【学案】 画轴对称图形(4)
- 格式:docx
- 大小:19.45 KB
- 文档页数:4
《轴对称图形》教案(最新5篇)《轴对称图形》教案篇一教学目标:1、联系生活中的具体事物,通过观察和动手操作初步体会生活中的轴对称现象,认识轴对称图形的基本特征。
2、会用动手或观察等方法辨别轴对称图形,能利用身边的工具制作轴对称图形,并在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生良好的数学情感。
3、在对知识的探究过程中,培养学生的合作能力,动手能力、空间思维能力和良好的学习情感。
教学重点:理解轴对称图形的特征。
教学难点:掌握并能准确辨别较为复杂的轴对称图形。
教具准备:多媒体网络课件、钉子板、剪刀等教学过程:一、活动导入谈话:同学们,老师今天带来了一个美丽的朋友,大家看!(出示只有一个触角的蝴蝶的图片。
)提问:仔细观察这张图片,你有什么发现和感受,还应该怎么做才好看?学生回答。
教师:今天我们要研究的问题和这只美丽的蝴蝶也有一定的关系。
板书课题:轴对称图形,同时引导学生看了课题你想研究哪些问题?(请学生提出自己赶兴趣的问题)二、识轴对称图形1、课件出示天安门、飞机、奖杯图片。
引导学生观察图片上的物体,说说它们有什么共同特征。
教师:同学们请拿出你们自己手中的这些平面图形,折一折、比一比,和同组的同学交流一下你们发现了什么?(先小组讨论,再汇报)引导学生用手摸一摸对折后的两边,说说有什么样的感觉。
得出结论:这些图形对折后“两部分完全重合”。
介绍:我们把这些对折后能完全重合的图形称为“轴对称图形”。
(板书轴对称图形定义)。
中间这条折痕就是轴对称图形的对称轴。
(板书:对称轴)谈话:我们生活中还有哪些常见物体的平面图形也是轴对称图形呢?(学生交流并回答)2、试一试谈话:同学们你们的学具袋中有几种不同的多边形,它们是轴对称图形吗?引导学生参照轴对称图形的定义,动手折一折、比一比,看看这些常见的图形哪些是轴对称图形?汇报时引导学生用“完全重合”等词语来描述和判断是否是轴对称图形。
3、判断轴对称图形谈话:下面我们一起到“轴对称图形博物馆”去看看。
轴对称图形教案(通用17篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!轴对称图形教案(通用17篇)轴对称图形教案(通用17篇)作为一无名无私奉献的教育工作者,通常会被要求编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
人教版数学二上《轴对称图形》学案一、课前导入在学习本节课内容前,我们先来回顾一下前几节的知识点:•什么是对称轴?•什么是轴对称图形?•能说出几种常见的轴对称图形吗?二、轴对称图形的定义轴对称图形是指当图形绕着一条线旋转180度后,和原来的图形完全重合的图形。
这条旋转轴称为对称轴。
思考: 1. 请尝试画出一个轴对称图形,并标出对称轴。
2. 你认为哪些图形具有轴对称性质?三、轴对称图形的特点1.轴对称图形具有左右对称或上下对称的特点,即如果把这个图形沿着对称轴对折,对折部分重合。
2.若轴对称图形标记有重合的对称线或对称中心,那么这些图形都是轴对称的。
练习: 1. 给出下列图形,判断哪些是轴对称图形: - 三角形 - 正方形 - 镜面反射图形四、轴对称图形的性质轴对称图形有以下性质: 1. 对称图形的对称轴上的任意一点都在图形上。
2. 对称图形上的任意一点关于对称轴的对称点也在图形上。
思考:若给定一个轴对称图形,如何确定它的对称轴?五、轴对称与对称轴的实际应用在现实生活中,轴对称和对称轴的概念经常被使用: 1. 工程建筑中的设计图案常常采用轴对称设计。
2. 物体的生产制造过程中,利用轴对称性可以提高生产效率。
练习: 1. 你能找到身边哪些物体具有轴对称性质?六、小结通过本节课的学习,我们了解了轴对称图形的概念、性质和应用,希望大家能在日常生活和学习中多加注意观察,发现更多轴对称图形的例子。
七、拓展练习1.自行设计一个轴对称图形,并描述其对称轴和特点。
2.用文字描述铁路上的两侧铁轨为什么是轴对称的。
以上是针对人教版数学二上《轴对称图形》的学案,希本同学们通过学习能够加深对轴对称图形的理解。
【学习目标】:1﹑通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及轴对称,并能找出对称轴;2﹑通过亲自实验、探索,研究、发现、应用轴对称,实现真正的“做数学”;3﹑欣赏现实生活中的轴对称,体会轴对称在现实生活中的广泛应用和它的丰富文化价值;【重点难点】:认识轴对称与轴对称图形并会找对称轴;轴对称图形和轴对称的区别与联系.【预习指导】:1、(投影片)4幅图,观察下列四幅图形,你能发现它们有什么共同特征,说出来与同学交流.2、动手操作:将一张纸片先滴上一滴墨水,然后对折压平,再重新打开,观察两滴墨水之间的关系.3、观察、思考:议一议:观察图片揭示轴对称概念:像这样,把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.4、动手操作:(1)演示操作(2)用一张正方形的纸片,折叠后,把下列图形剪出来,并与同学交流你的剪法.5、探索思考:观察图示轴对称图形概念:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.【典题选讲】:指出下列图形中的轴对称图形,画出它们的对称轴.是轴对称图形的是(填写序号).【学习体会】;1、讨论、交流:轴对称与轴对称图形的区别与联系.2、说说生活中的轴对称和轴对称图形,与同学讨论、交流,同小组互相补充.【课堂练习】:1、课本第8页练习:1、2、32、判断题:(1).轴对称图形只有一条对称轴.………()(2).两个图形成轴对称,这两个图形是全等图形.………………()(3).全等的两个图形一定成轴对称. ……………()(4).轴对称图形指一个图形,而轴对称是指两个图形而言………()(编写者:李晓红)1.2轴对称的性质(1)【学习目标】:1、掌握轴对称性质;2、会利用轴对称的性质,作对称点,对称图形等.【重点难点】:掌握轴对称性质,会利用轴对称性质作对称点、对称图形等.【预习指导】:一.学前准备1、完成课本第10页的操作,即图1—6,并将你完成的操作带到课堂上来.2、思考:1)、针孔A、A’折痕l之间有什么关系?请记录下你的发现..2)、线段AA’与折痕l之间有什么关系?请记录下你的发现。
八年级数学上册13.2 画轴对称图形学案(无答案)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册13.2 画轴对称图形学案(无答案)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册13.2 画轴对称图形学案(无答案)(新版)新人教版的全部内容。
13.2.1 画轴对称图形(一)学习要求1.理解轴对称变换,能作出已知图形关于某条直线的对称图形;2.能利用轴对称变换,设计一些图案,解决简单的实际问题。
(二)学习重点理解轴对称变换,能作出已知图形关于某条直线的对称图形。
(三)学习难点理解轴对称变换,能作出已知图形关于某条直线的对称图形.(四)课前预习1.判断训练(打“√”或“×")(1)关于某条直线对称的两个图形全等. ()(2)全等的两个三角形一定关于某条直线对称. ()(3)连接轴对称图形对应点的线段被对称轴垂直平分. ()(4)若两个图形沿某条直线对折后能够完全重合,则这两个图形成轴对称. ()2.把一张正方形纸片如图①、图②对折两次后,再如图③挖去一个三角形小孔,则展开后图形是()3.如图,已知点C和直线l,试画出点C关于直线AB的对称点C′,请说说你的画法.4.如图,做出线段AB关于直线l的对称图形.5。
试作出已知图形关于给定直线l的对称图形.(五)疑惑摘要预习之后,你还有哪些没有弄清的问题,请记下来,课堂上我们共同探讨典例分析例1、如图,已知△ABC和直线l,画出与△ABC关于直线l对称的图形。
例2、已知△ABC,及点A的对称点A′,请作出对称轴直线EF,并画出△ABC关于直线EF的对称图形。
轴对称图形教案轴对称图形教案(通用18篇)作为一名人民教师,总归要编写教案,教案是备课向课堂教学转化的关节点。
那么写教案需要注意哪些问题呢?下面是小编收集整理的轴对称图形教案,希望能够帮助到大家。
轴对称图形教案篇1教学目标:1、通过各种活动,发展学生空间观念,学会欣赏数学美。
2、通过观察、操作、初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。
3、发展学生的空间观念,培养学生的观察能力和动手操作能力。
教学重点:认识轴对称图形,并能正确判断。
教学难点:探索某些对称图形的对称性。
教具:课件、实物图、各种对称图片。
学具:长方形、正方形、圆形、彩色纸。
教学过程一、创设情境:导入新课1 谈话交流2、师:老师带你们欣赏一幅美丽的图片,晴朗的天空,碧绿的草地,小鸟自由自在的飞翔,瞧,蝴蝶也到了我们大家中间,小蝴蝶漂亮吗?它哪美呢?今天呀,小蝴蝶还给大家带来一个问题,想考考大家,敢不敢接受挑战?3、出示图片(蜻蜓、脸谱、树叶、蝴蝶)边出示边问这是什么?你觉得他们美吗?你能说说它们哪儿美呢?(注意引导学生多角度观察物体,颜色、形状,此处引出两边一样大)4、生活中还有哪些图形像这样两边一样大的呢?(学生举例子)5、生活中这样的图形很多很多,那它们都有一个什么样的共同特点呢?6、同学们观察的可真仔细,像这样两边一样大的图形在我们数学中把它们叫作对称图形(板书课题)二、动手验证,感知探究1、师:对称在我们的生活中应用非常的广泛,下面我们来欣赏一下(播放课件),这个图形你见过吗?在哪见过?它们美吗?(美)那你们想不想用自己的小手创造一幅对称图形呢?(想)那就请你们拿出老师准备好的材料动手剪出漂亮的对称图形吧!看谁剪的又快又漂亮,并且能把你剪的作品展示到对称天地中。
2、学生动手操作。
3、展示作品从每组中选出最具代表性的作品贴在黑板上。
4、交流汇报你是怎样作出这个对称图形的?5、虽然它们做的对称图形的形状不一样,但他们都有一个共同的特点,你能发现吗?(一样大等)你是怎么知道它们是一样大的?在数学中,我们把它叫作完全重合。
作轴对称图形教学目标1.掌握作已知图形的轴对称图形的方法.2.灵活运用轴对称变换设计图案.一、知识梳理(1)由一个平面图形可以得到它关于一条直线对称的图形,这个图形与原图形的 、 完全相同.(2)新图形上的每一点,都是原图形上的某一点关于这条直线的 .(3)连接任意一对对应点的线段被对称轴 .二、动手试一试1.如图,已知△ABC 和直线l ,作出与△ABC 关于直线l 对称的图形.2.如图所示,作出△ABC 关于直线MN 的轴对称图形.3.如图,草原上两个居民点A 、B 在河流L 的同旁,一汽车从A 出发到B ,途中需要到河边加水,汽车在哪一点加水,可使行驶的路程最短?在图上画出该点.4. 已知:如图,CDEF 是一个矩形的台球面,有黑白两球分别位于点A 、B 两点,试问怎样撞击黑球A ,使A 先碰到台边EF 反弹后再击中白球B ?5..如图,在一个规格为4×8的球台上,有两个小球P 和Q .若击打小lCBAlA方法1 方法2 方法3 球P 经过球台的边 AB 反弹后,恰好击中小球Q ,则小球P 击打时,应瞄准AB 边上的 ( )A .点O 1B .点O 2C .点O 3D .点O 46.如图所示,将一张正方形纸片两次对折,然后剪下含30°的一张纸片.则这块纸片完全展开后所得图形是( )7. 如下图,由小正方形组成的L 形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:8. 某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个长方形场地成轴对称图形,你有好的设计方案吗?请在如图的长方形中画出你的设计方案.三、拓展提高.完成课本第47页第9题。
教案:如何画出轴对称图形?的文章。
一、引言在我们日常生活中,很多物体是对称的,例如正方形、圆形等。
这些物体的对称性带来美感和和谐感,以至于人们能够用很多方式去增加和创造这种对称性。
轴对称图形就是其中一个很好的示例。
轴对称图形是指图形中某个中心轴线(或对称轴线)能将这个图形分成两个完全相等的部分。
假如这个图形是可旋转的,例如一个平面旋转图形,这个中心轴线会让图形每次转一半,还是能够得到相同的结果。
学习如何画出轴对称图形是十分重要的,因为它不仅提高了我们的美学能力,还能帮助我们更好地理解几何学,为今后的学习和探索奠定深厚的基础。
在本文中,将会讨论如何画出轴对称图形的教案。
这个教案适用于初学者,希望读者能够通过这篇文章,对轴对称图形有一个较为全面的了解,并能够通过一些基本技巧和步骤掌握画出轴对称图形的技能。
二、基础理论部分在谈论如何画出轴对称图形之前,有必要先介绍一些基础的理论概念和知识。
1. 轴对称图形的定义和类别轴对称图形是指中心轴线将图形分成两个完全对称的部分的图形。
对称轴线可以存在于纵轴、横轴,还可以为其他方向的轴线。
轴对称图形根据对称轴线的不同方向,又被分为以下几种类型:纵轴对称图形:对称轴线垂直于底边;横轴对称图形:对称轴线水平于底边;轴对称图形:对称轴线垂直于底边和横轴对称轴线都存在。
2. 轴对称图形的性质在学习轴对称图形之前,有必要了解一些图形的默认属性。
这些属性将有助于我们更好地理解轴对称图形的性质。
所有的圆都是对称图形,并且这个对称轴线是过圆心的直径。
所有的等边三角形、正方形和等矩形都有一条划分中心。
任何情况下,底边与中心轴线相垂直的图形总是轴对称的。
3. 轴对称图形的应用轴对称图形有着广泛的应用领域,包括建筑、制造、绘画等领域。
在建筑设计中,轴对称图形可用于构建建筑物的立面、计划和设计;在制造过程中,轴对称图形可用于设计和制造零件或产品的几何结构。
在绘画和艺术领域,轴对称图形被用于创造一种平衡感和视觉和谐感。
13.2.1《画轴对称图形》【课标内容】通过观察和动手操作认识轴对称图形,能辨别那些图形是轴对称图形,在动手操作的过程中培养学生的观察能力、动手操作能力和创新思维能力.【教材分析】本节教材在学习了轴对称的基础上学习的,在学习本节课之前,学生已经初步知道了轴对称特点,大部分同学对轴对称掌握的比较好,学生已具备了学习本节课的部分知识和思想准备,学习这部分内容,对学习等腰三角等的知识奠定了基础,是进一步研究等腰三角形的工具性内容,因此本节课在教材中具有承上启下的作用.【学情分析】鉴于教材特点及初二学生模仿能力强,思维信赖于具体直观形象的特点,我选用的是引导发现教学法,充分运用教具、学具,在实验、演示、操作、观察、练习等师生的共同活动中引导学生,让每个学生都动手、动口、动脑积极思维,进行“创造性”的学习,另外,在教学中我还注意利用图片的不同颜色的对比来启发学生,运用投影仪提高教学效率,动态演出直观生动的教学图片,激发学生的学习兴趣,培养应用意识.【教学目标】1.理解解线段的垂直平分线的性质性质定理及逆定理;2. 要求学生在学习中运用发现法;让学生通过探索活动来发现结论,经历知识的再发现过程;【教学重点】引导学生探索并掌握轴对称图形的基本特点、简单轴对称图形的画法.【教学难点】用轴对称知识解决相应的数学问题【教学方法】五步教学法演示法、直观教学法【课前准备】三角板学案多媒体课件【课时设置】二课时【教学过程】第一课时一、预学自检互助点拨(阅读教材P67-68,完成以下问题)1.知识回顾(1)什么是轴对称图形?什么叫两个图形成轴对称?(2)轴对称主要有哪些性质?2﹒操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?3﹒归纳:结论 1.对称轴的方向和位置发生变化时,得到的图形的方向和位置也发生变化.结论2.由一个图形可以得到它关于对称轴的对称图形,这两个图形的形状大小完全相同活动1操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?学生活动设计:学生观察图片,动手操作、观察所画图形,先独立思考,然后进行交流.教师活动设计:教师组织活动,引导学生作以下归纳:(1)由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的形状、大小完全一样;(2)新图形上一个点,都是原图形上的某一点关于直线l的对称点;(3)连接任意一对对应点的线段被对称轴垂直平分.活动2二、合作互学探究新知1﹒画出点A关于 l 的对称点A’:( 1 )过点A作对称轴l 的垂线,垂足为B;( 2 )延长A B 至A’,使得BA’= A B.( 3 )点 A’就是点A关于 l 的对称点.如图(1),已知△ABC l 对称的图形吗?图(1) 图(2) 学生活动设计:学生进行讨论,然后根据讨论的结果独立作图,最后交流想法.根据轴对称的性质,只需要作出点A 、B 、C 关于直线l 的对称点再连接就可以了.教师活动设计:在学生交流的过程中,引导学生探索作对称点的方法.如图(2),作点A 关于l 的对称点的方法是:(1)过A 作l 的垂线垂足为O ;(2)连接A O 并延长到A ′,使A ′O=A O ,则点A ′就是点A 关于直线l 的对称点.最后进行归纳.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中一些B'l l特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.三、自我检测成果展示1.完成课后68页练习1﹒ 2题2.用两个圆、两个三角形、两条平行线段可以构造出许多独特而有意义的轴对称图形(如下图),请你也仿照构思一个图案,别忘了加上一两句贴切的解说词哦.四、应用提升挑战自我1.探究:要在燃气管道L上修建一个泵站,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?五、经验总结反思收获本节课你学到了什么?写出来【设计意图】师引导学生归纳总结,旨在让学生学会归纳总结,梳理知识,提高认识.【板书设计】13.2作轴对称图形(一)一、轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.二、利用轴对称变换设计图案【备课反思】这是一堂集欣赏美与动手操作为一体的综合实践课,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,因此,本课的教学设计力求体现:让学生在观察中让思考,在动手操作中探究,在理解中创新,以学生的自主活动和合作活动为主.反思这节课,课堂教学模式发生了根本性的变化,教师不再是简单的知识传授者,而是一个组织者和引导者,并调动了每一位学生的学习主动性,使他们真正成为学习的主人,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的观点吗,学生始终保持着高昂的学习情绪,切身经历了“做数学”的全过程,感受了学习数学的快乐,品尝了成功的喜悦.。
1 轴 对 称项目 内 容1.下列不是轴对称图形的是( )。
A.等腰三角形B.等边三角形C.平行四边形D.长方形2.观察图形。
分析:如果沿虚线对折,松树的左右两侧以及小草可以( ),那么点A 和点A'、点B 和点B'、点C 和点C'到虚线的距离都分别( )。
3.通过预习,我知道了,画一个图形的轴对称图形,可按以下四个步骤完成:第一步,确定所给图形的( )。
第二步,确定关键点到对称轴的( )。
第三步,确定关键点的( )。
第四步,把描出的对应点按顺序( )。
4.画出图形的对称轴。
5.画轴对称图形。
温馨提示学具准备:方格纸。
知识准备:简单的轴对称的相关知识。
1轴对称1.C2.完全重合相等3.关键点距离对应点连接4.略5.略制定学习计划有什么好处?一、计划是实现目标的蓝图。
目标不是什么花瓶,你需要制定计划,脚踏实地、有步骤地去实现它。
通过计划合理安排时间和任务,使自己达到目标,也使自己明确每一个任务的目的。
二、促使自己实行计划。
学习生活是千变万化的,它总是在引诱你去偷懒。
制定学习计划,可以促使你按照计划实行任务,排除困难和干扰。
三、实行计划是意志力的体现。
持实行计划可以磨练你的.意志力,而意志力经过磨练,你的学习收获又会更一步提升。
这些进步只会能使你更有自信心,取得更好的成功。
四、有利于学习习惯的形成。
按照计划行事,能使自己的学习生活节奏分明。
从而,该学习时能安心学习,玩的时候能开心地玩。
久而久之,所有这些都会形成自觉行动,成为好的学习习惯。
五、提高学习效率,减少时间浪费。
合理的计划安排使你更有效的利用时间。
你会知道多玩一个小时就会有哪项任务不会完成,这会给你带来多大的影响。
有了计划,每一步行动都很明确,也不要总是花费心思考虑等下该学什么。
画轴对称图形
【学习目标】:
1、能作轴对称图形,能应用轴对称进行简单的图案设计,能用轴对称的知识解决相应的数学问题。
2、通过独立思考、交流讨论、展示质疑,发展学生的观察、归纳、想象及推理能力。
3、极度热情、享受成功、感受数学就在身边。
学习重点:作轴对称图形
学习难点:用轴对称知识解决相应的数学问题。
二、复习思考
1、线段公理:两点之间( )最短
2、垂直平分线的性质:( ) 三、自主学习:回答下列问题:(
)
1、探究 :自己动手在一张半透明的纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置并重复几次,你又得到了什么? 归纳:(1) 由一个平面图形可以得到它关于一条直线l 成轴对称的图形,这个图形与原图形的 、完全相同;
(2)新图形上的任意一点,都是原图形上某一点关于直线l 的; (3)连接任意一对对应点的线段被对称轴。
2、把图1补成关于直线l 对称的图形:(P67例1) 作法:
(2) (3) 归纳:
几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形。
3、如图2,如何在直线l 上找一点P ,使线段与的和最小?
l
图1
四、学以致用
1、作五角星关于与某条直线对称的图形时,最多要选 个关键点。
第一题图 第二题图
2、如图,一轴对称图形画出了它的一半,请你以点画线为对称轴画出它的另一半.
五、合作探究
1、把下列各图补成以a 为对称轴的轴对称图形。
·
· A B l
图
2
a
a
a
2、把图中实线部分补成以虚线l 为对称轴的轴对称图形,你会得到一只美丽的图案。
要在河边修建一个水泵站,分别向张村、李庄送水(如图)。
修在河边什么地方,可使所用水管最短?试在图中确定水泵站的位置,并说明你的理由。
六、当堂检测 P68练习
七、谈本节课收获和体会
这节课你有什么收获呢?与你的同伴进行交流! 八、能力提升: 1.课后作业
3. 如图,在△与△中,=.设点E 是的中点,点F 是的中点.
(1)请你在图中作出点E 和点F ;(要求用尺规作图,保留作图痕迹,不写作法与证明)
(2)连接,.若∠=∠,请你证明△≌△.
张村
李庄
l
A B l
D
A
B
C。