人工神经网络第3章 监督学习神经网络(2)1
- 格式:ppt
- 大小:1.87 MB
- 文档页数:4
人工神经网络学习总结笔记主要侧重点:1.概念清晰2.进行必要的查询时能从书本上找到答案第一章:绪论1.1人工神经网络的概述“认识脑”和“仿脑”:人工智能科学家在了解人脑的工作机理和思维的本质的基础上,探索具有人类智慧的人工智能系统,以模拟延伸和扩展脑功能。
我认为这是人工神经网络研究的前身。
形象思维:不易被模拟人脑思维抽象推理逻辑思维:过程:信息概念最终结果特点:按串行模式人脑与计算机信息处理能力的不同点:方面类型人脑计算机记忆与联想能力可存储大量信息,对信息有筛选、回忆、巩固的联想记忆能力无回忆与联想能力,只可存取信息学习与认知能力具备该能力无该能力信息加工能力具有信息加工能力可认识事物的本质与规律仅限于二值逻辑,有形式逻辑能力,缺乏辩证逻辑能力信息综合能力可以对知识进行归纳类比和概括,是一种对信息进行逻辑加工和非逻辑加工相结合的过程缺乏该能力信息处理速度数值处理等只需串行算法就能解决的应用问题方便,计算机比人脑快,但计算机在处理文字图像、声音等类信息的能力远不如人脑1.1.2人脑与计算机信息处理机制的比较人脑与计算机处理能力的差异最根本的原因就是信息处理机制的不同,主要有四个方面方面类型人脑计算机系统结构有数百亿神经元组成的神经网络由二值逻辑门电路构成的按串行方式工作的逻辑机器信号形式模拟量(特点:具有模糊性。
离散的二进制数和二值逻辑容易被机器模拟的思维方式难以被机器模拟)和脉冲两种形式形式信息储存人脑中的信息分布存储于整个系统,所存储的信息是联想式的有限集中的串行处理机制信息处理机制高度并行的非线性信息处理系统(体现在结构上、信息存储上、信息处理的运行过程中)1.1.3人工神经网络的概念:在对人脑神经网络的基本认识的基础上,用数理方法从信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,称之为人工神经网络,是对人脑的简化、抽象以及模拟,是一种旨在模仿人脑结构及其功能的信息处理系统。
其他定义:由非常多个非常简单的处理单元彼此按某种方式相互连接而形成的计算系统,外部输入信息之后,系统产生动态响应从而处理信息。
第二章深度神经网络一、概述1、基本概念深度学习(Deep Learning)是一种没有人为参与的特征选取方法,又被称为是无监督的特征学习(Unsupervised Feature Learning)。
深度学习思想的神经网络利用隐含层从低到高依次学习数据的从底层到高层、从简单到复杂、从具体到抽象的特征,而这一特性决定了深度学习模型可以学习到目标的自适应特征,具有很强的鲁棒性。
深度学习的另外一个思想是贪婪算法(greedy algorithm)的思想,其在训练的时候打破了几十年传统神经网络训练方法的“桎梏”,采用逐层训练(greedy layer-wise)的贪婪思想,并经过最后的微调(fine-tuning),这一训练算法的成功也使得深度学习获得了巨大成功。
传统的模式识别方法:机器学习过程从最初的传感器得到原始的数据,到经过预处理,都是为了第三步和第四步的特征提取和特征选择,而这个耗时耗力的工作一般要靠人工完成。
这种靠人工的,需要大量的专业知识的启发式的特征提取方法注定要限制机器学习的发展,而深度学习的非监督学习阶段的“盲学习”的特性能够解决该问题,即:深度学习在特征提取和选择时是完全自主的,不需要任何的人工干预。
2、神经网络发展受限之处多隐含层的网络容易收敛到参数空间的局部最优解,即偏导数为0 的点,尤其在目标识别中,由于图像的信噪比很低,神经网络很容易陷入局部极小点; 训练算法与网络的初始参数有很大关系,比较容易过拟合;训练速度慢;在误差反向传播的训练算法中,层数越深,误差越小,甚至接近于0,造成训练失败。
误差反向传播算法必须要用到带标签的数据(有导师学习、监督学习),获取带标签的数据十分困难。
3、深度学习的学习算法深度学习的基本模型从形式上来看和神经网络一致,基本的结构单元都是神经元,由神经元组成网络层,整个网络由输入层,隐含层和输出层组成。
在深度学习理论中,一个网络的学习算法每运行一次,只调整一层网络的参数。
习题2.1什么是感知机?感知机的基本结构是什么样的?解答:感知机是Frank Rosenblatt在1957年就职于Cornell航空实验室时发明的一种人工神经网络。
它可以被视为一种最简单形式的前馈人工神经网络,是一种二元线性分类器。
感知机结构:2.2单层感知机与多层感知机之间的差异是什么?请举例说明。
解答:单层感知机与多层感知机的区别:1. 单层感知机只有输入层和输出层,多层感知机在输入与输出层之间还有若干隐藏层;2. 单层感知机只能解决线性可分问题,多层感知机还可以解决非线性可分问题。
2.3证明定理:样本集线性可分的充分必要条件是正实例点集所构成的凸壳与负实例点集构成的凸壳互不相交.解答:首先给出凸壳与线性可分的定义凸壳定义1:设集合S⊂R n,是由R n中的k个点所组成的集合,即S={x1,x2,⋯,x k}。
定义S的凸壳为conv(S)为:conv(S)={x=∑λi x iki=1|∑λi=1,λi≥0,i=1,2,⋯,k ki=1}线性可分定义2:给定一个数据集T={(x1,y1),(x2,y2),⋯,(x n,y n)}其中x i∈X=R n , y i∈Y={+1,−1} , i=1,2,⋯,n ,如果存在在某个超平面S:w∙x+b=0能够将数据集的正实例点和负实例点完全正确地划分到超平面的两侧,即对所有的正例点即y i=+1的实例i,有w∙x+b>0,对所有负实例点即y i=−1的实例i,有w∙x+b<0,则称数据集T为线性可分数据集;否则,称数据集T线性不可分。
必要性:线性可分→凸壳不相交设数据集T中的正例点集为S+,S+的凸壳为conv(S+),负实例点集为S−,S−的凸壳为conv(S−),若T是线性可分的,则存在一个超平面:w ∙x +b =0能够将S +和S −完全分离。
假设对于所有的正例点x i ,有:w ∙x i +b =εi易知εi >0,i =1,2,⋯,|S +|。
人工神经网络简介1 人工神经网络概念、特点及其原理 (1)1.1人工神经网络的概念 (1)1.2人工神经网络的特点及用途 (2)1.3人工神经网络的基本原理 (3)2 人工神经网络的分类及其运作过程 (5)2.1 人工神经网络模式的分类 (5)2.2 人工神经网络的运作过程 (6)3 人工神经网络基本模型介绍 (6)3.1感知器 (7)3.2线性神经网络 (7)3.3BP(Back Propagation)网络 (7)3.4径向基函数网络 (8)3.5反馈性神经网络 (8)3.6竞争型神经网络 (8)1 人工神经网络概念、特点及其原理人工神经网络(Artificial Neural Networks,简记作ANN),是对人类大脑系统的一阶特征的一种描述。
简单地讲,它是一个数学模型,可以用电子线路来实现,也可以用计算机程序来模拟,是人工智能研究的一种方法。
1.1人工神经网络的概念利用机器模仿人类的智能是长期以来人们认识自然、改造自然的理想。
自从有了能够存储信息、进行数值运算和逻辑运算的电子计算机以来,其功能和性能得到了不断的发展,使机器智能的研究与开发日益受到人们的重视。
1956年J.McCart冲等人提出了人工智能的概念,从而形成了一个与神经生理科学、认知科学、数理科学、信息论与计算机科学等密切相关的交叉学科。
人工神经网络是人工智能的一部分,提出于50年代,兴起于80年代中期,近些年已经成为各领域科学家们竞相研究的热点。
人工神经网络是人脑及其活动的一个理论化的数学模型,它由大量的处理单元通过适当的方式互联构成,是一个大规模的非线性自适应系统,1998年Hecht-Nielsen曾经给人工神经网络下了如下定义:人工神经网络是一个并行、分层处理单元及称为联接的无向信号通道互连而成。
这些处理单元(PE-Processing Element)具有局部内存,并可以完成局部操作。
每个处理单元有一个单一的输出联接,这个输出可以根据需要被分支撑希望个数的许多并联联接,且这些并联联接都输出相同的信号,即相应处理单元的信号。
人工智能导论-各章习题答案第一章习题解答1. 什么是人工智能?人工智能(Artificial Intelligence,简称AI)是指使机器具有类似或超过人类智能的能力。
人工智能研究的目标是使计算机能够进行人类智力活动,例如学习、理解、推理和决策等。
2. 人工智能的基本分类人工智能可以分为弱人工智能(Narrow AI)和强人工智能(General AI)两类。
弱人工智能是指针对特定任务开发的人工智能系统,比如语音识别、图像处理和机器翻译等。
弱人工智能系统有特定的输入和输出,其能力局限于特定任务。
强人工智能是指能够在各种智力活动中与人类媲美或超越人类的人工智能系统。
强人工智能拥有自主学习、理解、推理和决策的能力,可以应对复杂的问题和情境。
3. 人工智能的应用领域人工智能已经在多个领域得到应用,包括但不限于以下几个方面:•机器学习:基于数据和统计方法,让计算机自动学习并改进性能。
•自然语言处理:使计算机能够理解和处理人类语言。
•机器视觉:使计算机能够理解和处理图像和视频。
•专家系统:建立基于规则和知识的推理系统,用于解决复杂的问题和决策。
•智能机器人:让机器拥有感知、决策和执行的能力,用于自主操作和交互。
•数据挖掘:发现数据中的模式和关联,用于预测和决策支持。
4. 人工智能的发展历史人工智能的发展可以追溯到20世纪50年代,随着计算机技术和算法的进步,人工智能开始逐渐崭露头角。
在1956年,达特茅斯会议举行,标志着人工智能的诞生。
随后,人工智能经历了繁荣期、低谷期和复兴期等不同的发展阶段。
繁荣期(1956-1974)中,很多初期的人工智能算法被提出,比如逻辑推理、机器学习和专家系统等。
然而,由于计算能力限制和算法的局限性,人工智能在这个时期受到了限制。
低谷期(1975-1980)是由于在之前的繁荣期中,人们对人工智能过于乐观,但实际应用和成果不如预期,导致了人工智能的寒冬。
复兴期(1980-至今)是人工智能的复苏和突破阶段。