人工神经网络
- 格式:ppt
- 大小:5.04 MB
- 文档页数:90
第九章人工神经网络基础人工神经网络(Artificial Neural Network, ANN)是在模拟人脑神经系统的基础上实现人工智能的途径,因此认识和理解人脑神经系统的结构和功能是实现人工神经网络的基础。
而人脑现有研究成果表明人脑是由大量生物神经元经过广泛互连而形成的,基于此,人们首先模拟生物神经元形成人工神经元,进而将人工神经元连接在一起形成人工神经网络。
因此这一研究途径也常被人工智能研究人员称为“连接主义”(connectionism)。
又因为人工神经网络开始于对人脑结构的模拟,试图从结构上的模拟达到功能上的模拟,这与首先关注人类智能的功能性,进而通过算法来实现的符号式人工智能正好相反,为了区分这两种相反的途径,我们将符号式人工智能称为“自上而下的实现方式”,而称人工神经网络称为“自下而上的实现方式”。
人工神经网络中存在两个基本问题。
第一个问题是人工神经网络的结构问题,即如何模拟人脑中的生物神经元以及生物神经元之间的互连方式的问题。
确定了人工神经元模型和人工神经元互连方式,就确定好了网络结构。
第二个问题是在所确定的结构上如何实现功能的问题,这一般是,甚至可以说必须是,通过对人工神经网络的学习来实现,因此主要是人工神经网络的学习问题。
具体地说,是如何利用学习手段从训练数据中自动确定神经网络中神经元之间的连接权值的问题。
这是人工神经网络中的核心问题,其智能程度更多的反映在学习算法上,人工神经网络的发展也主要体现在学习算法的进步上。
当然,学习算法与网络结构是紧密联系在一起的,网络结构在很大程度上影响着学习算法的确定。
本章首先阐述人脑神经系统,然后说明人工神经元模型,进而介绍人工神经网络的基本结构类型和学习方式。
9.1 人脑神经系统人工神经网络是在神经细胞水平上对人脑的简化和模拟,其核心是人工神经元。
人工神经元的形态来源于神经生理学中对生物神经元的研究。
因此,在叙述人工神经元之前,首先介绍目前人们对生物神经元的构成及其工作机理的认识。
什么是人工神经网络人工神经网络是一种基于机器学习的人工智能技术,它可以让计算机学习如何识别与处理复杂的数据,比如图像、音频和视频。
本文将专注介绍人工神经网络,深入讨论它的构成、工作原理以及它如今所扮演的角色。
人工神经网络是一种仿照生物神经系统的架构和功能而开发的计算机技术。
它最初的概念可以追溯到1957年,由包括Frank Rosenblatt、Marvin Minsky和John McCarthy等在内的几位科学家在系统思想和计算机科学领域开发,它实际上是受到脑神经网络结构启发而发展出来的一种技术。
人工神经网络能够以一种类似于人类“思考”的方式从大量数据中获取结果,比如分析情感、视觉识别、语音识别等。
它可以通过学习过去的经验和观察,来推断当前和未来的情况。
人工神经网络的组成主要有神经元,连接和权重。
每个神经元都有输入、激活函数和输出。
神经元是网络中不同组件的基本部分,它们可以接受、处理和转发信号,以触发期望输出。
连接则用于把不同的神经元连接起来传输信息,这些连接可以赋予不同的权值,影响输入信号的最终输出。
最后,人工神经网络的工作原理,是通过迭代输入数据,调整权重使输出更接近期望结果,并且能够通过反馈机制自我调整参数和权重,以达到期望的训练结果。
人工神经网络如今已经被许多公司和组织使用,用于处理各种任务,包括复杂的图像识别、语音识别、语言建模、自动驾驶以及计算机视觉等。
它们已经成为机器学习和自然计算中最流行的方法之一,并广泛应用于商业、政府以及军事等众多领域。
比如,人工神经网络用于语音识别,top07机器人使用神经网络解析语音,帮助用户进行语音识别;或者用于机器视觉,Google等公司使用深度学习神经网络识别图像,可以对不同的图像进行分类,有效地提升图像浏览的用户体验。
总的来说,人工神经网络是一项设计用来处理繁杂任务的数据处理技术,可以重现生物神经系统架构和功能以及学习能力。
它是一种可以从大量数据中快速获取结果的技术,如今已经得到了普遍应用,被用于各种场景中。
人工神经网络基本原理人工神经网络(Artificial Neural Network,简称ANN)是一种模拟生物神经系统的计算模型,通过神经元之间的连接和传递信息的方式来进行计算和学习。
它由大量的人工神经元(Artificial Neuron)组成,每个人工神经元可以接收多个输入,经过激活函数的处理后,产生一个输出。
这些神经元之间通过权重来调整信息的传递强度和方向,从而实现信息的处理和模式的学习。
下面是人工神经网络的基本原理和工作过程。
1.人工神经元的结构和工作原理人工神经元是人工神经网络的基本组成单位,它模拟了生物神经元的结构和功能。
一个人工神经元接收多个输入信号,每个输入信号通过一个权重进行加权,然后通过激活函数进行处理,最终产生一个输出信号。
人工神经元的结构可以表示为:y = f(Σ(w_i * x_i) + b),其中y表示输出信号,x_i表示输入信号,w_i表示对应的权重,b表示偏置,f表示激活函数。
常用的激活函数有Sigmoid函数、ReLU函数等。
2.前向传播和反向传播在人工神经网络中,信息的传递分为两个过程:前向传播(Forward Propagation)和反向传播(Backward Propagation)。
(1)前向传播:在前向传播过程中,输入数据通过一层一层的神经元,从输入层传递到输出层。
每个神经元接收到上一层神经元的输出信号,并经过激活函数的处理产生一个新的输出信号。
这个过程可以理解为信息的正向流动。
通过多次的前向传播,人工神经网络可以对输入数据进行非线性的处理和抽象表示。
(2)反向传播:在反向传播过程中,首先计算输出层的误差,然后反向计算隐藏层和输入层的误差,并通过调整权重和偏置来减小误差。
这一过程可以看作是信息的反向流动。
反向传播使用梯度下降法来进行权重和偏置的更新,目的是将网络的输出尽可能地接近目标输出,从而实现训练和学习的目标。
3.神经网络的学习和训练神经网络的学习和训练是通过调整神经元之间的连接权重和偏置来实现的。
人工神经网络的基本原理及其应用人工神经网络(Artificial Neural Network,ANN),是一种模仿生物神经网络的人工智能技术。
它由大量的节点(也被称为神经元)和连接线组成,能够模拟人脑的信息处理方式,具有学习、记忆、推理等功能,已广泛应用于图像识别、语音识别、自然语言处理、自动化控制等领域。
1. 基本原理人工神经网络的基本结构由输入层、隐藏层和输出层组成。
其中,输入层接收外部输入,隐藏层进行信息处理,输出层输出结果。
每个节点接受来自其他节点的输入,并对总输入进行加权处理,然后运用激活函数进行非线性变换,最终输出给后继节点。
加权系数和阈值是神经网络中的重要参数,它们的调整会影响神经元的输出。
神经网络的学习过程主要包括前向传播和反向传播。
前向传播是指输入数据从输入层传递到输出层的过程;反向传播是指根据输出误差对参数进行调整的过程。
通过不断迭代,神经网络的性能可以不断提高,实现更加准确的任务。
2. 应用领域2.1 图像识别图像识别是人工神经网络的常见应用之一。
通常,将图像中的每个像素作为输入,神经网络通过卷积层和池化层从原始图像中提取特征,然后通过全连接层进行分类。
例如,Google 在 2015 年发布的 ImageNet 大规模视觉识别竞赛(ImageNet Large Scale Visual Recognition Challenge,ILSVRC)中,使用了多层卷积神经网络(Convolutional Neural Network,CNN)架构,成功识别出一张图像中的物体,使得图像识别的准确率得到了显著提高。
2.2 语音识别自然语言处理业界对神经网络的应用也不断增多。
语音识别是其中的一个热点方向。
利用神经网络,可以将人类语言转化为计算机理解的信息。
语音识别的模型一般采用长短时记忆网络(Long Short-Term Memory,LSTM)结构。
LSTM 可以有效解决序列数据中存在的长距离依赖问题,提高语音的识别率。
人工神经网络人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model)目录[隐藏]∙ 1 人工神经网络概述∙ 2 人工神经网络的特点∙ 3 人工神经网络的特点与优越性∙ 4 人工神经网络的主要研究方向∙ 5 人工神经网络的应用分析人工神经网络概述人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。
人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。
国际著名的神经网络研究专家,第一家神经计算机公司的创立者与领导人Hecht Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理。
” 这一定义是恰当的。
人工神经网络的研究,可以追溯到1957年Rosenblatt提出的感知器模型(Perceptron) 。
它几乎与人工智能——AI(Artificial Intelligence)同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。
直到80年代,获得了关于人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对人工神经网络发生了兴趣,导致神经网络的复兴。
目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。
人工神经网络是在现代神经科学的基础上提出来的。
它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。
人工神经网络的原理及优化方法随着计算机技术的不断发展,人工智能技术也得到了长足的发展。
人工神经网络作为人工智能技术的一个重要分支,广泛应用于语音识别、图像识别、机器翻译等领域。
本文将从人工神经网络的原理入手,介绍人工神经网络的优化方法。
一、人工神经网络的原理人工神经网络(Artificial Neural Network,ANN)是一种由神经元和之间联系组成的网络结构,其基本结构类似于生物神经元。
每个神经元接收来自其他神经元的信号,通过处理后输出信息到下一层神经元。
模拟了人脑神经元之间相互连接的模式。
在人工神经网络中,每个神经元都有权重和偏差值。
权重决定了该神经元的重要程度,而偏差值则可以对神经元的输出进行平移。
神经元的输入信号经过加权处理,并加上偏差值之后,再通过激活函数进行非线性变换。
人工神经网络最终的输出结果,就是所有神经元经过计算后的结果。
人工神经网络的训练过程,是利用已知数据集来调整神经网络中的权重和偏差值,以使得神经网络的输出结果尽可能接近于真实结果。
常用的神经网络训练算法包括反向传播算法、遗传算法、模拟退火等。
二、人工神经网络的优化方法人工神经网络的优化方法,旨在提高神经网络的准确性和泛化能力。
常用的优化方法包括以下几种:1. 权重初始化权重的初始化方案对神经网络的训练过程起着至关重要的作用。
一般来说,权重应该随机初始化,以避免过拟合和局部最优解。
常用的权重初始化方法包括高斯分布、均匀分布、正交初始化等,其中正交初始化是一种使用较少的初始化方式。
2. 优化函数优化函数是指在训练神经网络时,通过反向传播算法来更新权重和偏差值时所使用的损失函数。
常用的优化函数包括均方误差、交叉熵、KL散度等。
不同的优化函数对神经网络的训练效果有明显的影响。
3. DropoutDropout是一种随机性的正则化手段,它能够减少神经网络的过拟合现象。
这种方法在训练神经网络时,随机地将一些神经元的输出置为0,并将其忽略。
人工神经网络及模式识别人工神经网络(Artificial Neural Network,ANN)是一种模仿生物神经网络结构和功能的数学模型,是深度学习的基础。
它由大量的神经元(也称为节点或单元)组成,通过连接不同神经元之间的连接权重进行信息传递和处理。
模式识别(Pattern Recognition)是指根据已知的模式进行辨识和分类的过程,人工神经网络在模式识别中有着广泛的应用。
人工神经网络的基本结构包括输入层、隐藏层和输出层。
输入层接收外部数据作为输入,隐藏层用于处理输入数据,输出层输出最终的结果。
神经元之间的连接权重和激活函数决定了信息的传递和处理方式。
常用的激活函数有 sigmoid 函数、ReLU 函数等。
通过调整神经元之间的连接权重和激活函数的选择,可以使神经网络对不同模式的输入数据进行学习和预测。
人工神经网络的训练过程通常包括前向传播和反向传播两个步骤。
前向传播是指依据当前的连接权重和激活函数,将输入数据从输入层传递到输出层,得到预测结果。
反向传播是指根据预测结果与真实结果的差别来调整连接权重,不断优化模型的性能。
模式识别是人工神经网络的主要应用之一、通过训练一个神经网络模型,可以使其具备识别和分类不同模式的能力。
例如,可以利用人工神经网络对图像进行分类,识别图像中的目标物体或区分不同类别的图像。
此外,人工神经网络还可以应用于语音识别、手写体识别、医学诊断等领域。
人工神经网络的模式识别能力取决于网络的深度和规模、数据样本的质量和数量,以及神经网络的参数设置等。
一般情况下,神经网络的规模越大、层数越深,其识别和分类的准确性和鲁棒性更高。
而充分的训练数据和合理的参数设置也是确保识别效果的重要因素。
总的来说,人工神经网络是一种模仿生物神经网络的数学模型,通过调整连接权重和激活函数的选择,实现对不同模式的输入数据进行学习和预测。
在模式识别中,人工神经网络可以应用于图像识别、语音识别、手写体识别等任务,具备较高的识别准确性和鲁棒性。