第十章____重积分(高等数学教案)
- 格式:doc
- 大小:666.24 KB
- 文档页数:26
高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的一个元素。
函数的性质:单调性、连续性、奇偶性、周期性等。
1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个值L,称f(x)当x趋近于a时的极限为L,记作lim(x→a)f(x)=L。
极限的性质:保号性、保不等式性、夹逼定理等。
1.3 极限的计算极限的基本计算方法:代入法、因式分解法、有理化法等。
无穷小与无穷大的概念:无穷小是指绝对值趋近于0的量,无穷大是指绝对值趋近于无穷的量。
1.4 极限的应用函数的连续性:如果函数在某一点的极限值等于该点的函数值,称该函数在这一点连续。
导数的概念:函数在某一点的导数表示函数在该点的切线斜率。
第二章:微积分基本定理2.1 导数的定义与计算导数的定义:函数在某一点的导数表示函数在该点的切线斜率,记作f'(x)。
导数的计算:基本导数公式、导数的四则运算法则等。
2.2 微分的概念与计算微分的定义:微分表示函数在某一点的切线与x轴的交点横坐标的差值,记作df(x)。
微分的计算:微分的基本公式、微分的四则运算法则等。
2.3 积分的概念与计算积分的定义:积分表示函数图像与x轴之间区域的面积,记作∫f(x)dx。
积分的计算:基本积分公式、积分的换元法、分部积分法等。
2.4 微积分基本定理微积分基本定理的定义:微积分基本定理是微分与积分之间的关系,即导数的不定积分是原函数,积分的反函数是原函数的导数。
第三章:微分方程3.1 微分方程的定义与分类微分方程的定义:微分方程是含有未知函数及其导数的等式。
微分方程的分类:常微分方程、偏微分方程等。
3.2 常微分方程的解法常微分方程的解法:分离变量法、积分因子法、变量替换法等。
3.3 微分方程的应用微分方程在物理、工程等领域的应用,例如描述物体运动、电路方程等。
第四章:级数4.1 级数的概念与性质级数的定义:级数是由无穷多个数按照一定的规律相加的序列,记作∑an。
《高等数学》课程教案一、课程简介《高等数学》是工科、理科以及部分经济管理科学专业的一门基础课程。
通过本课程的学习,使学生掌握数学分析、线性代数、概率论等基本理论和方法,培养学生运用数学知识解决实际问题的能力。
二、教学目标1. 理解并掌握高等数学的基本概念、原理和方法。
2. 能够熟练运用高等数学知识解决实际问题。
3. 培养学生的逻辑思维能力和创新意识。
三、教学内容第一章:极限与连续1. 极限的概念与性质2. 函数的连续性3. 极限的运算法则4. 无穷小与无穷大5. 极限存在的条件第二章:导数与微分1. 导数的概念2. 基本导数公式3. 导数的运算法则4. 高阶导数5. 微分第三章:积分与不定积分1. 积分概念2. 基本积分公式3. 积分的运算法则4. 不定积分5. 定积分第四章:级数1. 数项级数概念2. 收敛性与发散性3. 级数的运算法则4. 幂级数5. 傅里叶级数第五章:常微分方程1. 微分方程的概念2. 一阶微分方程的解法3. 高阶微分方程4. 线性微分方程5. 微分方程的应用四、教学方法采用讲授、讨论、实践相结合的方法,引导学生主动探索、积极参与,培养学生的动手能力和创新能力。
五、教学评价1. 平时成绩:包括作业、小测、课堂表现等,占总评的40%。
2. 期中考试:测试学生对高等数学知识的掌握程度,占总评的30%。
3. 期末考试:全面测试学生的综合素质,占总评的30%。
六、多元函数微分学1. 多元函数的概念2. 多元函数的求导法则3. 偏导数4. 全微分5. 多元函数微分学在实际问题中的应用七、重积分1. 二重积分概念及性质2. 二重积分的计算3. 三重积分概念及性质4. 三重积分的计算5. 重积分的应用八、向量分析1. 空间解析几何基础2. 向量的概念及运算3. 空间向量的线性运算4. 空间向量的数量积与角积5. 空间向量的坐标运算及其应用九、常微分方程初步1. 微分方程的概念与分类2. 常微分方程的解法3. 常微分方程的数值解法4. 常微分方程的应用5. 常微分方程在工程与科学计算中的重要性十、线性代数的应用1. 线性方程组及其解法2. 矩阵的概念与运算3. 特征值与特征向量4. 二次型及其判定5. 线性代数在实际问题中的应用十一、概率论与数理统计1. 随机事件及其概率2. 随机变量及其分布3. 数学期望与方差4. 大数定律与中心极限定理5. 数理统计的基本方法十二、数学软件与应用1. MATLAB软件简介2. MATLAB在高等数学中的应用3. Mathematica软件简介4. Mathematica在高等数学中的应用5. 数学软件在实际问题中的应用教学方法:1. 通过案例分析、实际应用问题引导学生理解和掌握理论知识。
《高等数学》课程教案一、教学目标1. 知识与技能:使学生掌握高等数学的基本概念、理论和方法,培养学生运用数学知识解决实际问题的能力。
3. 情感态度与价值观:激发学生对高等数学的兴趣,培养学生的逻辑思维和抽象思维能力,引导学生认识高等数学在自然科学和社会科学中的重要地位。
二、教学内容1. 第一章:极限与连续教学重点:极限的定义、性质,函数的连续性,无穷小比较,洛必达法则。
2. 第二章:导数与微分教学重点:导数的定义,求导法则,高阶导数,隐函数求导,微分方程。
3. 第三章:积分与面积教学重点:不定积分,定积分,积分计算方法,面积计算,弧长与曲线长度。
4. 第四章:级数教学重点:数项级数的概念,收敛性判断,功率级数,泰勒级数,傅里叶级数。
5. 第五章:常微分方程教学重点:微分方程的基本概念,一阶线性微分方程,可分离变量的微分方程,齐次方程,线性微分方程组。
三、教学方法1. 采用讲授法,系统地讲解高等数学的基本概念、理论和方法。
2. 运用示例法,通过典型例题展示解题思路和技巧。
3. 组织练习法,让学生在课堂上和课后进行数学练习,巩固所学知识。
四、教学评价1. 过程性评价:关注学生在课堂上的参与程度、思维品质和问题解决能力。
2. 终结性评价:通过课后作业、单元测试、期中考试等方式,检验学生掌握高等数学知识的情况。
五、教学资源1. 教材:《高等数学》及相关辅助教材。
2. 课件:制作精美、清晰的课件,辅助课堂教学。
3. 习题库:提供丰富的习题,供学生课后练习。
4. 网络资源:利用网络平台,提供相关的高等数学学习资料和在线答疑。
5. 辅导资料:为学生提供补充讲解和拓展知识点的辅导资料。
六、第六章:多元函数微分学教学重点:多元函数的极限与连续,偏导数,全微分,高阶偏导数,方向导数,雅可比矩阵与行列式。
七、第七章:重积分教学重点:二重积分,三重积分,线积分,面积分,体积积分,重积分的计算方法,对称性原理。
八、第八章:常微分方程的应用教学重点:常微分方程在物理、生物学、经济学等领域的应用,求解方法,数值解法,稳定性分析。
《高等数学》标准教案第一章:函数与极限1.1 函数的概念与性质教学目标:了解函数的定义,掌握函数的性质及常见函数类型。
教学内容:函数的定义,函数的单调性、奇偶性、周期性。
教学方法:通过实例讲解,引导学生理解函数的概念,运用性质进行分析。
1.2 极限的概念与性质教学目标:理解极限的概念,掌握极限的性质及求解方法。
教学内容:极限的定义,极限的性质,无穷小与无穷大,极限的求解方法。
教学方法:通过具体例子,引导学生理解极限的概念,运用性质及方法求解极限。
第二章:微积分基本概念2.1 导数与微分教学目标:理解导数的定义,掌握基本导数公式及微分方法。
教学内容:导数的定义,基本导数公式,微分的方法及应用。
教学方法:通过实际例子,引导学生理解导数的概念,运用公式及方法进行微分。
2.2 积分与微分方程教学目标:理解积分的概念,掌握基本积分公式及解微分方程的方法。
教学内容:积分的定义,基本积分公式,微分方程的解法。
教学方法:通过具体例子,引导学生理解积分的概念,运用公式及方法解微分方程。
第三章:多元函数微分学3.1 多元函数的概念与性质教学目标:了解多元函数的定义,掌握多元函数的性质及常见类型。
教学内容:多元函数的定义,多元函数的性质,常见多元函数类型。
教学方法:通过实例讲解,引导学生理解多元函数的概念,运用性质进行分析。
3.2 多元函数的求导法则教学目标:理解多元函数求导法则,掌握多元函数的求导方法。
教学内容:多元函数的求导法则,多元函数的求导方法。
教学方法:通过具体例子,引导学生理解多元函数求导法则,运用方法进行求导。
第四章:重积分与曲线积分4.1 二重积分及其应用教学目标:理解二重积分的定义,掌握二重积分的计算方法及应用。
教学内容:二重积分的定义,二重积分的计算方法,二重积分在几何及物理中的应用。
教学方法:通过具体例子,引导学生理解二重积分的概念,运用计算方法进行计算。
4.2 曲线积分的概念与应用教学目标:理解曲线积分的定义,掌握曲线积分的计算方法及应用。
第十章重积分一元函数积分学中,我们曾经用和式的极限来定义一元函数()f x在区间,a b⎡⎤⎣⎦上的定积分,并已经建立了定积分理论,本章将把这一方法推广到多元函数的情形,便得到重积分的概念. 本章主要讲述多重积分的概念、性质、计算方法以及应用.第1节二重积分的概念与性质二重积分的概念下面我们通过计算曲顶柱体的体积和平面薄片的质量,引出二重积分的定义.1.1.1. 曲顶柱体的体积曲顶柱体是指这样的立体,它的底是x Oy平面上的一个有界闭区域D,其侧面是以D的边界为准线的母线平行于z轴的柱面,其顶部是在区域D上的连续函数(),=,且z f x y (),0f x y≥所表示的曲面(图10—1).图10—1现在讨论如何求曲顶柱体的体积.分析这个问题,我们看到它与求曲边梯形的面积问题是类似的.可以用与定积分类似的方法(即分割、近似代替、求和、取极限的方法)来解决(图10—2).图10—2(1)分割闭区域D 为n 个小闭区域,n σσσ∆∆∆12,,,同时也用i Δσ表示第i 个小闭区域的面积,用()i d Δσ表示区域i Δσ的直径(一个闭区域的直径是指闭区域上任意两点间距离的最大值),相应地此曲顶柱体被分为n 个小曲顶柱体.(2)在每个小闭区域上任取一点()()()1122,, ,,, ,n n ξηξηξη对第i 个小曲顶柱体的体积,用高为,()i i f ξη而底为i Δσ的平顶柱体的体积来近似代替.(3)这n 个平顶柱体的体积之和1(,)niiii f ξησ=∆∑就是曲顶柱体体积的近似值.(4)用λ表示n 个小闭区域i Δσ的直径的最大值,即()max 1i i nλd Δσ≤≤=.当0λ→ (可理解为iΔσ收缩为一点)时,上述和式的极限,就是曲顶柱体的体积:1lim (,).ni i i i V f λξησ→==∆∑1.1.2 平面薄片的质量设薄片在x Oy 平面占有平面闭区域D ,它在点,()x y 处的面密度是,()ρρx y =.设()0x y ρ>,且在D 上连续,求薄片的质量(见图10-3).图10-3先分割闭区域D 为n 个小闭区域n σσσ∆∆∆12,,,在每个小闭区域上任取一点()()()1122,, ,,, ,n n ξηξηξη近似地,以点,()i i ξη处的面密度,()i i ρξη代替小闭区域i Δσ上各点处的面密度,则得到第i 块小薄片的质量的近似值为,()i i i ρξηΔσ,于是整个薄片质量的近似值是1(,)niiii ρξησ=∆∑用()max 1i i nλd Δσ≤≤=表示n 个小闭区域i Δσ的直径的最大值,当D 无限细分,即当0λ→时,上述和式的极限就是薄片的质量M ,即1lim (,)ni i i λi M ρξηΔσ→==∑.以上两个具体问题的实际意义虽然不同,但所求量都归结为同一形式的和的极限.抽象出来就得到下述二重积分的定义.定义1 设D 是x Oy 平面上的有界闭区域,二元函数,()z f x y =在D 上有界.将D 分为n 个小区域n σσσ∆∆∆12,,,同时用i Δσ表示该小区域的面积,记i Δσ的直径为()i d Δσ,并令()max 1i i nλd Δσ≤≤=.在i Δσ上任取一点,, 1,2,,()()i i ξηi n =,作乘积()Δ,i i i f ξησ并作和式Δ1(,)ni i i i n S f ξησ==∑.若0λ→时,n S 的极限存在(它不依赖于D 的分法及点(,)i i εη的取法),则称这个极限值为函数,()z f x y =在D 上的二重积分,记作(,)d Df x y σ⎰⎰,即1(,)d lim (,)Δniiii Df x y f λσξησ→==∑⎰⎰, (10-1-1)其中D 叫做积分区域,,()f x y 叫做被积函数,d σ叫做面积元素,,d ()f x y σ叫做被积表达式,x 与y 叫做积分变量,Δ1(,)ni i i i f ξησ=∑叫做积分和.在直角坐标系中,我们常用平行于x 轴和y 轴的直线(y =常数和x =常数)把区域D 分割成小矩形,它的边长是x ∆和Δy ,从而ΔΔΔσx y =⋅,因此在直角坐标系中的面积元素可写成d dx dy σ=⋅,二重积分也可记作1(,)d d lim (,)niiii Df x y x y f λξησ→==∆∑⎰⎰.有了二重积分的定义,前面的体积和质量都可以用二重积分来表示.曲顶柱体的体积V 是函数,()z f x y =在区域D 上的二重积分(,)d DV f x y σ=⎰⎰;薄片的质量M 是面密度,()ρρx y =在区域D 上的二重积分(,)d DM x y ρσ=⎰⎰.因为总可以把被积函数,()z f x y =看作空间的一曲面,所以当,()f x y 为正时,二重积分的几何意义就是曲顶柱体的体积;当,()f x y 为负时,柱体就在x Oy 平面下方,二重积分就是曲顶柱体体积的负值. 如果,()f x y 在某部分区域上是正的,而在其余的部分区域上是负的,那么,()f x y 在D 上的二重积分就等于这些部分区域上柱体体积的代数和.如果,()f x y 在区域D 上的二重积分存在(即和式的极限(10-1-1)存在),则称,()f x y 在D 上可积.什么样的函数是可积的呢与一元函数定积分的情形一样,我们只叙述有关结论,而不作证明.如果,()f x y 是闭区域D 上连续,或分块连续的函数,则,()f x y 在D 上可积.我们总假定,()z f x y =在闭区域D 上连续,所以,()f x y 在D 上的二重积分都是存在的,以后就不再一一加以说明.1.1.3 二重积分的性质设二元函数,,,()()f x y g x y 在闭区域D 上连续,于是这些函数的二重积分存在.利用二重积分的定义,可以证明它的若干基本性质.下面列举这些性质.性质1 常数因子可提到积分号外面.设k 是常数,则(,)d (,)d DDkf x y k f x y σσ=⎰⎰⎰⎰.性质2 函数的代数和的积分等于各函数的积分的代数和,即[]()()d ()d ()d DDDf x yg x y f x y g x y σσσ±=±⎰⎰⎰⎰⎰⎰,,,,.性质3 设闭区域D 被有限条曲线分为有限个部分闭区域,则D 上的二重积分等于各部分闭区域上的二重积分的和.例如D 分为区域1D 和2D (见图10-4),则12(,)d (,)d (,)d DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰. (10-1-2)图10-4性质3表示二重积分对积分区域具有可加性.性质4 设在闭区域D 上,1()f x y =,σ为D 的面积,则1d d DDσσσ==⎰⎰⎰⎰.从几何意义上来看这是很明显的.因为高为1的平顶柱体的体积在数值上就等于柱体的底面积.性质5 设在闭区域D 上有,,()()f x y g x y ≤,则(,)d (,)d DDf x yg x y σσ≤⎰⎰⎰⎰.由于 (,)(,)(,)f x y f x y f x y -≤≤ 又有(,)d (,)d DDf x y f x y σσ≤⎰⎰⎰⎰.这就是说,函数二重积分的绝对值必小于或等于该函数绝对值的二重积分.性质6 设、M m 分别为()f x y ,在闭区域D 上的最大值和最小值,σ为D 的面积,则有(,)d Dm f x y M σσσ≤≤⎰⎰.上述不等式是二重积分估值的不等式.因为()m f x y M ≤≤,,所以由性质5有d (,)d d DDDm f x y M σσσ≤≤⎰⎰⎰⎰⎰⎰,即 d (,)d d DDDm m f x y M M σσσσσ=≤≤=⎰⎰⎰⎰⎰⎰.性质7 设函数,()f x y 在闭区域D 上连续,σ是D 的面积,则在D 上至少存在一点,()ξη使得(,)d ()Df x y f σξησ=⋅⎰⎰,.这一性质称为二重积分的中值定理. 证 显然0σ≠.因,()f x y 在有界闭区域D 上连续,根据有界闭区域上连续函数取到最大值、最小值定理,在D 上必存在一点()11x y ,使()11f x y ,等于最大值M ,又存在一点22()x y ,使22()f x y ,等于最小值m ,则对于D 上所有点,()x y ,有()()()2211.m f x y f x y f x y M =≤≤=,,,由性质1和性质5,可得d (,)d d DDDm f x y M σσσ≤≤⎰⎰⎰⎰⎰⎰.再由性质4得(,)d Dm f x y M σσσ≤≤⎰⎰,或1(,)d Dm f x y M σσ≤≤⎰⎰.根据闭区域上连续函数的介值定理知,D 上必存在一点,()ξη,使得1(,)d ()Df x y f σξησ=⎰⎰,,即(,)d ()Df x y f σξησ=⎰⎰,, ,()ξηD ∈.证毕.二重积分中值定理的几何意义可叙述如下:当:,()S z f x y =为空间一连续曲面时,对以S 为顶的曲顶柱体,必定存在一个以D 为底,以D 内某点,()ξη的函数值,()f ξη为高的平顶柱体,它的体积,()f ξησ⋅就等于这个曲顶柱体的体积.习题10—11.根据二重积分性质,比较ln()d Dx y σ+⎰⎰与[]2ln()d Dx y σ+⎰⎰的大小,其中(1)D 表示以10,()、1,0()、1,1()为顶点的三角形; (2)D 表示矩形区域(){}|35,2,0x y x y ≤≤≤≤. 2.根据二重积分的几何意义,确定下列积分的值: (1)(22d Da x y σ+⎰⎰,()222{|}D x y x y a =+≤,;(2)222d Da x y σ--,()222{|}D x y x y a =+≤,.3.设(),f x y 为连续函数,求201lim (,)d πr Df x y rσ→⎰⎰,()()()22200{,}D x y x x y y r =-+-≤|.4.根据二重积分性质,估计下列积分的值:(1)4+d DI xy σ=,()22{|00}D x y x y =≤≤≤≤,,;(2)22sin sin d DI x y σ=⎰⎰,()ππ{,|00}D x y x y =≤≤≤≤,; (3)()2249d DI x y σ=++⎰⎰, ()224{,|}D x y x y =+≤.5.设[][]0,10,1D =⨯,证明函数()()()()1,,,,,为内有理点即均为有理数,,为内非有理点0x y D x y f x y x y D ⎧⎪=⎨⎪⎩在D 上不可积.第2节 二重积分的计算只有少数二重积分(被积函数和积分区域特别简单)可用定义计算外,一般情况下要用定义计算二重积分相当困难.下面我们从二重积分的几何意义出发,来介绍计算二重积分的方法,该方法将二重积分的计算问题化为两次定积分的计算问题.直角坐标系下的计算在几何上,当被积函数(),0f x y ≥时,二重积分(,)d Df x y σ⎰⎰的值等于以D 为底,以曲面,()z f x y =为顶的曲顶柱体的体积.下面我们用“切片法”来求曲顶柱体的体积V .设积分区域D 由两条平行直线,x a x b ==及两条连续曲线()()y x y x ϕϕ==12,(见图10—5)所围成,其中()()a b x x ϕϕ<<12,,则D 可表示为()()(){}12,,|D x y a x b φx y φx =≤≤≤≤.图10—5用平行于yOz 坐标面的平面()00x x a x b =≤≤去截曲顶柱体,得一截面,它是一个以区间()()1020x x φφ⎡⎤⎣⎦,为底,以,0()z f x y =为曲边的曲边梯形(见图10—6),所以这截面的面积为()d 2010()0()0(,)φx φx f x y y A x =⎰.图10—6由此,我们可以看到这个截面面积是0x 的函数.一般地,过区间[,]a b 上任一点且平行于yOz 坐标面的平面,与曲顶柱体相交所得截面的面积为()d 21()()(,)φx φx f x y A y x =⎰,其中y 是积分变量,x 在积分时保持不变.因此在区间[,]a b 上,()A x 是x 的函数,应用计算平行截面面积为已知的立体体积的方法,得曲顶柱体的体积为d d d 21()()()(,)b b φx a a φx A x x f x y V y x ⎡⎤=⎢⎥⎣=⎦⎰⎰⎰,即得21()()(,)d (,)d d b x a x Df x y f x y y x ϕϕσ⎡⎤=⎢⎥⎣⎦⎰⎰⎰⎰,或记作21()()(,)d d (,)d bx ax Df x y x f x y y ϕϕσ=⎰⎰⎰⎰.上式右端是一个先对y ,后对x 积分的二次积分或累次积分.这里应当注意的是:做第一次积分时,因为是在求x 处的截面积()A x ,所以x 是,a b 之间任何一个固定的值,y 是积分变量;做第二次积分时,是沿着x 轴累加这些薄片的体积()A x dx ⋅,所以x 是积分变量.在上面的讨论中,开始假定了,()0f x y ≥,而事实上,没有这个条件,上面的公式仍然正确.这里把此结论叙述如下:若,()z f x y =在闭区域D 上连续,()():D a x b x y x ϕϕ≤≤≤≤12,,则21()()(,)d d d (,)d bx ax Df x y x y x f x y y ϕϕ=⎰⎰⎰⎰. (10-2-1)类似地,若,()z f x y =在闭区域D 上连续,积分区域D 由两条平行直线y a y b ==,及两条连续曲线()()x y x y ϕϕ==12,(见图10—7)所围成,其中()()c d x x ϕϕ<<12,,则D 可表示为()()(){},|D x y c y d y x y ϕϕ=≤≤≤≤12,.则有21()()(,)d d d (,)d dx cx Df x y x y y f x y x ϕϕ=⎰⎰⎰⎰. (10-2-2)图10—7以后我们称图10-5所示的积分区域为X 型区域,X 型区域D 的特点是:穿过D 内部且平行于y 轴的直线与D 的边界的交点不多于两个.称图10—7所示的积分区域为Y 型区域,Y 型区域D 的特点是:穿过D 内部且平行于x 轴的直线与D 的边界的交点不多于两个.从上述计算公式可以看出将二重积分化为两次定积分,关键是确定积分限,而确定积分限又依赖于区域D 的几何形状.因此,首先必须正确地画出D 的图形,将D 表示为X 型区域或Y 型区域.如果D 不能直接表示成X 型区域或Y 型区域,则应将D 划分成若干个无公共内点的小区域,并使每个小区域能表示成X 型区域或Y 型区域,再利用二重积分对区域具有可加性相加,区域D 上的二重积分就是这些小区域上的二重积分之和(图10—8).图10-8例1 计算二重积分d Dxy σ⎰⎰,其中D 为直线y x =与抛物线2y x =所包围的闭区域.解 画出区域D 的图形,求出y x =与2y x =两条曲线的交点,它们是()0,0及()1,1.区域D (图10—9)可表示为:20.x x y x ≤≤≤≤1,图10—9因此由公式(10-2-1)得()221120d d d 2x x xxDx xy x x ydy y x σ==⎰⎰⎰⎰⎰d 135011()224x x x -==⎰.本题也可以化为先对x ,后对y 的积分,这时区域D 可表为:1,0y y y x ≤≤≤≤.由公式(10-2-2)得10d d d y yDxy y y x x σ=⎰⎰⎰⎰.积分后与上面结果相同.例2 计算二重积分221d Dy x y σ+-⎰⎰,其中D 是由直线,1y x x ==-和1y =所围成的闭区域.解 画出积分区域D ,易知D :11,1x x y -≤≤≤≤ (图10-10),若利用公式(10-2-1),得图10-1011222211d (1d )d xDy x yy x y y x σ-+-=+-⎰⎰⎰⎰ ()d 1312221113xx y x -⎡=⎤-+-⎢⎥⎣⎦⎰ ()d d 113310121(1)33x x x -=--=--⎰⎰x 12=.若利用公式(10-2-2),就有()12222111d 1d d yDy x y y x y x y σ--+-=+-⎰⎰⎰⎰,也可得同样的结果.例3 计算二重积分22d Dx y σ⎰⎰,其中D 是直线2,y y x ==和双曲线1x y =所围之闭区域. 解 求得三线的三个交点分别是1,(1,1)2,2⎛⎫ ⎪⎝⎭及2,2().如果先对y 积分,那么当121x ≤≤时,y 的下限是双曲线1y x=,而当12x ≤≤时,y 的下限是直线y x =,因此需要用直线x =1把区域D 分为1D 和2D 两部分(图10—11).1211, 21:D x y x≤≤≤≤; 22, 2:1D x x y ≤≤≤≤.图10—11于是12222221222112222212d d d d d d d x x D D D x x x x x x y x y y y y y y σσσ=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ d d 2222121112x xx x x x y y ⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰d d 2212311222x x x x x x ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎰⎰1243231124626x x x x ⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦812719264==. 如果先对x 积分,那么:12, 1 D y x y y≤≤≤≤,于是223221222111d d d d 3yy y Dyx x x y x y y y y σ⎡⎤==⎢⎥⎣⎦⎰⎰⎰⎰⎰d 22254111136312y y y y y ⎡⎤⎡⎤=-=+⎢⎥⎢⎥⎣⎦⎣⎦⎰2764=. 由此可见,对于这种区域D ,如果先对y 积分,就需要把区域D 分成几个区域来计算.这比先对x 积分繁琐多了.所以,把重积分化为累次积分时,需要根据区域D 和被积函数的特点,选择适当的次序进行积分.例4 设,()f x y 连续,求证d d d d (,)(,)bx b baaayx f x y y y f x y x =⎰⎰⎰⎰.证 上式左端可表为d d d (,)(,)bxaaDx f x y y f x y σ=⎰⎰⎰⎰,其中,:D a x b a y x ≤≤≤≤ (图10—12)区域D 也可表为:,a y b y x b ≤≤≤≤,图10—12于是改变积分次序,可得(,)d d (,)d b bayDf x y y f x y xσ=⎰⎰⎰⎰由此可得所要证明的等式.例5 计算二重积分d sin D x σx ⎰⎰,其中D 是直线y x =与抛物线2y x =所围成的区域.解 把区域D 表示为x 型区域,即(){}2D =x ,y |0x 1,x y x ≤≤≤≤.于是d d d d 221100sin sin sin xx x x Dx x x σx y y x x x x ⎛⎫== ⎪⎝⎭⎰⎰⎰⎰⎰ ()sin d 11x x x =-⎰()1cos cos sin x x x x =-+-1sin10.1585=-≈注:如果化为y 型区域即先对x 积分,则有d d d 10sin sin y y Dx x σy x x x =⎰⎰⎰⎰. 由于sin xx的原函数不能由初等函数表示,往下计算就困难了,这也说明计算二重积分时,除了要注意积分区域D 的特点(区分是x 型区域,还是y 型区域)外,还应注意被积函数的特点,并适当选择积分次序.二重积分的换元法与定积分一样,二重积分也可用换元法求其值,但比定积分复杂得多.我们知道,对定积分()d baf x x ⎰作变量替换()x φt =时,要把()f x 变成()()f φt ,d x 变成d ()φt t ',积分限,a b 也要变成对应t 的值.同样,对二重积分(),d Df x y σ⎰⎰作变量替换()(),,,,x x u v y y u v ⎧=⎪⎨=⎪⎩时,既要把(),f x y 变成()()(),,,f x u v y u v ,还要把x Oy 面上的积分区域D 变成uOv 面上的区域uv D ,并把D 中的面积元素d σ变成uv D 中的面积元素d *σ.其中最常用的是极坐标系的情形.2.2.1 极坐标系的情形下面我们讨论利用极坐标变换,得出在极坐标系下二重积分的计算方法.把极点放在直角坐标系的原点,极轴与x 轴重合,那么点P 的极坐标(),P r θ与该点的直角坐标(),P x y 有如下互换公式:πcos ,sin ;0,02x r θy r θr θ==≤<+∞≤≤; 22,arctan;,yr x y θx y x=+=-∞<<+∞. 我们知道,有些曲线方程在极坐标系下比较简单,因此,有些二重积分(),d Df x y σ⎰⎰用极坐标代换后,计算起来比较方便,这里假设(),z f x y =在区域D 上连续.在直角坐标系中,我们是以平行于x 轴和y 轴的两族直线分割区域D 为一系列小矩形,从而得到面积元素d d d σx y =.在极坐标系中,与此类似,我们用“常数r =”的一族同心圆,以及“常数θ=”的一族过极点的射线,将区域D 分成n 个小区域(),1,2,,ij σi j n ∆=,如图10—13所示.图10—13小区域面积()2212ij i i j i j σr r θr θ⎡⎤∆=+∆∆-∆⎣⎦212i i j i j r r θr θ=∆∆+∆∆.记 ()()()22,,1,2,,ij i jρr θi j n ∆=∆+∆=,则有()ij i i j ij σr r θορ∆=∆∆+∆,故有d d d σr r θ=.则()()d d d ,cos ,sin DDf x y σf r θr θr r θ=⎰⎰⎰⎰.这就是直角坐标二重积分变换到极坐标二重积分的公式.在作极坐标变换时,只要将被积函数中的,x y 分别换成cos ,sin r θr θ,并把直角坐标的面积元素d d d σx y =换成极坐标的面积元素d d r r θ即可.但必须指出的是:区域D 必须用极坐标系表示.在极坐标系下的二重积分,同样也可以化为二次积分计算.下面分三种情况讨论: (1) 极点O 在区域D 外部,如图10—14所示.图10—14设区域D 在两条射线,θαθβ==之间,两射线和区域边界的交点分别为,A B ,将区域D 的边界分为两部分,其方程分别为()()12,r r θr r θ==且均为[],αβ上的连续函数.此时()()(){}12,|,D r θr θr r θαθβ=≤≤≤≤.于是()()()()d d d d 21cos ,sin cos ,sin βr θαr θDf r θr θr r θθf r θr θr r =⎰⎰⎰⎰(2) 极点O 在区域D 内部,如图10—15所示.若区域D 的边界曲线方程为()r r θ=,这时积分区域D 为()(){}π,|0,02D r θr r θθ=≤≤≤≤,且()r θ在π0,2⎡⎤⎣⎦上连续.图10—15于是()()()πd d d d 20cos ,sin cos ,sin r θDf r θr θr r θθf r θr θr r =⎰⎰⎰⎰.(3) 极点O 在区域D 的边界上,此时,积分区域D 如图10—16所示.图10—16()(){},|,0D r θαθβr r θ=≤≤≤≤,且()r θ在π0,2⎡⎤⎣⎦上连续,则有()()()d d d d 0cos ,sin cos ,sin βr θαDf r θr θr r θθf r θr θr r =⎰⎰⎰⎰.在计算二重积分时,是否采用极坐标变换,应根据积分区域D 与被积函数的形式来决定.一般来说,当积分区域为圆域或部分圆域,及被积函数可表示为()22f x y +或y f x ⎛⎫⎪⎝⎭等形式时,常采用极坐标变换,简化二重积分的计算.例6 计算二重积分22221d d 1Dx y I x y x y --=++⎰⎰,其中()(){}222,|01D x y x y a a =+≤<<.解 在极坐标系中积分区域D 为(){}π,|0,02D r θr a θ=≤≤≤≤,则有2222π2220011d d d d 11Dx y r I x y r r x y r θ---==+++⎰⎰2222211πd πd 11aa t r t r r r t r t--=+-=⎰⎰令()()22220πarcsin 1πarcsin 11a t ta a =+-=+--.例7 计算二重积分2d Dxy σ⎰⎰,其中D 是单位圆在第I 象限的部分.解 采用极坐标系. D 可表示为π, 1002θr ≤≤≤≤(图10-17),图10-17于是有π12222d d cos sin d Dxy r r r r σθθθ=⋅⋅⎰⎰⎰⎰ πd d 12421cos sin 15θθθr r ==⎰⎰.例8 计算二重积分Dx σ⎰⎰2d ,其中D 是二圆221x y +=和224x y +=之间的环形闭区域.解 区域D :2,120θπr ≤≤≤≤,如图10—18所示.图10—18于是2π22π22230111cos215d cos d d d π24Dx r r r r r θσθθθ+=⋅==⎰⎰⎰⎰⎰⎰2d . 2.2.2. 直角坐标系的情形 我们先来考虑面积元素的变化情况.设函数组,,,()()x x u v y y u v ==为单值函数,在uv D 上具有一阶连续偏导数,且其雅可比行列式(,)0(,)J x y u v ∂≠∂=,则由反函数存在定理,一定存在着D 上的单值连续反函数,,,()()u u x y v v x y ==.这时uv D 与D 之间建立了一一对应关系,uOv 面上平行于坐标轴的直线在映射之下成为x Oy 面上的曲线,,,00()()u x y u v x y v ==.我们用uOv 面上平行于坐标轴的直线,1,,,1,,, (2;2)i j u u v v i n j m ====将区域uv D 分割成若干个小矩形,则映射将uOv 面上的直线网变成x Oy 面上的曲线网(图10—19).图10—19在uv D 中任取一个典型的小区域Δuv D (面积记为*Δσ)及其在D 中对应的小区域ΔD (面积记为Δσ),如图10—20所示.图10—20设ΔD 的四条边界线的交点为1211322,,,,,000000()()()P x y P x x y y P x x y y +∆+∆+∆+∆和ΔΔ433,00()P x x y y ++.当ΔΔ,u v 很小时,()ΔΔ123,,,i i x y i =也很小,ΔD 的面积可用12P P 与14P P 构成的平行四边形面积近似.即Δ1214P P P P σ⨯≈.而()()ΔΔ1112x y P P =+i j()()()ΔΔ[][]00000000,,,(,x u u v x u v y u u v y u v =+-++-i j()()ΔΔ[][]0000,,u u x u v u y u v u ≈'+'i j .同理()()ΔΔ[][]001400,,v v P P x u v v y u v v ≈'+'i j .从而得ΔΔΔΔΔ1214y xu u u u P P P σP y x v v vv∂∂∂∂⨯=∂∂∂=∂的绝对值 *(,)(,)(,)(,)x y x y Δu Δv u v u v Δσ∂∂==∂∂.因此,二重积分作变量替换,,,()()x x u v y y u v ==后,面积元素d σ与d *σ的关系为*(,),(,)x y d d u v σσ∂=∂ 或(,)(,)x y dxdy dudv u v ∂=∂. 由此得如下结论:定理1 若,()f x y 在x Oy 平面上的闭区域D 上连续,变换:,,,()()T x x u v y y u v ==,将uOv 平面上的闭区域uv D 变成x Oy 平面上的D ,且满足:(1),,,()()x u v y u v 在uv D 上具有一阶连续偏导数, (2)在uv D 上雅可比式(0(,),)x y J u v ∂∂=≠;(3)变换:uv T D D →是一对一的,则有[](,)d d (,),(,)d d .uvDD f x y x y f x u v y u v J u v =⎰⎰⎰⎰例9 计算二重积分ed d y x y xDx y -+⎰⎰,其中D 是由x 轴,y 轴和直线2x y +=所围成的闭区域. 解 令,u y x v y x =-=+,则,22x y v u v u-==+.在此变换下,x Oy 面上闭区域D 变为uOv 面上的对应区域D '(图10—21).图10—21雅可比式为11(,)122(,)21122x y u v J -∂==-∂=,则得1ed de d d 2y x u y xvDD x y u v -+'=-⎰⎰⎰⎰-1d e d (e e)d 22001122uv v v v u v v -==-⎰⎰⎰e e 1=--.例10 设D 为x Oy 平面内由以下四条抛物线所围成的区域:222,,x ay x by y px ===,2y qx =,其中<<, <<00a b p q ,求D 的面积.解 由D 的构造特点,引入两族抛物线22,y ux x vy ==,则由u 从p 变到q ,v 从a 变到b 时,这两族抛物线交织成区域D '(图10—22).图10—22雅可比行列式为(,)1(,)(,)(,)J x y u v u v x y ∂=∂∂∂=222211322y yx xx x y y==---,则所求面积()()11d d d d 33D D S x y u v b a q p '===--⎰⎰⎰⎰.习题10—21.画出积分区域,把(,)d Df x y σ⎰⎰化为二次积分:(1)()1,1,{,0}D x y x y y x y =+≤-≤≥|; (2)()22{,}D x y y x x y =≥-≥|,. 2.改变二次积分的积分次序:(1)20d d 22(,)yy y f x y x ⎰⎰;(2)e 1d d ln 0(,)xx f x y y ⎰⎰; (3)()220,xxdx f x y dy ⎰⎰;(4)1-1d (,)d x f x y y ⎰.3.设(,)f x y 连续,且(,)(,)d Df x y xy f x y σ=+⎰⎰,其中D 是由直线0,1y x ==及曲线2y x =所围成的区域,求(,).f x y4.计算下列二重积分:(1)()22Dx y d σ+⎰⎰,(){},|1,1D x y x y =≤≤;(2)d sin D x σx ⎰⎰,其中D 是直线y x =与抛物线y x π=所围成的区域;(3)Dσ,(){}22,|D x y x y x =+≤;(4)22-y e d d ⎰⎰Dx x y ,D 是顶点分别为()0,0O ,(),11A ,()0,1B 的三角形闭区域. 5.求由坐标平面及2,3,4x y x y z ==++=所围的角柱体的体积.6.计算由四个平面0,0,1,1x y x y ====所围的柱体被平面0z =及236x y z ++=截得的立体的体积.7.在极坐标系下计算二重积分:(1)d Dx y ⎰⎰, ()ππ22224{,|}D x y x y =≤+≤;(2)()d d Dx y x y +⎰⎰, (){},|22D x y xy x y =+≤+;(3)d d Dxy x y ⎰⎰,其中D 为圆域222x y a +≤;(4)22ln(1)d d Dx y x y ++⎰⎰,其中D 是由圆周221x y +=及坐标轴所围成的在第一象限内的闭区域.8. 将下列积分化为极坐标形式:(1) 2d d 2200)x x y y +⎰a;(2) d 0xx y ⎰⎰a .9.求球体2222x y z R ++≤被圆柱面222x y Rx +=所割下部分的体积. 10.作适当坐标变换,计算下列二重积分:(1)22d d D x x y y ⎰⎰,由12,,xy x y x ===所围成的平面闭区域;(2)d d y x yDex y +⎰⎰,(){,|0,0}1,D x y x y x y =+≤≥≥;(3)d Dx y , 其中D 是椭圆22221y x a b+=所围成的平面闭区域;(4)()()sin d d Dx y x y x y +-⎰⎰, (){,|0,0}D x y x y x y ππ=≤+≤≤-≤.11.设闭区域D 由直线100,,x y x y +===所围成,求证:1cos d d sin1.2Dx y x y x y +⎛⎫=⎪-⎝⎭⎰⎰ 12.求由下列曲线所围成的闭区域的面积:(1) 曲线334,8,5,15xy xy xy xy ====所围成的第一象限的平面闭区域; (2) 曲线,,,x y a x y b y x y x αβ+=+===所围的闭区域0,0()a b αβ<<<<.第3节 三重积分三重积分的概念三重积分是二重积分的推广,它在物理和力学中同样有着重要的应用.在引入二重积分概念时,我们曾考虑过平面薄片的质量,类似地,现在我们考虑求解空间物体的质量问题.设一物体占有空间区域Ω,在Ω中每一点,,()x y z 处的体密度为,,()ρx y z ,其中,,()ρx y z 是Ω上的正值连续函数.试求该物体的质量.先将空间区域Ω任意分割成n 个小区域12, ,, n Δv Δv Δv(同时也用i Δv 表示第i 个小区域的体积).在每个小区域i Δv 上任取一点,,()i i i ξηζ,由于,,()ρx y z 是连续函数,当区域i Δv 充分小时,密度可以近似看成不变的,且等于在点,,()i i i ξηζ处的密度,因此每一小块i Δv 的质量近似等于,,()i i i i ρξηζΔv ,物体的质量就近似等于1(,,)niiii ρξηζΔv=∑i.令小区域的个数n 无限增加,而且每个小区域i Δv 无限地收缩为一点,即小区域的最大直径()max 10i i nλd Δv ≤≤=→时,取极限即得该物体的质量1lim (,,)ni i i λi ρξηζΔv M →==∑i .由二重积分的定义可类似给出三重积分的定义:定义1 设Ω是空间的有界闭区域,,,()f x y z 是Ω上的有界函数,任意将Ω分成n 个小区域12,,,n Δv Δv Δv ,同时用i Δv 表示该小区域的体积,记i Δv 的直径为()i d Δv ,并令()max 1i i nλd Δv ≤≤=,在i Δv 上任取一点,,()i i i ξηζ,1,2,,()i n =,作乘积,,()i i i i f ξηζΔv ,把这些乘积加起来得和式1(,,)n i i i i f ξηζΔv =∑i ,若极限01lim (,,)ni i i λi f ξηζΔv →=∑i 存在(它不依赖于区域Ω的分法及点(,,)i i i ξηζ的取法),则称这个极限值为函数,,()f x y z 在空间区域Ω上的三重积分,记作(),,f x y z dv Ω⎰⎰⎰,即 ()01,,lim (,,)ni i i i i f x y z dv f v λξηζ→=Ω=∆∑⎰⎰⎰,其中,,()f x y z 叫做被积函数,Ω叫做积分区域,d v 叫做体积元素.在直角坐标系中,若对区域Ω用平行于三个坐标面的平面来分割,于是把区域分成一些小长方体.和二重积分完全类似,此时三重积分可用符号(),,d d d f x y z x y z Ω⎰⎰⎰来表示,即在直角坐标系中体积元素d v 可记为d d d x y z .有了三重积分的定义,物体的质量就可用密度函数,,()ρx y z 在区域Ω上的三重积分表示,即(),,M x y z dv Ωρ=⎰⎰⎰,如果在区域Ω上,,1()f x y z =,并且Ω的体积记作V ,那么由三重积分定义可知1d v dv V ΩΩ==⎰⎰⎰⎰⎰⎰.这就是说,三重积分dv Ω⎰⎰⎰在数值上等于区域Ω的体积.三重积分的存在性和基本性质,与二重积分相类似,此处不再重述. 三重积分的计算为简单起见,在直角坐标系下,我们采用微元分析法来给出计算三重积分的公式. 三重积分(,,)d f x y z v Ω⎰⎰⎰表示占空间区域Ω的物体的质量.设Ω是柱形区域,其上、下分别由连续曲面()()z z x y z z x y ==12,,,所围成,它们在x Oy 平面上的投影是有界闭区域D ;Ω的侧面由柱面所围成,其母线平行于z 轴,准线是D 的边界线.这时,区域Ω可表示为(){}12,,, ,,,|()()()Ωx y z z x y z z x y x y D =≤≤∈先在区域D 内点,()x y 处取一面积微元d d d σx y =,对应地有Ω中的一个小条,再用与x Oy 面平行的平面去截此小条,得到小薄片(图10—23).图10—23于是以d σ为底,以dz 为高的小薄片的质量为,,d d d ()f x y z x y z .把这些小薄片沿z 轴方向积分,得小条的质量为d d d 21(,)(,)(,,)z x y z x y f x y z z x y ⎡⎤⎢⎥⎣⎦⎰. 然后,再在区域D 上积分,就得到物体的质量21(,)(,)(,,)d d d z x y z x y Df x y z z x y ⎡⎤⎢⎥⎣⎦⎰⎰⎰. 也就是说,得到了三重积分的计算公式(),,f x y z dv Ω⎰⎰⎰=21(,)(,)(,,)d d d z x y z x y Df x y z z x y ⎡⎤⎢⎥⎣⎦⎰⎰⎰21(,)(,)d d (,,)d z x y z x y Dx y f x y z z =⎰⎰⎰.(10-3-1)例1 计算三重积分d d d x x y z Ω⎰⎰⎰,其中Ω是三个坐标面与平面1x y z ++=所围成的区域(图10—24).图10—24解 积分区域Ω在x Oy 平面的投影区域D 是由坐标轴与直线1x y +=围成的区域:10x ≤≤,10y x ≤≤-,所以111100d d d d d d d d d x yxx yDx x y z x y x z x y x z -----Ω==⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 110(1)xx x x y y --=-⎰⎰d 210(1)1224x x x -==⎰. 例2 计算三重积分d z v Ω⎰⎰⎰,其中2222:,,, 000Ωx y z x y z R ≥≥≥++≤(见图10—25).图10—25解 区域Ω在x Oy 平面上的投影区域222:,,00D x y x y R ≥≥+≤.对于D 中任意一点,()x y ,相应地竖坐标从0z =变到222R x z y --=.因此,由公式(10-3-1),得()22222201d d d d d d 2R x y DDz v x y z R x y x y --Ω==--⎰⎰⎰⎰⎰⎰⎰π001d d 2222()R θR ρρρ-=⎰⎰ 221π240224RρρR ⎛⎫⋅⋅- ⎪ ⎪⎭=⎝π416R =. 三重积分化为累次积分时,除上面所说的方法外,还可以用先求二重积分再求定积分的方法计算.若积分区域Ω如图10-26所示,它在z 轴的投影区间为[,]A B ,对于区间内的任意一点z ,过z 作平行于x Oy 面的平面,该平面与区域Ω相交为一平面区域,记作D (z ).这时三重积分可以化为先对区域()D z 求二重积分,再对z 在[]A B ,上求定积分,得()(,,)d d (,,)d d BAD z f x y z v z f x y z x y Ω=⎰⎰⎰⎰⎰⎰. (10-3-2)图10—26我们可利用公式(10-3-2)重新计算例2中的积分.区域Ω在z 轴上的投影区间为[,]0R ,对于该区间中任意一点z ,相应地有一平面区域():,00D z x y ≥≥与2222R x y z +≤-与之对应.由公式(10-3-2),得()zd d d d RD z v z z x y Ω=⎰⎰⎰⎰⎰⎰.求内层积分时,z 可以看作常数:并且()2222:R D z x y z +≤-是14个圆,其面积为()π224R z =-,所以 ()01πzd π416Rv =z R z z R Ω⋅-=⎰⎰⎰⎰224d . 例3 计算三重积分2d z v Ω⎰⎰⎰,其中:1222222y x z a b Ωc +≤+. 解 我们利用公式(10-3-2)将三重积分化为累次积分.区域Ω在z 轴上的投影区间为[,]c c -,对于区间内任意一点z ,相应地有一平面区域()D z :122222222(1)(1)y x z z a b c c --≤+与之相应,该区域是一椭圆(图10—27),其面积为π221z c ab ⎛⎫- ⎪⎝⎭.所以22222()d d d d π1d ccc c D z z z v =z z x y abz z c --Ω⎛⎫=- ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰π3415abc =π3415abc =.图10—27三重积分的换元法对于三重积分(,,)f x y z dv Ω⎰⎰⎰作变量替换:(,,)(,,)(,,)x x r s t y y r s t z z r s t =⎧⎪=⎨⎪=⎩它给出了Orst 空间到Ox yz 空间的一个映射,若()()(),,,,,,,,x r s t y r s t z r s t 有连续的一阶偏导数,且(,,)(,,)0x y z r s t ∂≠∂,则建立了Orst 空间中区域*Ω和Ox yz 空间中相应区域Ω的一一对应,与二重积分换元法类似,我们有d d d d (,,)(,,)x y z r s t v r s t ∂∂=.于是,有换元公式[]*(,,)(,,)(,,),(,,),(,,)d d d (,,)x y z f x y z dv f x r s t y r s t z r s t r s t r s t ΩΩ∂=⋅∂⎰⎰⎰⎰⎰⎰.作为变量替换的实例,我们给出应用最为广泛的两种变换:柱面坐标变换及球面坐标变换. 3.3.1 柱面坐标变换三重积分在柱面坐标系中的计算法如下: 变换cos ,sin ,x r θy r θz z =⎧⎪=⎨⎪=⎩称为柱面坐标变换,空间点(),,M x y z 与,,()r θz 建立了一一对应关系,把,,()r θz 称为点(),,M x y z 的柱面坐标.不难看出,柱面坐标实际是极坐标的推广.这里,r θ为点M 在x Oy 面上的投影P 的极坐标.π<,2,<<00r θz ≤+∞≤≤-∞+∞(图10—28).图10—28柱面坐标系的三组坐标面为 (1)常数r =,以z 为轴的圆柱面; (2)常数θ=,过z 轴的半平面; (3)常数z =,平行于x Oy 面的平面.由于cos sin 0(,,)sin cos 0(,,)001θr θx y z θr r r θθz -∂==∂,则在柱面坐标变换下,体积元素之间的关系式为:d d d d d d x y z r r θz =.于是,柱面坐标变换下三重积分换元公式为:(,,)d d d (cos ,sin ,)d d d f x y z x y z =f r r z r r z θθθ'ΩΩ⎰⎰⎰⎰⎰⎰. (10-3-3)至于变换为柱面坐标后的三重积分计算,则可化为三次积分来进行.通常把积分区域Ω向x Oy 面投影得投影区域D ,以确定,r θ的取值范围,z 的范围确定同直角坐标系情形.例4 计算三重积分22d d d z x y x y z Ω+⎰⎰⎰,其中Ω是由锥面22z x y =+1z =所围成的区域.解 在柱面坐标系下,积分区域Ω表示为π1,1,200r z r θ≤≤≤≤≤≤ (图10—29).图10—29所以有2π11222d d d d d d rz x y x y z r z r z θΩ+=⋅⎰⎰⎰⎰⎰⎰ d ππ12212202(1)15r r r =-=⎰. 例5 计算三重积分()22d d d x y x y z Ω+⎰⎰⎰,其中Ω是由曲线22,0y z x ==绕z 轴旋转一周而成的曲面与两平面2,8z z ==所围之区域.解 曲线2=2,0y z x =绕z 旋转,所得旋转面方程为222x y z +=.设由旋转曲面与平面2z =所围成的区域为1Ω,该区域在x Oy 平面上的投影为1D ,(){}4221|D x ,y x +y =≤.由旋转曲面与8z =所围成的区域为2Ω,2Ω在x Oy 平面上的投影为2D ,()21622{|}D x ,y x +y =≤.则有21ΩΩΩ=,如图10—30所示.图10—30()21288223322d d d d d d d d d r D D xy x y z r r z r r z θθΩ+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰2d d d 8d222243300026ππθr r θr r ⎛⎫=+- ⎪⎝⎭⎰⎰⎰⎰r π336=. 3.3.2 球面坐标变换三重积分在球面坐标系中的计算法如下: 变换sin cos ,sin sin ,cos x r φθy r φθz r φ=⎧⎪=⎨⎪=⎩称为球面坐标变换,空间点(),,M x y z 与,,()r φθ建立了一一对应关系,把,,()r φθ称为点(),,M x y z 的球面坐标(图10-31),其中ππ<,,2000r φθ≤+∞≤≤≤≤.图10-31球面坐标系的三组坐标面为: (1)常数r =,以原点为中心的球面;(2)常数φ=,以原点为顶点,z 轴为轴,半顶角为φ的圆锥面; (3)常数θ=,过z 轴的半平面. 由于球面坐标变换的雅可比行列式为sin cos cos cos sin sin (,,)sin sin cos sin sin cos (,,)cos sin 0φθr φθr φθx y z φθr φθr φθr φθφr φ-∂=∂-2sin r φ=,则在球面坐标变换下,体积元素之间的关系式为:2d d d sin d d d x y z r φr θφ=.于是,球面坐标变换下三重积分的换元公式为2(,,)d d d (sin cos ,sin sin ,cos )sin d d d f x y z x y z =f r r r r r ϕθϕθϕϕϕθ'ΩΩ⋅⎰⎰⎰⎰⎰⎰. (10-3-4)例6 计算三重积分222()d d d xy z x y z Ω++⎰⎰⎰,其中Ω表示圆锥面222x y z +=与球面2222x y z R z ++=所围的较大部分立体.解 在球面坐标变换下,球面方程变形为2cos r R φ=,锥面为π4φ=(图10—32).这时积分区域Ω表示为π2, , 2cos 4000θπφr R φ≤≤≤≤≤≤,图10—32所以22222()d d d sin d d d xy z x y z =r r r ϕϕθ'ΩΩ++⋅⎰⎰⎰⎰⎰⎰ππd d d 22cos 44sin R φθφr φr =⎰⎰⎰ππd π52cos 0540228sin ()515R φφr φR ==⎰. 例7 计算三重积分22(2)d d d y x z x y z Ω+⎰⎰⎰,其中Ω是由曲面2222x y z a ++=,22224x y z a ++=22x y z +=所围成的区域.解 积分区域用球面坐标系表示显然容易,但球面坐标变换应为sin cos sin sin cos ,,x r φθz r φθy r φ===,这时2d sin d d d v r φr φθ=,积分区域Ω表示为ππ224,00,a r a φθ≤≤≤≤≤≤ (图10—33).图10—33所以π2π2222400(2)d d d d d (2cos sin )sin d a a y x z x y z =r r r r θϕϕϕϕΩ+++⎰⎰⎰⎰⎰⎰ππ41515816a ⎛⎫ ⎪⎝⎭=+.值得注意的是,三重积分的计算是选择直角坐标,还是柱面坐标或球面坐标转化成三次积分,通常要综合考虑积分域和被积函数的特点.一般说来,积分域Ω的边界面中有柱面或圆锥面时,常采用柱面坐标系;有球面或圆锥面时,常采用球面坐标系.另外,与二重积分类似,三重积分也可利用在对称区域上被积函数关于变量成奇偶函数以简化计算.习题10-31.化三重积分(,,)d d d I f x y z x y z Ω=⎰⎰⎰为三次积分,其中积分区域Ω分别是.(1) 由双曲抛物面x y z =及平面100x y z +-==,所围成的闭区域; (2) 由曲面22z x y =+及平面1z =所围成的闭区域. 2.在直角坐标系下计算三重积分:(1)()d d d 2+xy z x y z Ω⎰⎰⎰,其中[][][]-2,5-3,30,1Ω=⨯⨯;(2)23d d d xy z x y z Ω⎰⎰⎰,其中Ω是由曲面z x y =与平面1y x x ==,,和0z =所围成的闭区域;(3)()3d d d 1+++x y zx y z Ω⎰⎰⎰,其中Ω为平面1000x y z x y z ===++=,,,所围的四面体;。
《高等数学2》课程教学大纲教研室主任:任洲鸿执笔人:吴翠连王琳一、课程基本信息开课单位:经济学院课程名称:高等数学2课程编号:201002英文名称:Advanced Mathematics课程类型:学科基础课总学时: 72理论学时: 72 实验学时: 0学分:3开设专业:经济学先修课程:高等数学1(201001)二、课程任务目标(一)课程任务本课程是理科院校管理类专业的一门专业基础课,又是全国硕士研究生入学考试统考科目。
通过本课程的学习,要使学生掌握多元函数微积分学、无穷级数和常微分方程的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。
(二)课程目标基本了解多元函数微积分学的基础理论;充分理解微积分学的背景思想及数学思想。
掌握多元函数微积分学、无穷级数和常微分方程的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。
能较熟练地应用微积分学、无穷级数和微分方程的思想方法解决应用问题。
三、教学内容和要求(一)理论教学的内容及要求第七章微分方程1.内容概要微分方程的基本概念,可分离变量的微分方程,齐次方程,一阶线性微分方程,全微分方程,可降阶的高阶微分方程,高阶线性微分方程,常系数齐次线性微分方程,常系数非齐次线性微分方程,常系数线性微分方程组解法举例。
2.重点和难点重点:微分方程的一般概念,一阶可分离变量微分方程,一阶线性微分方程;二阶常系数线性微分方程。
难点:微分方程类型的判别及解法;微分方程的建立与初始条件的列出;二阶常系数非齐次线性微分方程的特解的求法。
3.学习目的与要求(1)了解微分方程及其阶、解、通解、初始条件、特解的概念。
(2)能识别下述一阶微分方程:可分离变量的微分方程,齐次方程,一阶线性方程,贝努利方程、全微分方程。
第一章函数与极限教学目的:1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式.2、了解函数的奇偶性、单调性、周期性和有界性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4、掌握基本初等函数的性质及其图形。
5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
6、掌握极限的性质及四则运算法则。
7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
教学重点:1、复合函数及分段函数的概念;2、基本初等函数的性质及其图形;3、极限的概念极限的性质及四则运算法则;4、两个重要极限;5、无穷小及无穷小的比较;6、函数连续性及初等函数的连续性;7、区间上连续函数的性质.教学难点:1、分段函数的建立与性质;2、左极限与右极限概念及应用;3、极限存在的两个准则的应用;4、间断点及其分类;闭区间上连续函数性质的应用.第二章导数与微分教学目的:1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。
2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3、了解高阶导数的概念,会求某些简单函数的n阶导数。
4、会求分段函数的导数。
5、会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。
教学重点:1、导数和微分的概念与微分的关系;2、导数的四则运算法则和复合函数的求导法则;3、基本初等函数的导数公式;4、高阶导数;6、隐函数和由参数方程确定的函数的导数。
重积分【教学目标与要求】1.理解二重积分、三重积分的概念,了解重积分的性质,知道二重积分的中值定理。
2.掌握二重积分的(直角坐标、极坐标)计算方法。
3.掌握计算三重积分的(直角坐标、柱面坐标、球面坐标)计算方法。
4.会用重积分求一些几何量与物理量(平面图形的面积、体积、重心、转动惯量、引力等)。
【教学重点】1.二重积分的计算(直角坐标、极坐标);2.三重积分的(直角坐标、柱面坐标、球面坐标)计算。
3.二、三重积分的几何应用及物理应用。
【教学难点】1.利用极坐标计算二重积分;2.利用球坐标计算三重积分;3.物理应用中的引力问题。
【教学课时分配】 (10学时)第1 次课§1第2 次课§2 第3 次课§3第4 次课§4 第5次课习题课【参考书】[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社.[2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社.[3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社§10. 1 二重积分的概念与性质【回顾】定积分设函数y =f (x )在区间[a , b ]上非负、连续. 求直线x =a 、x =b 、y =0 及曲线y =f (x )所围成的曲边梯形的面积.(1)分割:用分点a =x 0<x 1<x 2< ⋅ ⋅ ⋅<x n -1<x n =b 把区间[a , b ]分成n 个小区间: [x 0, x 1], [x 1, x 2], [x 2, x 3], ⋅ ⋅ ⋅ , [x n -1, x n ], 记∆x i =x i -x i -1 (i =1, 2, ⋅ ⋅ ⋅ , n ). (2)代替:任取ξ i ∈[x i -1, x i ], 以[x i -1, x i ]为底的小曲边梯形的面积可近似为i i x f ∆)(ξ (i =1, 2, ⋅ ⋅ ⋅ , n );(3)作和:曲边梯形面积A 的近似值为 ∑=∆≈ni iix f A 1)(ξ.(4)取极限:记λ=max{∆x 1, ∆x 2,⋅ ⋅ ⋅, ∆x n }, 所以曲边梯形面积的精确值为 ∑=→∆=ni iix f A 1)(lim ξλ.则§10. 1 二重积分的概念与性质一、引例1. 曲顶柱体的体积V设有一立体, 它的底面是xOy 面上的闭区域D , 其侧面为母线平行于z 轴的柱面, 其顶是曲面z =f (x , y )非负连续. 称为曲顶柱体.若立体的顶是平行于xoy 面的平面。
体积=底面积⨯高现在我们来讨论如何计算曲顶柱体的体积.(i )分割:用任意曲线网把D 分成n 个小区域 : ∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z 轴的柱面, 这些柱面把原来的曲顶柱体分为n 个细曲顶柱体.∑⎰=→∆==ni ii bax f A x x f 1)(lim d )(ξλ(ii )代替:在每个∆σ i 中任取一点(ξ i , η i ), 以f (ξ i , η i )为高而底为∆σ i 的平顶柱体的体积为f (ξ i , η i ) ∆σi (i =1, 2, ⋅ ⋅ ⋅ , n ). (iii )近似和: 整个曲顶柱体体积V i i i ni f V σηξ∆≈=∑),(1.分割得越细, 则右端的近似值越接近于精确值V , 若分割得"无限细", 则右端近似值会无限接近于精确值V . (iv )取极限:其中i σ∆的直径是指i σ∆中相距最远的两点的距离。
则i i i ni f V σηξλ∆==→∑),(lim 10. 其中i i i σηξ∆∈),(2. 平面薄片的质量.当平面薄板的质量是均匀分布时,质量 = 面密度×面积.若平面薄板的质量不是均匀分布的. 这时, 薄板的质量不能用上述公式算, 应如何算该薄板的质量M?设有一平面薄片占有xOy 面上的闭区域D , 它在点(x , y )处的面密度为),(y x μ, 这里),(y x μ非负连续. 现在要计算该薄片的质量M .(i )分割:用任意一组曲线网把D 分成n 个小区域: ∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .(ii )代替:把各小块的质量近似地看作均匀薄片的质量: ≈i m μ(ξ i , η i )∆σ i .(iii )近似和: 各小块质量的和作为平面薄片的质量的近似值: i i i ni M σηξμ∆≈=∑),(1.},{max 1的直径记i ni σλ≤≤=将分割加细, 取极限, 得到平面薄片的质量 (iv )取极限: 则 i i i ni M σηξμλ∆==→∑),(lim 10.两个问题的共性: (1) 解决问题的步骤相同:“分割, 代替, 近似和,取极限”(2) 所求量的结构式相同曲顶柱体体积:i i i ni f V σηξλ∆==→∑),(lim 1平面薄片的质量:i i i ni M σηξμλ∆==→∑),(lim 1二、二重积分的定义及可积性定义: 设f (x , y )是有界闭区域D 上的有界函数. 将闭区域D 任意分成n 个小闭区域 ∆σ 1, ∆σ 2, ⋅ ⋅ ⋅ , ∆σ n .其中∆σ i 表示第i 个小区域, 也表示它的面积. 在每个∆σ i 上任取一点(ξ i , ηi ), 作和i i i ni f σηξ∆=∑),(1.如果当各小闭区域的直径中的最大值λ趋于零时, 这和的极限总存在, 则称此极限为函数f (x , y )在闭区域D 上的二重积分, 记作σd y x f D⎰⎰),(, 即i i i ni Df d y x f σηξσλ∆==→∑⎰⎰),(lim ),(10. f (x , y )被积函数, f (x , y )d σ被积表达式, d σ面积元素, x , y 积分变量, D 积分区域, 积分和. 直角坐标系中的面积元素:如果在直角坐标系中用平行于坐标轴的直线网来划分D , 那么除了包含边界点的一些小闭区域外, 其余的小闭区域都是矩形闭区域. 设矩形闭区域∆σi 的边长为∆x i 和∆y i , 则∆σi =∆x i ∆y i , 因此在直角坐标系中, 有时也把面积元素d σ 记作dxdy , 而把二重积分记作},{max 1的直径记i ni σλ≤≤=dxdy y x f D⎰⎰),(其中dxdy 叫做直角坐标系中的面积元素.二重积分的几何意义: 如果f (x , y )≥0, 被积函数f (x , y )可解释为曲顶柱体的在点(x , y )处的竖坐标, 所以二重积分的几何意义就是柱体的体积. 如果f (x , y )是负的, 柱体就在xOy 面的下方, 二重积分的绝对值仍等于柱体的体积, 但二重积分的值是负的.说明:当函数f (x , y )在闭区域D 上连续时, 则f (x , y ) 在D 上的二重积分必存在。
于是我们总假定函数f (x , y )在闭区域D 上连续,所以f (x , y ) 在D 上的二重积分都是存在的。
例1.利用二重积分定义计算:dxdy xy D⎰⎰,其中}10,10|),{(≤≤≤≤=y x y x D 。
三. 二重积分的性质设D 为有界闭区域,以下涉及的积分均存在。
性质1σσσd y x g d y x f d y x g y x f DDD⎰⎰⎰⎰⎰⎰±=±),(),()],(),([.性质2 设k 为常数,则σσd y x f k d y x kf DD⎰⎰⎰⎰=),(),(性质3||1D d d DD==⋅⎰⎰⎰⎰σσ,其中(||D 为D 的面积).性质4 设21D D D =,且21,D D 无公共内点,则σσσd y x f d y x f d y x f D D D⎰⎰⎰⎰⎰⎰+=21),(),(),(.性质5.若在D 上, f (x , y )≤g (x , y ), 则σσd y x g d y x f DD⎰⎰⎰⎰≤),(),(.特殊:(1)若在D 上0),(≥y x f ,则0),(≥⎰⎰σd y x f D(2) σσd y x f d y x f DD⎰⎰⎰⎰≤|),(||),(|.这是因为|),(|),(|),(|y x f y x f y x f ≤≤-性质6 设M 、m 分别是f (x , y )在闭区域D 上的最大值和最小值, ||D 为D 的面积, 则||),(||D M d y x f D m D≤≤⎰⎰σ.性质7(二重积分的中值定理) 设函数f (x , y )在闭区域D 上连续, σ 为D 的面积, 则在D 上至少存在一点D ∈),(ηξ,使 σηξσ),(),(f d y x f D=⎰⎰.例2.比较下列积分的大小:σd y x D2)(⎰⎰+,σd y x D3)(⎰⎰+,其中}2)1()2(|),{(22≤-+-=y x y x D小结1.二重积分的定义:∑⎰⎰=→∆=ni i i iDf d y x f 1),(lim ),(σηξσλ,)(dxdy d =σ2. 二重积分的性质(与定积分性质相似)教学方式及教学过程中应注意的问题在教学过程中要注意二重积分的定义,性质以及应用,并且要与定积分的定义、性质进行比较,要结合实例,反复讲解。
师生活动设计1.比较下列积分值的大小关系:⎰⎰≤+=1122||y x dxdy xy I ,⎰⎰≤+=1||||2||y x dxdy xy I,⎰⎰--=11113||dxdy xy I2.证明:⎰⎰≤+≤Dd y x 2)cos (sin 122σ,其中D 为10,10≤≤≤≤y x 。
讲课提纲、板书设计作业 P137: 4(1)(3),5(1)(4)§10. 2 二重积分的计算法一、利用直角坐标计算二重积分X --型区域: D : ϕ1(x )≤y ≤ϕ2(x ), a ≤x ≤b . Y --型区域: D : ψ1(x )≤y ≤ψ2(x ), c ≤y ≤d .混合型区域: 设f (x , y )≥0, D ={(x , y )| ϕ1(x )≤y ≤ϕ2(x ), a ≤x ≤b }. 此时二重积分σd y x f D⎰⎰),(在几何上表示以曲面z =f (x , y )为顶, 以区域D 为底的曲顶柱体的体积.对于x 0∈[a , b ], 曲顶柱体在x =x 0的截面面积为以区间[ϕ1(x 0), ϕ2(x 0)]为底、以曲线z =f (x 0, y )为曲边的曲边梯形, 所以这截面的面积为 ⎰=)()(000201),()(x x dy y x f x A ϕϕ.根据平行截面面积为已知的立体体积的方法, 得曲顶柱体体积为 ⎰=ba dx x A V )(dx dy y x fb a x x ⎰⎰=]),([)()(21ϕϕ.即 V =dx dy y x f d y x f b a x x D⎰⎰⎰⎰=]),([),()()(21ϕϕσ.可记为⎰⎰⎰⎰=ba x x Ddy y x f dx d y x f )()(21),(),(ϕϕσ.类似地, 如果区域D 为Y --型区域: D : ψ1(x )≤y ≤ψ2(x ), c ≤y ≤d , 则有⎰⎰⎰⎰=dcy y Ddx y x f dy d y x f )()(21),(),(ψψσ.例1. 计算σd xy D⎰⎰, 其中D 是由直线y =1、x =2及y =x 所围成的闭区域.解: 画出区域D .方法一. 可把D 看成是X --型区域: 1≤x ≤2, 1≤y ≤x . 于是⎰⎰⎰⎰=211][x Ddx xydy d xy σ⎰⎰-=⋅=2132112)(21]2[dx x x dx y x x 89]24[212124=-=x x . 注: 积分还可以写成⎰⎰⎰⎰⎰⎰==211211xx Dydy xdx xydy dx d xy σ.解法2. 也可把D 看成是Y --型区域: 1≤y ≤2, y ≤x ≤2 . 于是⎰⎰⎰⎰=212][y Ddy xydx d xy σ⎰⎰-=⋅=2132122)22(]2[dy y y dy x y y 89]8[2142=-=y y . 例2. 计算σd y x yD⎰⎰-+221, 其中D 是由直线y =1、x =-1及y =x 所围成的闭区域.解 画出区域D , 可把D 看成是X --型区域: -1≤x ≤1, x ≤y ≤1. 于是⎰⎰⎰⎰-+=-+-122112211x Ddy y x y dx d y x y σ⎰⎰----=-+-=1131112322)1|(|31])1[(31dx x dx y x x21)1(32103=--=⎰dx x .也可D 看成是Y --型区域:-1≤y ≤1, -1≤x <y . 于是⎰⎰⎰⎰---+=-+111222211yDdx y x ydy d y x y σ.例3 计算σd xy D⎰⎰, 其中D 是由直线y =x -2及抛物线y 2=x 所围成的闭区域.解 积分区域可以表示为D =D 1+D 2,其中x y x x D ≤≤-≤≤ ,10 :1; x y x D ≤≤≤≤2 ,41 :2. 于是⎰⎰⎰⎰⎰⎰--+=41210xx xxDxydy dx xydy dx d xy σ.积分区域也可以表示为D : -1≤y ≤2, y 2≤x ≤y +2. 于是⎰⎰⎰⎰-+=2122y yDxydx dy d xy σ⎰-+=21222]2[dy y x y y ⎰--+=2152])2([21dy y y y 855]62344[21216234=-++=-y y y y .讨论积分次序的选择.例4 求两个底圆半径都等于ρ的直交圆柱面所围成的立体的体积. 解 设这两个圆柱面的方程分别为 x 2+y 2=ρ 2及x 2+z 2=ρ 2.利用立体关于坐标平面的对称性, 只要算出它在第一卦限部分的体积V 1, 然后再乘以8就行了.第一卦限部分是以D ={(x , y )| 0≤y ≤22x R -, 0≤x ≤ρ}为底, 以22x R z -=顶的曲顶柱体. 于是σd x R V D⎰⎰-=228⎰⎰--=R x R dy x R dx 022228⎰--=Rx Rdx y x R 002222][83022316)(8R dx x R R=-=⎰. 二. 利用极坐标计算二重积分有些二重积分, 积分区域D 的边界曲线用极坐标方程来表示比较方便, 且被积函数用极坐标变量ρ 、θ 表达比较简单. 这时我们就可以考虑利用极坐标来计算二重积分σd y x f D⎰⎰),(. 按二重积分的定义i ni i i Df d y x f σηξσλ∆=∑⎰⎰=→1),(lim ),(. 下面我们来研究这个和的极限在极坐标系中的形式.以从极点O 出发的一族射线及以极点为中心的一族同心圆构成的网将区域D 分为n 个小闭区域, 小闭区域的面积为:i i i i i i θρθρρσ∆⋅⋅-∆⋅∆+=∆2221)(21i i i i θρρρ∆⋅∆∆+=)2(21i i i i i θρρρρ∆⋅∆⋅∆++=2)(i i i θρρ∆∆=,其中i ρ表示相邻两圆弧的半径的平均值.在∆σi 内取点) , (i i θρ, 设其直角坐标为(ξ i , η i ), 则有 i i i θρξcos =, i i i θρηsin =. 于是 i i ni i i i i i i n i i i f f θρρθρθρσηξλλ∆∆=∆∑∑=→=→11)sin ,cos (lim ),(lim, 即θρρθρθρσd d f d y x f DD)sin ,cos (),(⎰⎰⎰⎰=.若积分区域D 可表示为ϕ 1(θ)≤ρ≤ϕ 2(θ), α≤θ≤β,则ρρθρθρθθρρθρθρθϕθϕβαd f d d d f D⎰⎰⎰⎰=)()(21)sin ,cos ()sin ,cos (.讨论:如何确定积分限?ρρθρθρθθρρθρθρθϕβαd f d d d f D⎰⎰⎰⎰=)(0)sin ,cos ()sin ,cos (.ρρθρθρθθρρθρθρθϕπd f d d d f D⎰⎰⎰⎰=)(020)sin ,cos ()sin ,cos (.例5. 计算⎰⎰--Dy xdxdy e 22, 其中D 是由中心在原点、半径为a 的圆周所围成的闭区域.解 在极坐标系中, 闭区域D 可表示为 0≤ρ≤a , 0≤θ ≤2π . 于是⎰⎰⎰⎰---=DDy x d d edxdy eθρρρ222θθρρπρπρd e d d eaa02020]21[ ][22⎰⎰⎰---==)1()1(212220a a e d e ---=-=⎰πθπ.注: 此处积分⎰⎰--Dy xdxdy e 22也常写成⎰⎰≤+--22222a y x y xdxdy e .利用)1(222222a a y x y x e dxdy e -≤+---=⎰⎰π计算广义积分dx e x 2-+∞⎰:设D 1={(x , y )|x 2+y 2≤R 2, x ≥0, y ≥0}, D 2={(x , y )|x 2+y 2≤2R 2, x ≥0, y ≥0},S ={(x , y )|0≤x ≤R , 0≤y ≤R }.显然D 1⊂S ⊂D 2. 由于022>--y x e , 从则在这些闭区域上的二重积分之间有不等式⎰⎰⎰⎰⎰⎰------<<22222122D y xSy xD y xdxdy e dxdy e dxdy e .因为20)(22222⎰⎰⎰⎰⎰-----=⋅=Rx Ry Rx Sy xdx e dy e dx e dxdy e ,又应用上面已得的结果有)1(42122R D y xe dxdy e ----=⎰⎰π,)1(422222R D y xe dxdy e ----=⎰⎰π,于是上面的不等式可写成)1(4)()1(4222220R R x R e dx e e ----<<-⎰ππ.令R →+∞, 上式两端趋于同一极限4π, 从而220 π=-∞+⎰dx e x .例6 求球体x 2+y 2+z 2≤4a 2被圆柱面x 2+y 2=2ax 所截得的(含在圆柱面内的部分)立体的体积.解 由对称性, 立体体积为第一卦限部分的四倍. ⎰⎰--=Ddxdy y x a V 22244,其中D 为半圆周22x ax y -=及x 轴所围成的闭区域. 在极坐标系中D 可表示为 0≤ρ≤2a cos θ , 20πθ≤≤.于是 ⎰⎰⎰⎰-=-=20cos 2022224444πθρρρθθρρρa Dd a d d d a V)322(332)sin 1(33222032-=-=⎰πθθπa d a .小结1.二重积分化为累次积分的方法;2. 积分计算要注意的事项。