真┌(4a)2一4(一4a+3)<0,11.三个方程都没有实数根的情况为┤(a-1)2一4a2<0, =>-3/2<a<-l└4a2+8a<0 所以实数a的取值范围a≥一l,或a≤-3/21.2 充分条件与必要条件1.2.1 充分条件与必要条件1.A 2.B 3.A 4.(1) ≠> (2) ≠> (3) ≠> (4)≠> 5.充分不必要6.必要不充分 7.“c≤d”是“e≤f”的充分条件 8.充分条件,理由略9.一元二次方程ax^2+2x+l=0 (a≠0)有一个正根和一个负根的充要条件为a<010.m≥9 11.是1.2.2 充要条件1.C 2.B 3.D 4.假;真 5.C和D 6.λ+μ=1 7.略 8.a=-39.a≤l 10.略 11.q=-1,证明略1.3 简单的逻辑联结词1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.A 2.C 3.C 4.真 5.①③ 6.必要不充分7.(1)p:2<3或q:2=3;真 (2)p:1是质数或q:1是合数;假 (3)非p,p:0∈φ;真(4)p:菱形对角线互相垂直且q:菱形对角线互相平分;真8,(1)p∧q:5既是奇数又是偶数,假;p∨q:5是奇数或偶数,真;┑p:5不是偶数,真(2)p∧q:4>6且4+6≠10,假;p∨q:4>6或4+6≠10,假;┑p:4≤6,真9.甲的否定形式:x∈A,且x∈B;乙的否命题:若(x-1)(x-2)=0,则x=1,或x=2 10.m<-l 11.(5/2,+∞)1.4 全称量词与存在量词1.4.1 全称量词1.4.2 存在量词1.D 2.C 3.(1)真 (2)真 4,③5.所有的直角三角形的三边都满足斜边的平方等于两直角边的平方和6.若一个四边形为正方形,则这个四边形是矩形;全称;真7.(1)x,x^2≤0 (2)对x,若6|x则3|x (3)正方形都是平行四边形8.(1)全称;假 (2)特称;假 (3)全称;真 (4)全称;假9.p∧q:有些实数的绝对值是正数且所有的质数都是奇数,假;p∨q:有些实数的绝对值是正数或所有的质数都是奇数,真;┑p:所有实数的绝对值都不是正数,假10.(1)存在,只需m>一4即可 (2)(4,+∞) 11.a≥一21.4.3 含有一个量词的命题的否定1.C 2.A 3.C 4.存在一个正方形不是菱形 5.假6.所有的三角形内角和都不大于180°7.(1)全称;┑p假 (2)全称;┑p假 (3)全称;┑p真8.(1)┑p:存在平方和为0的两个实数,它们不都为0(至少一个不为0);假⑵┑p: 所有的质数都是偶数;假 (3)┑p:存在乘积为0的三个实数都不为0;假9.(1)假 (2)真 (3)假 (4)真 10.a≥3 11.(一√2,2)单元练习1.B 2.B 3.B 4.B 5.B 6.D 7.B 8.D 9.C 10.D11.5既是17的约数,又是15的约数:假 12.[1,2)13.在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角 14.充要;充要;必要 15.b≥016.既不充分也不必要 17.①③④ 18.a≥319.逆命题:两个三角形相似,则这两个三角形全等;假;否命题:两个三角形不全等,则这两个三角形不相似;假;逆否命题:两个三角形不相似,则这两个三角形不全等;真;命题的否定:存在两个全等三角形不相似;假20.充分不必要条件21.令f(x) = x^2+(2k一1)x+k^2,方程有两个大于1的实数根┌ △=(2k2-1)-4k2≥0,<=>┤->1,即是k<-2,所以其充要条件为k<-2.└ f (1)>0,22.(-3,2]10.a√3/3第一章导数及其应用第二章推理与证明第三章数系的扩充与复数的引入。
1.1.2 四种命题 1.1.3 四种命题间的相互关系1.四种命题的定义2.四种命题的结构形式和关系3.四种命题的真假性之间的关系(1)两个命题互为逆否命题,它们有□10相同的真假性. (2)两个命题互为逆命题或互为否命题,它们的真假性□11没有关系.1.判一判(正确的打“√”,错误的打“×”)(1)有的命题没有逆命题.( )(2)对于一个命题的四种命题,可以一个真命题也没有.( )(3)原命题的否命题的逆命题就是原命题的逆否命题.( )答案(1)×(2)√(3)√2.做一做(1)(教材改编P6T(3))命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数(2)若a=0,则ab=0的逆命题是_____________________________________.(3)若命题r的否命题为“若綈p,则q”,那么原命题r为________.(4)若a=b,则|a|=|b|的逆否命题是__________________________________.答案(1)B (2)若ab=0,则a=0 (3)“若p,则綈q”(4)若|a|≠|b|,则a≠b解析(1)原命题的条件是f(x)是奇函数,结论是f(-x)是奇函数,同时否定条件和结论即得否命题为若f(x)不是奇函数,则f(-x)不是奇函数.探究1 写出一个命题的其他三种命题例1 把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等;(4)在△ABC中,当AB=AC时,∠B=∠C.[解] (1)原命题:“若a是正数,则a的平方根不等于0”.逆命题:“若a的平方根不等于0,则a是正数”.否命题:“若a不是正数,则a的平方根等于0”.逆否命题:“若a的平方根等于0,则a不是正数”.(2)原命题:“若x=2,则x2+x-6=0”.逆命题:“若x2+x-6=0,则x=2”.否命题:“若x≠2,则x2+x-6≠0”.逆否命题:“若x2+x-6≠0,则x≠2”.(3)原命题:“若两个角是对顶角,则它们相等”.逆命题:“若两个角相等,则它们是对顶角”.否命题:“若两个角不是对顶角,则它们不相等”.逆否命题:“若两个角不相等,则它们不是对顶角”.(4)原命题:“在△ABC中,若AB=AC,则∠B=∠C”.逆命题:“在△ABC中,若∠B=∠C,则AB=AC”.否命题:“在△ABC中,若AB≠AC,则∠B≠∠C”.逆否命题:“在△ABC中,若∠B≠∠C,则AB≠AC”.拓展提升写出一个命题的其他三种命题的步骤(1)分析命题的条件和结论;(2)将命题写成“若p,则q”的形式;(3)根据逆命题、否命题、逆否命题各自的结构形式写出这三种命题.注意:如果原命题含有大前提,在写出原命题的逆命题、否命题、逆否命题时,必须注意各命题中的大前提不变.【跟踪训练1】写出下列命题的逆命题、否命题与逆否命题:(1)若x>-2,则x+3>0;(2)两条对角线相等的四边形是矩形.解(1)逆命题:若x+3>0,则x>-2;否命题:若x≤-2,则x+3≤0;逆否命题:若x+3≤0,则x≤-2.(2)原命题可写为:若一个四边形的两条对角线相等,则这个四边形是矩形.逆命题:若一个四边形是矩形,则其两条对角线相等;否命题:若一个四边形的两条对角线不相等,则这个四边形不是矩形;逆否命题:若一个四边形不是矩形,则其两条对角线不相等.探究2 四种命题的真假判断例2 命题:已知a ,b 为实数,若x 2+ax +b ≤0有非空解集,则a 2-4b ≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.[解] 逆命题:已知a ,b 为实数,若a 2-4b ≥0,则x 2+ax +b ≤0有非空解集. 否命题:已知a ,b 为实数,若x 2+ax +b ≤0解集为空集,则a 2-4b <0.逆否命题:已知a ,b 为实数,若a 2-4b <0,则x 2+ax +b ≤0解集为空集.原命题、逆命题、否命题、逆否命题均为真命题.[条件探究] 如果把例2中的“x 2+ax +b ≤0”改为“x 2+(2a +1)x +a 2+2≤0”,试写出一个正确的原命题,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.解 原命题:已知a 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集非空,则a ≥74,是真命题. 逆命题:已知a 为实数,若a ≥74,则关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集非空,是真命题.否命题:已知a 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集,则a <74,是真命题.逆否命题:已知a 为实数,若a <74,则关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集,是真命题.拓展提升命题真假的判断方法(1)由原命题写出其他三种命题,依次直接判断这四种命题的真假.(2)也可根据命题间的等价关系来判断命题的真假,注意:原命题和逆否命题同真同假,逆命题和否命题同真同假.(3)四种命题中,真命题的个数只可能为0个、2个、4个.【跟踪训练2】 判断下列命题的真假:(1)命题“若A ∩B =B ,则A ⊆B ”的逆否命题;(2)“若a >b ,则a +c >b +c ”的否命题;(3)“矩形的对角线相等”的逆命题;(4)“若xy =0,则x ,y 中至少有一个为0”的否命题.解 (1)由A ∩B =B ,知B ⊆A ,原命题为假命题,故逆否命题为假命题.(2)否命题为“若a ≤b ,则a +c ≤b +c ”,是真命题.(3)逆命题为“对角线相等的四边形是矩形”,是假命题.(4)否命题为“若xy ≠0,则x ,y 都不为零”,是真命题.探究3 等价命题的应用例3 判断命题“已知a ,x 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集,则a ≥1”的逆否命题的真假.[解] 解法一:原命题的逆否命题:已知a ,x 为实数,若a <1,则关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集.真假判断过程如下:抛物线y =x 2+(2a +1)x +a 2+2开口向上,Δ=(2a +1)2-4(a 2+2)=4a -7.若a <1,则4a -7<0.∴抛物线y =x 2+(2a +1)x +a 2+2与x 轴无交点.∴关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集.故逆否命题为真命题. 解法二:先判断原命题的真假.∵a ,x 为实数,且关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集,∴Δ=(2a +1)2-4(a 2+2)≥0,∴4a -7≥0,得a ≥74,从而a ≥1成立. ∴原命题为真命题.又∵原命题与其逆否命题等价,∴逆否命题为真命题.拓展提升“正难则反”的处理原则(1)当原命题的真假不易判断,而逆否命题较容易判断真假时,可通过判断其逆否命题的真假来判断原命题的真假.(2)四种命题中,原命题与其逆否命题是等价的,有相同的真假性,否命题与其逆命题也是互为逆否命题,解题时不要忽视.【跟踪训练3】已知函数f(x)在(-∞,+∞)上是增函数,a,b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”,写出其逆否命题,判断其真假,并证明你的结论.解逆否命题:若f(a)+f(b)<f(-a)+f(-b),则a+b<0.它为真命题.可通过证明原命题为真命题来证明它,证明如下:∵a+b≥0,则a≥-b,b≥-a.∵函数f(x)在(-∞,+∞)上是增函数,∴f(a)≥f(-b),f(b)≥f(-a).∴f(a)+f(b)≥f(-a)+f(-b),即原命题为真命题.∴它的逆否命题为真命题.1.正确写一个命题的逆命题、否命题和逆否命题(1)写出一个命题的逆命题、否命题和逆否命题的关键是正确找出原命题的条件和结论,然后按照定义写出命题,但要注意命题中的量词与它的否定词语的正确转换.(2)对于不是“若p,则q”形式的命题,要写出其他三种命题,应先把它改写成“若p,则q”的形式,以分清原命题的条件与结论.(3)当一个命题有大前提而要写出其他三种命题时,必须保留大前提,也就是大前提始终不变.2.四种命题中真命题个数的探究因为原命题与逆否命题有相同的真假性,逆命题与否命题有相同的真假性,所以四种命题中真命题的个数一定为偶数,即真命题的个数只可能为0,2,4.可依据此结论,检验写出的逆命题、否命题、逆否命题是否正确.3.逆否证法互为逆否命题的两个命题同真同假,也称为等价命题,所以在直接证明某一命题为真命题有困难时,可以通过证明它的逆否命题为真命题来间接证明原命题为真命题.1.命题“若A ∪B =A ,则A ∩B =B ”的否命题是( )A .若A ∪B ≠A ,则A ∩B ≠BB .若A ∩B =B ,则A ∪B =AC .若A ∩B ≠B ,则A ∪B ≠AD .若A ∪B ≠A ,则A ∩B =B答案 A解析 命题“若p ,则q ”的否命题为“若綈p ,则綈q ”,故A 正确.2.命题“若m =10,则m 2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )A .原命题、否命题B .原命题、逆命题C .原命题、逆否命题D .逆命题、否命题答案 C解析 显然原命题是真命题,所以其逆否命题也是真命题,若m 2=100,则m =±10,所以逆命题是假命题,其否命题也是假命题.3.若命题A 的否命题为B ,命题A 的逆否命题为C ,则B 与C 的关系是( )A .互逆命题B .互否命题C .互为逆否命题D .以上都不正确 答案 A解析 交换否命题的条件与结论就是逆否命题,符合互逆命题的定义.4.命题“若α=π4,则tan α=1”的逆否命题是________. 答案 若tan α≠1,则α≠π4 解析 交换原命题的条件和结论,同时进行否定可得逆否命题为“若tan α≠1,则α≠π4”. 5.将命题“正偶数不是素数”改写为“若p ,则q ”的形式,写出它的逆命题、否命题、逆否命题,并判断它们的真假.解 原命题:若一个数是正偶数,则这个数不是素数.是假命题;逆命题:若一个数不是素数,则这个数是正偶数.是假命题;否命题:若一个数不是正偶数,则这个数是素数.是假命题;逆否命题:若一个数是素数,则这个数不是正偶数.是假命题.。
人教版数学选修2—1作业本答案与提示第一章常用逻辑用语1.1.命题及其关系1.1.1命题1.1.2 四种命题1.C 2.C 3.D 4.若A不是B的子集,则A∪B≠B5.①6.逆7.(1)若一个数为一个实数的平方,则这个数为非负数.真命题(2)若两个三角形等底等高,则这两个三角形全等.假命题8.原命题:在平面中,若两条直线平行,则这两条直线不相交.逆命题:在平面中,若两条直线不相交,则这两条直线平行.否命题:在平面中,若两条直线不平行,则这两条直线相交.逆否命题:在平面中?若两条直线相交,则这两条直线不平行。
以上均为真命题9.若ab≠0,则a,b都不为零.真命题10.逆否命题:已知函数f(x)在R上为增函数,a,b∈R,若f(a)+f(b)<f(-a)+f(-b),则a+b <0,真命题.证明略11.甲1.1.3 四种命题间的相互关系1.C 2.D 3.B 4.0个、2个或4个5.原命题和逆否命题6.若a+b是奇数,则a,b至少有一个是偶数;真7.逆命题:若a^2=b^2,则a=b.假命题.否命题:若a≠b,则a^2≠b^2.假命题.逆否命题:若a^2≠b^2,则a≠b.真命题8.用原命题与逆否命题的等价性来证.假设a,b,c都是奇数,则a^2,b^2,c2也都是奇数,又a^2+b^2=c^2,则两个奇数之和为奇数,这显然不可能,所以假设不成立,即a,b,c不可能都是奇数9.否命题:若a^2+b^2≠0,则a≠0或b≠0.真命题.逆否命题:若a≠0,或b≠0,则a2+b2≠0.真命题10.真┌(4a)2一4(一4a+3)<0,11.三个方程都没有实数根的情况为┤(a-1)2一4a2<0,=>-3/2<a<-l└4a2+8a<0所以实数a的取值范围a≥一l,或a≤-3/21.2 充分条件与必要条件1.2.1 充分条件与必要条件1.A 2.B 3.A 4.(1) ≠> (2) ≠> (3) ≠> (4)≠>5.充分不必要6.必要不充分7.“c≤d”是“e≤f”的充分条件8.充分条件,理由略9.一元二次方程ax^2+2x+l=0 (a≠0)有一个正根和一个负根的充要条件为a<0 10.m≥911.是1.2.2 充要条件1.C 2.B 3.D 4.假;真5.C和D 6.λ+μ=17.略8.a=-39.a≤l10.略11.q=-1,证明略1.3 简单的逻辑联结词1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.A 2.C 3.C 4.真5.①③6.必要不充分7.(1)p:2<3或q:2=3;真(2)p:1是质数或q:1是合数;假(3)非p,p:0∈φ;真(4)p:菱形对角线互相垂直且q:菱形对角线互相平分;真8,(1)p∧q:5既是奇数又是偶数,假;p∨q:5是奇数或偶数,真;┑p:5不是偶数,真(2)p∧q:4>6且4+6≠10,假;p∨q:4>6或4+6≠10,假;┑p:4≤6,真9.甲的否定形式:x∈A,且x∈B;乙的否命题:若(x-1)(x-2)=0,则x=1,或x=2 10.m<-l 11.(5/2,+∞)1.4 全称量词与存在量词1.4.1 全称量词1.4.2 存在量词1.D 2.C 3.(1)真(2)真4,③5.所有的直角三角形的三边都满足斜边的平方等于两直角边的平方和6.若一个四边形为正方形,则这个四边形是矩形;全称;真7.(1)x,x^2≤0(2)对x,若6|x则3|x (3)正方形都是平行四边形8.(1)全称;假(2)特称;假(3)全称;真(4)全称;假9.p∧q:有些实数的绝对值是正数且所有的质数都是奇数,假;p∨q:有些实数的绝对值是正数或所有的质数都是奇数,真;┑p:所有实数的绝对值都不是正数,假10.(1)存在,只需m>一4即可(2)(4,+∞)11.a≥一21.4.3 含有一个量词的命题的否定1.C 2.A 3.C 4.存在一个正方形不是菱形5.假6.所有的三角形内角和都不大于180°7.(1)全称;┑p假(2)全称;┑p假(3)全称;┑p真8.(1)┑p:存在平方和为0的两个实数,它们不都为0(至少一个不为0);假⑵┑p: 所有的质数都是偶数;假(3)┑p:存在乘积为0的三个实数都不为0;假9.(1)假(2)真(3)假(4)真10.a≥311.(一√2,2)单元练习1.B 2.B 3.B 4.B 5.B 6.D 7.B 8.D 9.C 10.D11.5既是17的约数,又是15的约数:假12.[1,2)13.在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角14.充要;充要;必要15.b≥0 16.既不充分也不必要17.①③④18.a≥319.逆命题:两个三角形相似,则这两个三角形全等;假;否命题:两个三角形不全等,则这两个三角形不相似;假;逆否命题:两个三角形不相似,则这两个三角形不全等;真;命题的否定:存在两个全等三角形不相似;假20.充分不必要条件21.令f(x) = x^2+(2k一1)x+k^2,方程有两个大于1的实数根┌ △=(2k2-1)-4k2≥0,<=>┤->1,即是k<-2,所以其充要条件为k<-2.└ f (1)>0,22.(-3,2]10.a√3/3。
选修1-1第一章 常用逻辑用语1.1 命题及其关系1.1.1 命题1、命题:一般地,在数学中我们把语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
2、命题的构成:在数学中,命题通常写成“若p ,则q ”的形式。
其中p 叫做命题的条件,q 叫做命题的结论。
1.1.2 四种命题3、互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们这样的两个命题叫做互逆命题。
其中一个命题叫做原命题,另一个叫做原命题的逆命题。
如果原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、互否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。
如果把其中的一个命题叫做原命题,,那么另一个叫做原命题的否命题。
如果原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、互逆否命题:一般地,对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题。
如果原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.6、以上总结概括:1.1.3 四种命题间的相互关系7、四种命题间的相互关系:一般地,原命题、逆命题、否命题与逆否命题这四种命题之间的相互关系:8、四种命题的真假性:一般地,四种命题的真假性之间的关系: (1)两个命题和互否命题,它们有相同的真假性;(2)两个命题为互逆否命题或互否命题,它们的真假性没有关系。
原命题 若p ,则q 逆命题 若q ,则p 否命题 若p ⌝,则q ⌝ 逆否命题 若q ⌝,则p ⌝原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 假 假假假假原命题逆命题否命题逆否命题互为 逆 否互为逆 否 互 逆 互否互否若p ⌝,则q ⌝ 若q ⌝,则p ⌝若p ,则q若q ,则p互逆1.2 充要条件与必要条件1.2.1 充分条件与必要条件1、充要条件与必要条件:一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p q ⇒,并且说p 是q 的充分条件,q 是p 的必要条件。
1.1.2 四种命题1.1.3 四种命题间的相互关系学习目标:1.了解四种命题的概念,能写出某命题的逆命题、否命题和逆否命题.(重点)2.知道四种命题之间的相互关系以及真假性之间的联系.(易混点)3.会利用命题的等价性解决问题.(难点)[自主预习·探新知]1.四种命题的概念及表示形式名称定义表示形式互逆命题对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题.原命题为“若p,则q”;逆命题为“若q,则p”互否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题原命题为“若p,则q”;否命题为“若p,则q”互为逆否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题原命题为“若p,则q”;逆否命题为“若q,则p”2.四种命题间的相互关系(1)四种命题之间的关系(2)四种命题间的真假关系原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假由上表可知四种命题的真假性之间有如下关系:①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.思考:(1)“a=b=c=0”的否定是什么?(2)在原命题,逆命题、否命题和逆否命题四个命题中.真命题的个数会是奇数吗?[提示](1)“a=b=c=0”的否定是“a,b,c至少有一个不等于0”.(2)真命题的个数只能是0,2,4,不会是奇数.[基础自测]1.思考辨析(1)命题“若p,则q”的否命题为“若p,则q”.( )(2)同时否定原命题的条件和结论,所得的命题是否命题.( )(3)命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.[答案](1)×(2)√(3)√2.命题“若一个数是负数,则它的相反数是正数”的逆命题是( )A.“若一个数是负数,则它的相反数不是正数”B.“若一个数的相反数是正数,则它是负数”C.“若一个数不是负数,则它的相反数不是正数”D.“若一个数的相反数不是正数,则它不是负数”B[根据逆命题的定义知,选B.]3.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )【导学号:97792008】A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题C[原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C.][合作探究·攻重难]四种命题把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题和逆否命题.(1)相似三角形对应的角相等;(2)当x>3时,x2-4x+3>0;(3)正方形的对角线互相平分.[解](1)原命题:若两个三角形相似,则这两个三角形的三个角对应相等;逆命题:若两个三角形的三个角对应相等,则这两个三角形相似;否命题:若两个三角形不相似,则这两个三角形的三个角对应不相等;逆否命题:若两个三角形的三个角对应不相等,则这两个三角形不相似.(2)原命题:若x>3,则x2-4x+3>0;逆命题:若x2-4x+3>0,则x>3;否命题:若x≤3,则x2-4x+3≤0;逆否命题:若x2-4x+3≤0,则x≤3.(3)原命题:若一个四边形是正方形,则它的对角线互相平分;逆命题:若一个四边形对角线互相平分,则它是正方形;否命题:若一个四边形不是正方形,则它的对角线不互相平分;逆否命题:若一个四边形对角线不互相平分,则它不是正方形.[规律方法] 1.写出一个命题的逆命题,否命题,逆否命题的方法(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.2.写否命题时应注意一些否定词语,列表如下:原词语等于(=)大于(>)小于(<)是都是至多有一个否定词语不等于(≠)不大于(≤)不小于(≥)不是不都是至少有两个原词语至少有一个至多有n个任意的任意两个所有的能否定词语一个也没有至少有(n+1)个某一个(确定的)某两个某些不能1.(1)命题“若y =kx ,则x 与y 成正比例关系”的否命题是( )【导学号:97792009】A .若y ≠kx ,则x 与y 成正比例关系B .若y ≠kx ,则x 与y 成反比例关系C .若x 与y 不成正比例关系,则y ≠kxD .若y ≠kx ,则x 与y 不成正比例关系D [条件的否定为y ≠kx ,结论的否定为x 与y 不成比例关系,故选D.] (2)命题“若ab ≠0,则a ,b 都不为零”的逆否命题是________.若a ,b 至少有一个为零,则ab =0 [“ab ≠0”的否定是“ab =0”,“a ,b 都不为零”的否定是“a ,b 中至少有一个为零”,因此逆否命题为“若a ,b 至少有一个为零,则ab =0”.]四种命题的关系及真假判断(1)对于原命题:“已知a 、b 、c ∈R ,若a >b ,则ac 2>bc 2”,以及它的逆命题、否命题、逆否命题,在这4个命题中,真命题的个数为( )A .0个B .1个C .2个D .4个(2)判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假. [思路探究] (1)只需判断原命题和逆命题的真假即可. (2)思路一 写出原命题的逆否命题→判断其真假 思路二 原命题与逆否命题同真同假即等价关系→判断原命题的真假→得到逆否命题的真假[解析] (1)当c =0时,ac 2>bc 2不成立,故原命题是假命题,从而其逆否命题也是假命题;原命题的逆命题为“若ac 2>bc 2,则a >b ”是真命题,从而否命题也是真命题,故选C.[答案] C(2)法一:原命题的逆否命题:若x 2+x -a =0无实根,则a <0. ∵x 2+x -a =0无实根,∴Δ=1+4a <0,解得a <-14<0,∴原命题的逆否命题为真命题.法二:∵a ≥0,∴4a ≥0,∴对于方程x 2+x -a =0,根的判别式Δ=1+4a >0,∴方程x2+x-a=0有实根,故原命题为真命题.∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题.[规律方法]判断命题真假的方法1解决此类问题的关键是牢记四种命题的概念,正确地写出所涉及的命题,判定为真的命题需要简单的证明,判定为假的命题要举出反例加以验证.2原命题与它的逆否命题同真同假,原命题的否命题与它的逆命题同真同假,故二者只判断一个即可.[跟踪训练]2.判断下列四个命题的真假,并说明理由.(1)“若x+y=0,则x,y互为相反数”的否命题;(2)“若x>y,则x2>y2”的逆否命题;(3)“若x≤3,则x2-x-6>0”的否命题;(4)“对顶角相等”的逆命题.[解](1)命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,则逆命题为真命题,因为原命题的逆命题和否命题具有相同的真假性,所以“若x+y=0,则x,y互为相反数”的否命题是真命题.(2)令x=1,y=-2,满足x>y,但x2<y2,所以“若x>y,则x2>y2”是假命题,因为原命题与其逆否命题具有相同的真假性,所以“若x>y,则x2>y2”的逆否命题也是假命题.(3)该命题的否命题为“若x>3,则x2-x-6≤0”,令x=4,满足x>3,但x2-x-6=6>0,不满足x2-x-6≤0,则该否命题是假命题.(4)该命题的逆命题为“相等的角是对顶角”是假命题,如等边三角形的任意两个内角都相等,但它们不是对顶角.等价命题的应用1.当一个命题的条件与结论以否定形式出现时,为了研究方便,我们可以研究哪一个命题?提示:一个命题与其逆否命题等价,我们可研究其逆否命题.2.在证明“若m2+n2=2,则m+n≤2”时,我们也可以证明哪个命题成立.提示:根据一个命题与其逆否命题等价,我们也可以证明“若m+n>2,则m2+n2≠2”成立.(1)命题“对任意x∈R,ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.(2)证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.【导学号:97792010】[思路探究] (1)根据其逆否命题求解.(2)证明其逆否命题成立.[解析](1)∵命题“对任意x∈R,ax2-2ax-3>0不成立”等价于“对任意x∈R,ax2-2ax-3≤0恒成立”,若a=0,则-3≤0恒成立,∴a=0符合题意.若a≠0,由题意知{a<0Δ=4a2+12a≤0,即{a<0-3≤a≤0,∴-3≤a<0综上知,a的取值范围是-3≤a≤0.[答案][-3,0](2)证明原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.若a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题.∴原命题为真命题.[规律方法] 1.若一个命题的条件或结论含有否定词时,直接判断命题的真假较为困难,这时可以转化为判断它的逆否命题.2.当证明一个命题有困难时,可尝试证明其逆否命题成立.3.证明:若a2-4b2-2a+1≠0,则a≠2b+1.[证明]“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.∵a=2b+1,∴a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0.∴命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,原命题得证.[当堂达标·固双基]1.命题“若a∉A,则b∈B”的逆命题是( )A.若a∉A,则b∉B B.若a∈A,则b∉BC.若b∈B,则a∉A D.若b∉B,则a∉AC[“若p,则q”的逆命题是“若q,则p”,所以本题的逆命题是“若b∈B,则a∉A”.]2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3A[同时否定命题的条件与结论,所得命题就是原命题的否命题,故选A.]3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为 ( )A.1 B.2 C.3 D.4B[原命题是真命题,从而其逆否命题是真命题,其逆命题是“若a>-6,则a>-3”,是假命题,从而其否命题也是假命题,故真命题的个数是2.]4.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________.【导学号:97792011】若mx2-2x+1=0有实根,则m≤1[原命题的等价命题是其逆否命题,由定义可知其逆否命题为:“若mx2-2x+1=0有实根,则m≤1”.]5.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.[解] (1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.。