2.4 随机过程通过线性系统解析
- 格式:ppt
- 大小:330.00 KB
- 文档页数:15
242.4-随机过程随机过程是用于描述随机信号的数学模型,它包括了随机信号的全部可能实现,每一次实现都以某一概率出现。
离散时间随机信号用离散时间随机过程来描述,这类信号通常是在时间域对连续信号取样得到。
设给定概率空间,若对于每一整(,,)S F P =P 数,均有定义在上的一个随机变量与之对应,则称依赖于参数的一列()n n Z ∈(,,)S F P =P (,)() x n S ξξ∈n 随机变量为一离散时间随机过程。
它的一次实现为一个时间序列,记为。
(,)x n ξ()x n242.4-随机过程随机过程有下列几种不同的解释:1.它是一族函数或称为这些函数的总体。
此(,)x n ξ(,)x n ξ时,n和都是变量;ξ2.它仅是时间函数(给定过程的一个样本)。
在这种情况下,n是变量,而固定;ξ3.若固定n,而是变量,则是一个随机变量,对应于给定过程n时刻的状态;ξ(,)x n ξ)4.若n和都固定,则是一个数。
ξ(,x n ξ2412.4.1-随机过程的统计描述1.均值:随机过程的均值是时间的函数,也称为(){(,)}(;)x n E x n xp x n dxμξ∞−∞≡=∫均值函数,统计均值是对随机过程中所有样本函数(,)x n ξ在时间的所有取值进行概率加权平均,所以又称为集合平均,它反映了样本函数统计意义下的平均n 变化规律。
2.方差:222(){[(,)()]}[()](;)x x n E x n n x n x n dx σξμμ∞≡−=−x p −∞∫2412.4.1-随机过程的统计描述3.自相关函数:1212(,){(,)(,)}x r n n E x n x n ξξ≡12121212(,;,)x x p x x n n dx dx ∞∞−∞−∞=∫∫自相关函数可正可负,其绝对值越大,表示随机变量和相关性越强。
如果,1(,)x n ξ2(,)x n ξ12(,)0x r n n =则称和是相互正交的。
实验三 随机过程通过线性系统的分析实验目的1. 理解和分析白噪声通过线性系统后输出的特性。
2. 学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。
实验原理1.白噪声通过线性系统设连续线性系统的传递函数为)(ωH 或)(s H ,输入白噪声的功率谱密度为2)(0N S X =ω,那么系统输出的功率谱密度为2)()(02N H S Y ⋅=ωω (3.1) 输出自相关函数为⎰∞∞-=ωωπτωτd e H N R j Y 20)(4)( (3.2)输出相关系数为)0()()(Y Y Y R R ττγ=(3.3) 输出相关时间为⎰∞=00)(ττγτd Y (3.4)输出平均功率为[]⎰∞=202)(2)(ωωπd H N t Y E (3.5)上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性)(ωH 决定,不再是常数。
2.等效噪声带宽在实际中,常常用一个理想系统等效代替实际系统的)(ωH ,因此引入了等效噪声带宽的概念,他被定义为理想系统的带宽。
等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。
实际系统的等效噪声带宽为⎰∞=∆022max)()(1ωωωωd H H e (3.6)或⎰∞∞--=∆j j e ds s H s H H j )()()(212maxωω (3.7)3.线性系统输出端随机过程的概率分布 (1)正态随机过程通过线性系统若线性系统输入为正态过程,则该系统输出仍为正态过程。
(2)随机过程的正态化随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。
任意分布的白噪声通过线性系统后输出是服从正态分布的;宽带噪声通过窄带系统,输出近似服从正态分布。
实验内容设白噪声通过图3.1所示的RC 电路,分析输出的统计特性。
图3.1 RC 电路(1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。
第三章随机信号分析随机过程平稳随机过程噪声随机过程通过系统3.1 随机过程通信过程就是信号和噪声通过系统的过程。
通信中信号特点:具有不可预知性——随机信号。
通信中噪声特点:具有不确定性——随机噪声。
统计学上:随机过程。
一、基本概念二、统计特性一、基本概念随机变量定义分布函数概率密度函数二维随机变量随机变量的数字特征数学期望方差协方差矩基本概念(续)随机过程设E是随机试验,S={e}是其样本空间,如果对于每一个e∈S,有一个时间t的实函数ξ(e,t) t ∈T与之对应,于是对于所有的e∈S,得到时间t的函数族。
该族时间t的函数称为随机过程,族中每个函数称为这个随机过程的样本函数。
ξ(t)={x(t),x2(t),……,x n(t),……}1x1(t),x2(t),……为样本函数基本概念(续)随机过程的一个实现每一个实现都是一个确定的时间函数,即样本。
随机过程其随机性体现在出现哪一个样本是不确定的。
随机过程没有确定的时间函数,只能从统计角度,用概率分布和数字特征来描述。
基本概念(续)二、统计特性概率分布数学期望方差协方差函数相关函数1.概率分布2.数学期望1[()](,)()E t xf x t dx a t ξ∞−∞==∫物理意义:表示随机过程的n 个样本函数曲线的摆动中心(平均值)3. 方差D(ξ (t )] = E{ξ (t ) − E[ξ (t )]} = σ (t )2 2物理意义:表示随机过程在某时刻t的取 值(随机变量)相对于该时刻的期望a(t) 的偏离程度4. 自相关函数R(t1 , t2 ) = E[ξ (t1 )ξ (t2 )] = ∫∞ −∞ −∞ 1 2 2∫∞x x f ( x1 , x2 ; t1 , t2 )dx1dx2物理意义:表示随机过程在两个时刻的 取值的关联程度, ξ(t)变化越平缓, 两个时刻取值的相关性越大,R值越大5.自协方差函数B(t1 , t2 ) = E{[ξ (t1 ) − a(t1 )][ξ (t2 ) − a(t2 )]} =∫ ∫−∞∞f 2 ( x1 , x2 ; t1 , t2 ) dx1dx2 x1 − a ( t1 ) ⎤ x2 − a ( t2 ) ⎤ ⎡ ⎡ ⎣ ⎦ ⎣ ⎦ −∞∞物理意义:表示随机过程在两个时刻间 的线性依从关系6.互协方差及互相关函数Bξη (t1 , t2 ) = E{[ξ (t1 ) − a (t1 )][η (t2 ) − a (t2 )]}Rξη (t1 , t2 ) = E[ξ (t1 )η (t2 )] = ∫∞−∞ −∞∫∞x1 y 2 f 2 ( x1 , y 2 ; t1 , t2 )dx1dy 23.2 平稳随机过程 定义 各态历经性 自相关函数 功率谱密度一、定义若随机过程的n维概率分布函数Fn ()和n维概 率密度函数fn ()与时间起点无关,则为平稳随 机过程 严平稳过程,狭义平稳过程f n ( x1 , x2 ,..., xn ; t1 , t2 ,..., tn ) = f n ( x1 , x2 ,..., xn ; t1 + τ , t2 + τ ,..., tn + τ )定义(续)a (t)Æa; σ2(t)Æ σ2; R(t1,t2)ÆR(τ) 一维分布与t无关: 二维分布只与τ有关 统计特性与时间起点无关 依据数字特征定义宽平稳过程,广义平稳过程二、各态历经性设x (t)是ξ(t)的任一实现,ξ(t)的统计平均= x (t)的 1 T2 时间平均 a=a = x (t ) dtlim T ∫T →∞−T2σ =σ22=lim ∫T →∞T →∞1 TT2 2−T[ x (t ) − a ] 2 dtR (τ ) = R (τ ) = lim1 T∫2 −T 2Tx (t ) x (t + τ ) dt意义 : 随机过程中的任一实现都经历了随机过程的所有可能 状态。
第三章 随机信号通过线性系统的分析本章主要内容:● 线性系统的基本理论● 随机信号通过连续时间系统的分析 ● 随机信号通过离散时间系统的分析 ● 色噪声的产生与白化滤波器 ● 等效噪声带宽 ● 解析过程● 窄带随机过程基本概念● 窄带高斯过程包络与相位的概率密度 ● 窄带高斯过程包络平方的概率密度3.1随机信号通过连续时间系统的分析在给定系统的条件下,输出信号的某个统计特性只取决于输入信号的相应的统计特性。
分析方法:卷积积分法;频域法。
3.1.1、时域分析法1、输出表达式(零状态响应,因果系统) 输入为随机信号)(t X 某个实验结果ζ的一个样本函数),(ζt x ,则输出),(ζt y 为:对于所有的ζ,输出为一族样本函数构成随机过程Y(t):2. 输出的均值:)(*)()(t h t m t m X Y =证明:3.系统输入与输出之间的互相关函数)(*),(),(22121t h t t R t t R X XY = )(*),(),(12121t h t t R t t R X YX =证明:4、系统输出的自相关函数已知输入随机信号的自相关函数,求系统输出端的自相关函数。
显然,有:5、系统输出的高阶距输出n阶矩的一般表达式为注意:上面的分析方法是零状态响应的一般分析方法。
它既适用于输入是平稳随机信号的情况,也适用于输入是非平稳的情况。
3.1.2、系统输出的平稳性及其统计特性的计算1、双侧随机信号在这种情况下,系统输出响应在t=0时已处于稳态。
(1)若输入X(t)是宽平稳的,则系统输出Y(t)也是宽平稳的,且输入与输出联合宽平稳。
那么由于假定连续系统是稳定的,所以由于输出的均值是常数,而输出的相关函数只是 的函数,且输出均方值有界。
所以,输出随机过程为宽平稳的。
可总结如下:输出均值:输入与输出间的互相关函数为输出的自相关函数为输出的均方值即输出总平均功率为若用卷积的形式,则可分别写为(2)若输入X(t)是严平稳的,则输出Y(t)也是严平稳的。