随机信号通过线性系统和非线性系统后的特性分析
- 格式:doc
- 大小:298.50 KB
- 文档页数:18
填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F(+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。
1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。
3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。
4.冲激响应满足分析线性输出,其均值为_____________________。
5.偶函数的希尔伯特变换是奇函数。
6.窄带随机过程的互相关函数公式为P138。
1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。
实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。
二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。
实验三 随机过程通过线性系统的分析实验目的1. 理解和分析白噪声通过线性系统后输出的特性。
2. 学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。
实验原理1.白噪声通过线性系统设连续线性系统的传递函数为)(ωH 或)(s H ,输入白噪声的功率谱密度为2)(0N S X =ω,那么系统输出的功率谱密度为2)()(02N H S Y ⋅=ωω (3.1) 输出自相关函数为⎰∞∞-=ωωπτωτd e H N R j Y 20)(4)( (3.2)输出相关系数为)0()()(Y Y Y R R ττγ=(3.3) 输出相关时间为⎰∞=00)(ττγτd Y (3.4)输出平均功率为[]⎰∞=202)(2)(ωωπd H N t Y E (3.5)上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性)(ωH 决定,不再是常数。
2.等效噪声带宽在实际中,常常用一个理想系统等效代替实际系统的)(ωH ,因此引入了等效噪声带宽的概念,他被定义为理想系统的带宽。
等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。
实际系统的等效噪声带宽为⎰∞=∆022max)()(1ωωωωd H H e (3.6)或⎰∞∞--=∆j j e ds s H s H H j )()()(212maxωω (3.7)3.线性系统输出端随机过程的概率分布 (1)正态随机过程通过线性系统若线性系统输入为正态过程,则该系统输出仍为正态过程。
(2)随机过程的正态化随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。
任意分布的白噪声通过线性系统后输出是服从正态分布的;宽带噪声通过窄带系统,输出近似服从正态分布。
实验内容设白噪声通过图3.1所示的RC 电路,分析输出的统计特性。
图3.1 RC 电路(1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。
北京理工大学随机信号分析实验报告本科实验报告实验名称:随机信号分析实验实验一随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。
2、实现随机序列的数字特征估计。
二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=Ny x n n /=序列{}nx 为产生的(0,1)均匀分布随机数。
下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯;3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F(+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。
1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。
3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。
4.冲激响应满足分析线性输出,其均值为_____________________。
5.偶函数的希尔伯特变换是奇函数。
6.窄带随机过程的互相关函数公式为P138。
1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。
概率论基础1.概率空间、概率(条件概率、全概率公式、贝叶斯公式)2.随机变量的定义(一维、二维实随机变量)3.随机变量的描述:⑴统计特性一维、二维概率密度函数、一维二维概率分布函数、边缘分布概率分布函数、概率密度函数的关系⑵数字特征一维数字特征:期望、方差、均方值(定义、物理含义、期望和方差的性质、三者之间的关系)二维数字特征:相关值、协方差、相关系数(定义、相互关系)⑶互不相关、统计独立、正交的定义及其相互关系△雅柯比变换(随机变量函数的变换一维随机变量函数的单值和双值变换、二维随机变量函数的单值变换)5、高斯随机变量一维和二维概率密度函数表达式高斯随机变量的性质△随机变量的特征函数及基本性质、随机信号的时域分析1、随机信号的定义从三个方面来理解①随机过程(),X t ζ是,t ζ两个变量的函数②(),X t ζ是随时间t 变化的随机变量③(),X t ζ可看成无穷多维随机矢量在0,t n ∆→→∞的推广2、什么是随机过程的样本函数?什么是过程的状态?随机过程与随机变量、样本函数之间的关系?3、随机信号的统计特性分析:概率密度函数和概率分布函数(一维、二维要求掌握)4、随机信号的数字特征分析(定义、物理含义、相互关系) 一维:期望函数、方差函数、均方值函数。
(相互关系)二维:自相关函数、自协方差函数、互相关函数、互协方差函数(相互关系) 5、严平稳、宽平稳定义、二者关系、判断宽平稳的条件、平稳的意义、联合平稳定义及判定 6、平稳随机信号自相关函数的性质: 0点值,偶函数,均值,相关值,方差7、两个随机信号之间的“正交”、“不相关”、“独立”。
(定义、相互关系) 8、高斯随机信号定义(掌握一维和二维)、高斯随机信号的性质 9、各态历经性定义、意义、判定条件(时间平均算子、统计平均算子)、平稳性与各态历经性的关系直流分量、直流平均功率、总平均功率、交流平均功率随机信号的频域分析1、随机信号是功率信号,不存在傅里叶变换,在频域只研究其功率谱。
随机信号分析----通过线性系统和非线性系统后的特性分析一、实验目的1、了解随机信号自身的特性,包括均值、均方值、方差、相关函数、概率密度、频谱及功率谱密度等的概念和特性2、研究随机信号通过线性系统和非线性系统后的均值、均方值、方差、相关函数、概率密度、频谱及功率谱密度有何变化,分析线性系统和非线性系统所具有的性质3、掌握随机信号的分析方法。
4、熟悉常用的信号处理仿真软件平台:matlab、c/c++、EWB。
二、实验仪器1、256MHz以上内存微计算机。
2、20MHz双踪示波器、信号源。
3、matlab或c/c++语言环境、EWB仿真软件。
4、fpga实验板、面包板和若干导线。
三、实验步骤1、根据选题的内容和要求查阅相关的文献资料,设计具体的实现程序流程或电路。
2、自选matlab、EWB或c仿真软件。
如用硬件电路实现,需用面包板搭建电路并调试成功。
3、按设计指标测试电路。
分析实验结果与理论设计的误差,根据随机信号的特征,分析误差信号对信号和系统的影响。
四、实验任务与要求1、用matlab或c/c++语言编程并仿真2、输入信号为x(t)加上白噪声n(t),用软件仿真通过滤波器在通过限幅器后的信号y1(t),在仿真先平方律后在通过滤波器后的信号y2(t).框图如下:3、计算x(t)、a、b、c、y(t)的均值、均方值、方差、频谱、功率谱密度,自相关函数,并绘出函数曲线。
五.实验过程与仿真1、输入信号的获取与分析(a)输入信号的获取按照实验要求,Matlab仿真如下:%输入信号x的产生t=0:1/16000:0.01;x1=sin(1000*2*pi*t)+sin(2000*2*pi*t)+sin(3000*2*pi*t);x=awgn(x1,5,'measured'); %加入高斯白噪声n=x-x1; %高斯白噪声(b)输入信号及其噪声的分析%输入信号x自相关系数x_arr=xcorr(x);tau = (-length(x)+1:length(x)-1)/16000;%输入信号x的频谱和功率谱x_mag=abs(fft(x,2048));f=(0:2047)*16000/2048;x_cm=abs(fft(x_arr,2048));%画出高斯白噪声n的时域图和频域图figure(1)subplot(1,2,1)plot(t,n)title('高斯白噪声n')xlabel('t/s')ylabel('n(t)')grid onsubplot(1,2,2)N=fft(n,2048);plot(f(1:length(f)/2),N(1:length(f)/2))title('高斯白噪声n的频谱图')xlabel('f/Hz')ylabel('幅值')grid on结果为:%画输入信号的时域,相关系数,频谱图和频谱图figure(2);subplot(2,2,1)plot(t,x)title('输入信号x')xlabel('t/s');ylabel('x(t)');grid on;subplot(2,2,2)plot(tau,x_arr)title('输入信号x的自相关系数')xlabel('\tau/s')ylabel('R_x_i(\tau)')subplot(2,2,3)plot(f(1:length(f)/2),x_mag(1:length(f)/2)) title('输入信号x的频谱')xlabel('f/Hz')ylabel('幅值')grid on;subplot(2,2,4)plot(f(1:length(f)/2),x_cm(1:length(f)/2)) title('输入信号x的功率谱')xlabel('f/Hz')ylabel('S_x_i(f)')结果如下图:2、带通滤波器的频谱和相频特性[B,A]=butter(8,[1500/(16000/2) 2500/(16000/2)]); figure(3)freqz(B,A,2048)title('带通滤波器的频率特性曲线')grid on结果作图如下:3、输入信号通过带通滤波器后的信号a%信号通过带通滤波器后,过滤出2khz分量,得到信号a a=filter(B,A,x);%信号a的自相关系数a_arr=xcorr(a);%信号a的频谱和功率谱a_mag=abs(fft(a,2048));a_cm=abs(fft(a_arr,2048));%画出信号a的时域图,自相关系数,频谱图和功率谱图figure(4)subplot(2,2,1)plot(t,a)title('通过带通滤波器后的信号a')xlabel('t/s');ylabel('a(t)');subplot(2,2,2)plot(tau,a_arr)title('信号a的自相关系数')xlabel('\tau/s')ylabel('R_a_i(\tau)')subplot(2,2,3)plot(f(1:length(f)/2),a_mag(1:length(f)/2)) title('信号a的频谱')xlabel('f/Hz')ylabel('幅值')subplot(2,2,4)plot(f(1:length(f)/2),a_cm(1:length(f)/2)) title('信号a的功率谱')xlabel('f/Hz')ylabel('S_a_i(f)')作图如下:4、输入信号x通过平方律检波器的信号b%平方律检波器的传输特性为y=m*x^2,k\m=1b=1:length(x);for k=1:length(x)if(x(k)>0)b(k)=x(k)^2;elseb(k)=0;endend%信号b的自相关系数b_arr=xcorr(b);%信号b的频谱和功率谱b_mag=abs(fft(b,2048));b_cm=abs(fft(b_arr,2048));%画出信号b的时域图,自相关系数,频谱图和功率谱figure(5)subplot(2,2,1)plot(t,b)title('通过平方检波器后的信号b')xlabel('t/s');ylabel('b(t)');subplot(2,2,2)plot(tau,b_arr)title('信号b的自相关系数')xlabel('\tau/s')ylabel('R_b_i(\tau)')subplot(2,2,3)plot(f(1:length(f)/2),b_mag(1:length(f)/2)) title('信号b的频谱')xlabel('f/Hz')ylabel('幅值')subplot(2,2,4)plot(f(1:length(f)/2),b_cm(1:length(f)/2)) title('信号b的功率谱')xlabel('f/Hz')ylabel('S_b_i(f)')作图如下:5、信号a通过限幅器后的信号y1%限定幅度最大为0.5,大于0.5的取0.5y1=0:length(a)-1;for k=1:length(a)if(a(k)>0.5)y1(k)=0.5;else if(a(k)<-0.5)y1(k)=-0.5;elsey1(k)=a(k);endendend%信号y1的自相关系数y1_arr=xcorr(y1);%信号y1的频谱和功率谱y1_mag=abs(fft(y1,2048));y1_cm=abs(fft(y1_arr,2048));figure(5)%画出信号y1的时域图,自相关系数,频谱图和功率谱图figure(6)subplot(2,2,1)plot(t,y1)axis([0 0.01 -1 1])title('信号a通过限幅器后的信号y1')xlabel('t/s');ylabel('y1(t)');subplot(2,2,2)plot(tau,y1_arr)title('信号y1的自相关系数')xlabel('\tau/s')ylabel('R_y_1_i(\tau)')subplot(2,2,3)plot(f(1:length(f)/2),y1_mag(1:length(f)/2))title('信号y1的频谱')xlabel('f/Hz')ylabel('幅值')subplot(2,2,4)plot(f(1:length(f)/2),y1_cm(1:length(f)/2))title('信号y1的功率谱')xlabel('f/Hz')ylabel('S_y_1_i(f)')作图如下:6、信号b通过带通滤波器器后的信号y2%信号a通过带通滤波器后,过滤出2khz分量,得到信号y1 [B,A]=butter(8,[1900/(16000/2) 2100/(16000/2)]);y2=filter(B,A,b);%信号a的自相关系数y2_arr=xcorr(y2);%信号a的频谱和功率谱y2_mag=abs(fft(y2,2048));y2_cm=abs(fft(y2_arr,2048));%画出信号a的时域图,自相关系数,频谱图和功率谱图figure(7)subplot(2,2,1)plot(t,y2)title('信号b通过带通滤波器后的信号y2')xlabel('t/s');ylabel('y2(t)');subplot(2,2,2)plot(tau,y2_arr)title('信号y2的自相关系数')xlabel('\tau/s')ylabel('R_y_2_i(\tau)')subplot(2,2,3)plot(f(1:length(f)/2),y2_mag(1:length(f)/2)) title('信号y2的频谱')xlabel('f/Hz')ylabel('幅值')subplot(2,2,4)plot(f(1:length(f)/2),y2_cm(1:length(f)/2))title('信号y2的功率谱')xlabel('f/Hz')ylabel('S_y_2_i(f)')作图如下:7、通过matlab计算x(t)、a、b、c、y(t)的均值、均方值、方差(a)输入信号x的均值,方差和均方值x_mean=mean(x)x_var=var(x)x_st=x_var+x_mean^2结果得:x_mean = 0.0200x_var =1.9562x_st =1.9566(b)信号a的均值,方差和均方值a_mean = mean(a)a_var=var(a)a_st=a_var+a_mean^2a_arr=xcorr(a);结果得:a_mean =-0.0051a_var =0.4908a_st = 0.4908(c)信号b的均值,方差和均方值b_mean=mean(b)b_var=var(b)b_st=b_var+b_mean^2结果得:b_mean =0.9755b_var = 6.2748b_st = 7.2264(d)信号y1的均值,方差和均方值y1_mean=mean(y1)y1_var=var(y1)y1_st=y1_var+y1_mean^2结果得:y1_mean =-0.0054y1_var = 0.1616y1_st =0.1617(e)信号y1的均值,方差和均方值y2_mean = mean(y2)y2_var=var(y2)y2_st=y2_var+y2_mean^2结果得:y2_mean =-0.0035y2_var = 1.3080y2_st =1.30806.实验中遇到的问题在刚开始做实验时,理论知识都没有学完,对于很多概念仍不清晰。