9-人工神经网络(2学时)
- 格式:pdf
- 大小:1.76 MB
- 文档页数:43
人工神经网络教程人工神经网络(Artificial Neural Network,ANN)是一种受到生物神经元系统启发的计算模型,用于模拟和处理复杂的问题。
它由许多人工神经元组成,通过连接的方式形成网络,可以进行数据的学习和预测,广泛应用于图像识别、语音识别、自然语言处理等领域。
人工神经网络的基本结构是由多层神经元组成的,包括输入层、隐藏层和输出层。
输入层接收外部的输入数据,而输出层输出结果。
隐藏层则在输入层和输出层之间进行信息的处理和传递。
每个神经元都有多个输入和一个输出,输入和输出之间通过权重进行连接。
神经元接收到输入后,通过激活函数进行处理,得出输出结果。
人工神经网络的学习过程是通过反向传播算法进行的。
首先,通过前向传播计算网络的输出结果,与期望的输出结果进行比较,计算出误差。
然后,误差通过反向传播逐层传递回输入层,并根据梯度下降算法不断调整权重,使得网络的输出结果与期望结果更加接近。
这个过程反复进行,直到网络的输出结果达到预期的精度要求。
人工神经网络有许多不同的类型,包括前馈神经网络、递归神经网络和卷积神经网络等。
前馈神经网络是最常见且简单的一种类型,每个神经元的输出只和上一层的神经元有连接。
递归神经网络具有循环连接,可以处理时序问题。
卷积神经网络主要用于图像和语音识别领域,通过卷积层和池化层等特殊结构进行特征提取。
人工神经网络的优点是可以自动从数据中学习特征,并进行预测和分类。
它具有强大的模式识别能力,可以应用于各种领域的问题。
然而,人工神经网络同时也存在一些挑战和限制。
首先,神经网络的训练和调优需要大量的数据和计算资源。
其次,网络的结构和参数需要人工设计和调整,不同问题可能需要不同的网络结构和参数设置。
此外,神经网络的过程是黑盒操作,很难解释其中的具体原理和过程。
总而言之,人工神经网络是一种强大的计算模型,可以模拟和处理复杂的问题。
它在各个领域都有广泛的应用,并且不断得到改进和优化。
人工神经网络基本原理
人工神经网络(Artificial Neural Network,ANN)是一种模拟人类大脑神经元工作方式的计算模型,由多个神经元节点相互连接而成。
它可以通过学习和适应性调整来进行信息处理和模式识别。
人工神经网络由输入层、隐藏层和输出层组成。
输入层接受外部输入信号,隐藏层用于处理这些信号,输出层则给出最终的输出结果。
每个层中的神经元节点与下一层的节点相连接,并通过具有可调整权值的连接进行信息传递。
每个神经元节点接收到输入信号后,会对其进行加权求和,并通过激活函数将结果转换为输出信号。
在训练过程中,人工神经网络根据输入样本和期望输出进行学习。
通过调整连接权值,神经网络逐渐优化其输出结果,使得实际输出与期望输出之间的误差最小化。
这一过程称为反向传播算法,通过梯度下降的方式,不断更新权值以逼近最优解。
人工神经网络具有较强的非线性拟合能力和自适应学习能力,可以用于解决分类、回归、模式识别等各种问题。
它已经广泛应用于图像和语音识别、自然语言处理、金融预测、医学诊断等领域。
然而,人工神经网络也存在一些挑战和限制。
例如,过拟合问题会导致网络在训练集上表现良好但在测试集上表现较差;训练时间较长,且需要大量的训练数据和计算资源;网络结构的选择和调优需要经验和专业知识。
总的来说,人工神经网络是一种模拟人脑神经元工作方式的计算模型,具有强大的非线性拟合能力和自适应学习能力。
虽然存在一些挑战和限制,但它在许多领域中都有广泛应用和研究价值。
人工神经网络大脑是由约100亿个高度互联的神经元组成的,这些神经元构成一个协同处理的复杂网络结构,即神经网络,成为认知的物质与生理基础。
人工神经网络是模拟大脑构建的计算模型,由大量模拟神经元的处理单元——人工神经元构成,形成一个大规模的非线性自适应系统,拥有学习、记忆、计算以及智能处理能力,可以在一定程度上模拟人脑的信息储存、检索和处理能力。
6.1 感知机6.1.1 感知机模型1957年康奈尔大学的Rosenblatt提出了感知机的概念。
感知机模拟生物神经元,接收一个或者多个输入,处理后输出一个结果。
图6-1是感知机的示意图。
图6-1 感知机示意图感知机可以有一到多个输入,每个输入带有一个权重w,用来表示该输入的i和b构成了感知机的参数集合。
感知机重要程度,每个感知机有一个偏置b,wi计算输入的线性组合(或者叫作预激活)并将其交予激活函数f(a)得到输出y。
激活函数用于模拟生物神经元的激活与非激活状态,通常采用阶梯函数、sigmoid函数和分段线性函数及其变体。
图6-2给出了几种激活函数的定义和图形。
图6-2 几种激活函数6.1.2 感知机学习策略依据训练样本的数据确定wi 和b(不区分的时候统一记为θi)值的过程就是感知机的学习过程,其学习算法基于误差驱动。
首先,将未经学习的θi设置为0或者很小的随机值,然后对训练集中的每个样本进行分类预测,并根据预测结果更新参数值。
参数更新依据式(6-1)进行。
其中是样本j的实际类别;yj (t)是样本j的本次预测类别;xji是样本j的第i个特征;η是控制学习速率的超参数,叫作学习率。
显然,如果预测正确-yj(t)=0,则参数不需要更新,否则更新参数,这种更新规则类似于梯度下降算法。
学习遍历训练集中的每个样本称为一个训练周期(Epoch)。
如果在一个训练周期内对所有样本都分类正确,则模型达到收敛状态,停止训练;否则,进入下一周期,直至模型收敛,或者达到最大训练周期数。
人工神经网络的算法
人工神经网络(Artificial Neural Network,ANN)是一种仿照生物神经网络原理构建的计算模型, 是指模仿人脑神经元结构,建立一种模糊推理的模型。
它由大量的神经元及其之间的连接构成,模仿人的大脑、神经系统的思维方式,可以处理模糊、多变、复杂的信息。
人工神经网络的基本结构包括神经元、联络和权重三要素。
神经元的工作原理:每个神经元都有很多杆,它们从其它神经元获取输入信号,并加权聚合,然后将聚合后的信号输出给其它神经元。
联络用于连接不同的神经元,而权重则用于每一个联络信号的加权。
人工神经网络的学习阶段是该网络内部的参数按照一定的机制(如误差反向传播算法)进行调整更新,使其输出的结果是一道题给出的解,使其在一定的范围内尽可能贴近正确答案的过程。
学习主要通过调整连接权重来完成,即为神经元连接权重设置有效值,从而使输出介于正确答案之间,从而达到最佳解的目的。
学习的结果可以决定网络的计算结果,也可以决定网络的性能,这就是学习算法的目的。
通常,学习算法的目标是最小化网络的总体损失,通过更新权重和偏置来增加网络的性能。
此外,人工神经网络还可以实现训练和参数压缩。
《人工智能》实验大纲(2007年7月修订)课程名称:人工智能(实验部分)课程类型:范围选修课-专业课实验学时:16学时适用对象:计算机科学与技术专业、电子信息科学与技术专业本科生一、实验教学目标与基本要求课程实验是学生掌握教学内容的必要环节,系统、科学、合理地安排实验内容可以帮助学生理解、巩固课程教学内容,设置综合性实验项目还能提高学生解决实际问题的能力。
《人工智能》实验环节的设置目的是通过几个典型实例培养学生设计并实现智能软件系统的能力。
二、实验内容与学时分配项目一:实验名称:传教士和野人过河(2学时)实验目的:这是经典的过河方案规划问题,通过本实验的设计与编程实现让学生掌握基于状态空间知识表示方法的一般搜索策略。
实验内容:选择c、c++、java等编程语言设计并实现3个传教士和3个野人的过河方案。
实验要求:程序能自动规划出所有的过河方案。
实验类型:验证型项目二:实验名称:八数码游戏(2学时)实验目的:这是经典的益智游戏。
通过本实验的设计与编程实现让学生掌握基于状态空间知识表示方法的启发式全局择优搜索策略。
实验内容:选择c、c++、java等编程语言设计并实现八数码游戏的启发式全局择优搜索算法。
实验要求:任意给定初始状态和目标状态,系统能自动给出从初始状态到目标状态的最佳走步序列。
实验类型:验证型项目三:实验名称:动物识别产生式系统(4学时)实验目的:这是一个简单的动物识别产生式系统教学实例,通过本实验让学生理解并体会知识库与控制系统相互独立的智能产生式系统与一般程序的区别,为以后设计并实现复杂的专家系统奠定基础。
实验内容:知识表示为产生式知识表示方法,设计并实现具有15条规则能自动识别7种动物的产生式系统。
实验要求:知识库与控制系统相互独立,系统完成后除了能识别已有的7种动物外,按产生式知识表示方法向知识库中添加、修改新的知识后,系统能在不修改控制系统程序的情况下仍然能正确识别。
实验类型:综合型项目四:实验名称:人工神经网络(2学时)实验目的:通过本实验理解并体会人工神经网络的设计及网络的学习方法,通过样本数据训练网络,并能使用训练成熟的网络进行预测、优化等,培养学生使用人工神经网络解决实际问题的能力。