高斯-赛德尔迭代法解线性方程组
- 格式:doc
- 大小:170.50 KB
- 文档页数:6
标题:深入探讨MATLAB中的高斯-赛德尔迭代法一、概述MATLAB是一种强大的数学计算软件,被广泛应用于科学、工程和金融等领域。
在数值分析中,迭代法是解决非线性方程组和矩阵方程组的重要方法之一。
高斯-赛德尔迭代法是其中的一种,其在求解线性方程组时具有较好的收敛性和效率。
本文将深入探讨MATLAB中高斯-赛德尔迭代法的原理和实现方法。
二、高斯-赛德尔迭代法原理高斯-赛德尔迭代法是一种求解线性方程组的迭代法。
给定线性方程组Ax=b,其中A为系数矩阵,b为常数向量,迭代法的基本思想是通过不断逼近方程组的解x。
高斯-赛德尔迭代法的迭代公式如下:\[ x^{(k+1)} = D^{-1} (b - (L+U)x^{(k)}) \]其中,D、L和U分别为系数矩阵A的对角线、严格下三角部分和严格上三角部分。
迭代法的初始值可以任意选择,通常选取一个与解接近的初值,然后通过迭代逼近真实解。
三、MATLAB中高斯-赛德尔迭代法的实现MATLAB提供了丰富的数值计算函数和工具箱,使得高斯-赛德尔迭代法的实现变得非常简单。
下面我们将介绍如何在MATLAB中使用高斯-赛德尔迭代法求解线性方程组。
1. 设置参数在使用高斯-赛德尔迭代法之前,我们首先需要设置一些参数,如系数矩阵A、常数向量b、迭代步数等。
在MATLAB中可以通过定义变量来实现这些参数的设置。
2. 编写迭代函数接下来,我们需要编写高斯-赛德尔迭代法的迭代函数。
通过编写一个MATLAB函数来实现迭代公式的计算和迭代过程的控制。
3. 调用函数求解完成迭代函数的编写后,我们就可以通过调用该函数来求解线性方程组。
在MATLAB中,可以使用循环语句控制迭代步数,并在每一步更新迭代值,直到满足收敛条件为止。
四、案例分析为了更好地理解高斯-赛德尔迭代法在MATLAB中的应用,我们以一个具体的案例来进行分析和实践。
假设我们需要求解以下线性方程组:\[ \begin{cases} 4x_1 - x_2 + x_3 = 8 \\ -x_1 + 4x_2 - x_3 = 9 \\2x_1 - x_2 + 5x_3 = 7 \end{cases} \]我们可以通过MATLAB编写高斯-赛德尔迭代法的函数,并调用该函数来求解以上线性方程组。
高斯赛德尔的python实现高斯赛德尔(Gauss-Seidel)算法是一种用于求解线性方程组的迭代方法。
它是一种改进的雅可比迭代法,可以更快地收敛到方程组的解。
本文将介绍如何使用Python实现高斯赛德尔算法,并解释其原理和优势。
## 1. 高斯赛德尔算法的原理高斯赛德尔算法用于求解线性方程组Ax=b,其中A是一个n×n的矩阵,b是一个n维向量。
其基本思想是将方程组中的每个未知数的新近似值代入到其余方程中,从而实现迭代求解。
具体来说,算法的步骤如下:1. 首先,给出一个初始解向量x^(0)。
2. 对于每个未知数x_i,使用下面的迭代公式更新其值:x_i^(k+1) = (b_i - Σ(A_ij * x_j^(k))) / A_ii其中,k表示第k次迭代,A_ij表示矩阵A的第i行第j列的元素,x_j^(k)表示第k次迭代中x_j的值。
3. 重复步骤2,直到解向量的误差满足某个收敛条件。
## 2. Python实现高斯赛德尔算法下面是使用Python实现高斯赛德尔算法的代码:```pythonimport numpy as npdef gauss_seidel(A, b, x0, tol=1e-6, max_iter=100):n = len(b)x = np.copy(x0)iter_num = 0while iter_num < max_iter:x_prev = np.copy(x)for i in range(n):x[i] = (b[i] - np.dot(A[i, :i], x[:i]) - np.dot(A[i, i+1:], x_prev[i+1:])) / A[i, i]if np.linalg.norm(x - x_prev) < tol:breakiter_num += 1return x# 示例A = np.array([[4, 1, -1], [2, 7, 1], [1, -3, 12]])b = np.array([3, 19, 31])x0 = np.zeros_like(b)x = gauss_seidel(A, b, x0)print("解向量 x =", x)```在这段代码中,我们使用了NumPy库来处理矩阵和向量的运算。
4. 线性方程组求解4.用雅格比法与高斯-赛德尔迭代法解下列方程组Ax =b ,研究其收敛性,上机验证理论分析是否正确,比较它们的收敛速度,观察右端项对迭代收敛有无影响。
(1)A 行分别为A 1=[6,2,-1],A 2=[1,4,-2],A 3=[-3,1,4]; b 1=[-3,2,4]T , b 2=[100,-200,345]T ,(2) A 行分别为A 1=[1,0.8,0.8],A 2=[0.8,1,0.8],A 3=[0.8,0.8,1];b 1=[3,2,1] T , b 2=[5,0,-10]T ,(3)A 行分别为A 1=[1,3],A 2=[-7,1];b =[4,6]T , (1)雅可比法A 为所求方程组的系数矩阵,将系数矩阵()n n ij A a R ⨯=∈分为三部分,即111212221211000000n n nn n n a a a a a a A a a a --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭D L U ≡--构造迭代方程,选取M 为A 的对角元素部分,即选取M D =,A D N =-,由此构造得到解AX b =的雅可比迭代法如下:()()()01,,0,1,,k k x xBx f k +⎧⎨=+=⎩ 初始向量(4-1)其中()111B I D A D L U J f D b ---=-=+≡=,,J 为雅可比迭代矩阵。
若A 为n 阶矩阵,迭代公式如下:()()()()()()()00001211,,,()/1,2,,;0,1,T n n k k ii ij j ii j j ix x x x x b a x a i n k +=≠⎧=⎪⎪⎪=-⎨⎪⎪==⎪⎩∑初始向量表示迭代次数(4-2) 在运行程序时首先需要手动输入矩阵A ,阶数n 、向量b 和初始向量x 0,根据式(4-2)不断迭代可求解得近似解。
用高斯赛德尔迭代法解方程组
高斯-赛德尔迭代(gauss–seidel method)是数值线性代数中的一个迭代法,可用
来求出线性方程组解的近似值。
该方法以卡尔·弗里德里希·高斯和路德维希·赛德尔命名。
同雅可比法一样,高斯-赛德尔迭代是基于矩阵分解原理。
在数值线性代数中,gauss-seidel方法也称作liebmann方法或已连续加速度方法,
就是用作解线性方程组的运算方法。
它以德国数学家卡尔·弗里德里希·高斯(carl friedrich gauss)和菲利普·路德维希·冯·塞德尔(philipp ludwig von seidel)命名,与雅基数排序方法相近。
高斯-赛德尔迭代法是解线性方程组的常用迭代法之一,设线性方程组为a1x1 +a2x2 +..+ cintn =b.s
(i= 1,2,,n),
高斯赛德尔迭代法的迭代公式,虽然它可以应用于对角线上具有非零元素的任何矩阵,但只能在矩阵是对角线主导的或对称的和正定的情况下,保证收敛。
在年,只在高斯给
他的学生gerling的私人信中提到。
年之前由塞德尔自行出版。
线性方程组的几种求解方法1.高斯消元法高斯消元法是求解线性方程组的一种常用方法。
该方法的基本思想是通过对方程组进行一系列简化操作,使得方程组的解易于求得。
首先将方程组表示为增广矩阵,然后通过一系列的行变换将增广矩阵化为行简化阶梯形,最后通过回代求解出方程组的解。
2.列主元高斯消元法列主元高斯消元法是在高斯消元法的基础上进行改进的方法。
在该方法中,每次选取主元时不再仅仅选择当前列的第一个非零元素,而是从当前列中选取绝对值最大的元素作为主元。
通过选取列主元,可以避免数值稳定性问题,提高计算精度。
3.LU分解法LU分解法是一种将线性方程组的系数矩阵分解为一个下三角矩阵L 和一个上三角矩阵U的方法。
首先进行列主元高斯消元法得到行阶梯形矩阵,然后对行阶梯形矩阵进行进一步的操作,得到L和U。
最后通过回代求解出方程组的解。
4.追赶法(三角分解法)追赶法也称为三角分解法,适用于系数矩阵是对角占优的三对角矩阵的线性方程组。
追赶法是一种直接求解法,将系数矩阵分解为一个下三角矩阵L和一个上三角矩阵U,然后通过简单的代数运算即可求得方程组的解。
5.雅可比迭代法雅可比迭代法是一种迭代法,适用于对称正定矩阵的线性方程组。
该方法的基本思想是通过不断迭代求解出方程组的解。
首先将方程组表示为x=Bx+f的形式,然后通过迭代计算不断逼近x的解。
6.高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进方法。
该方法在每一次迭代时,使用已经更新的解来计算新的解。
相比于雅可比迭代法,高斯-赛德尔迭代法的收敛速度更快。
7.松弛因子迭代法松弛因子迭代法是一种对高斯-赛德尔迭代法的改进方法。
该方法在每一次迭代时,通过引入松弛因子来调节新解与旧解之间的关系。
可以通过选择合适的松弛因子来加快迭代速度。
以上是一些常用的线性方程组求解方法,不同的方法适用于不同类型的线性方程组。
在实际应用中,根据问题的特点和要求选择合适的求解方法可以提高计算的效率和精度。
高斯-赛德尔迭代法解线性方程组VB程序参考教材:《数值分析》数值分析(李庆扬、王能超、易大义)1、窗体文件(fram1.frm)Option ExplicitOption Base 1Private Sub Command1_Click()Dim i%, j%, rows%, cols%Dim A!(), b!(), rootDim coef_arr, import_filename$import_filename = get_import_filenameIf import_filename = "" Then Exit Sub 'MsgBox "未选择路径":Call importdata(coef_arr, import_filename)rows = UBound(coef_arr, 1)cols = UBound(coef_arr, 2) - 1ReDim A(rows, cols), b(rows)For i = 1 To rowsFor j = 1 To colsA(i, j) = coef_arr(i, j) '矩阵ANext jb(i) = coef_arr(i, cols + 1) '最后一列为矩阵bNext iCall Gauss_Seidel(root, A, b)For i = 1 To UBound(root)Text1.Text = Text1 & root(i) & vbCrLfNext iEnd Sub2、模块文件(model1.bas)Option Explicit'********************************************************************* '获取需要打开的文件路径'输入:无'输出:需要打开的文件路径'********************************************************************* Function get_import_filename$()On Error GoTo ErrHandler 'CancelError 为True。
Gauss Seidel 迭代法:Gauss Seidel 迭代法是逐个分量进行计算的一种方法,考虑线性代数方程组Ax=b 的分量法表示i j j ij b x a==∑n 1 , i=1,2,···,n对于给定的初值)0(x ,Ga迭代法如下: Gauss Seidel 迭代算法:· k=0· 11)(11)1(1/)2(x a x a b n j k j j k ∑=-==+ ·22)(2)1(1212)1(2/)3(x a x a x a b n j k j j k k ∑=--==++· …·1,1)(,12)1(,11)1(1-n /)1(x ----+--+-=-=∑=n n k n n n n j k j j n n k a x a x a b ·nn n j k j nj n k a x a b /)(x 11)1()1(n ∑-++-=== ·2)0()1(2)()1(x x x x k k k -<-++ε停止,否则k=k+1从Gauss Seidel 迭代算法的计算过程可以发现,每计算一个新的分量都需要前面所有新计算出来的分量的结果,这是一个严格的串行过程。
那么,如何设计一个并行计算的方法呢?记)0(1s j n i j ij i x a ∑+== ,i=1,2, …,n-1,s n =0。
并行计算方法如下:并行Gauss Seidel 迭代算法:k=0for i=1,n do0,/)(x )1(=-=+i ii i i k i s a s bfor j=1,n,j ≠i do)1(s ++=k i ji j j x a send{for} end{for}2)0()1(2)()1(x x x x k k k -<-++ε停止,否则k=k+1在并行Gauss Seidel 迭代算法中,每次并行计算j s ,之后可以并行计算截止条件是否满足。
数值分析实验五
班级: 10信计二班 学号:59 姓名:王志桃 分数:
一.实验名称
高斯-赛德尔迭代法解线性方程组
二.实验目的
1. 学会利用高斯赛德尔方法解线性方程组
2. 明白迭代法的原理
3. 对于大型稀疏矩阵方程组适用于迭代法比较简单
三.实验内容
利用Gauss-Seidel 迭代法求解下列方程组
⎪⎩⎪⎨⎧=++=-+=+-36123633111420238321
321321x x x x x x x x x , 其中取→=0)0(x 。
四、算法描述
由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值,若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量)1(+k i
x 时,用最新分量)1(1+k x ,⋅⋅⋅+)1(2k x )1(1-+k i x 代替旧分量)(1k x ,⋅⋅⋅)(2k x )(1-k i x ,就得到所谓解方程组的Gauss-Seidel 迭代法。
其迭代格式为
T n x x x x )()0()0(2)0(1)0(,,,⋅⋅⋅= (初始向量),
)(11111)()1(
)
1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ⋅⋅⋅=⋅⋅⋅=,,,;,,,
或者写为
⎪⎩
⎪⎨⎧--=⋅⋅⋅=⋅⋅⋅==∆+=∑∑-=-+=+++)(1)210i 210(1111)(
)1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,,
五、 编码
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <math.h>
#define MAX_n 100
#define PRECISION 0.0000001
#define MAX_Number 1000
void VectorInput(float x[],int n) //输入初始向量
{
int i;
for(i=1;i<=n;++i)
{
printf("x[%d]=",i);
scanf("%f",&x[i]);
}
}
void MatrixInput(float A[][MAX_n],int m,int n) //输入增广矩阵
{
int i, j;
printf("\n===Begin input Matrix elements===\n");
for(i=1;i<=m;++i)
{
printf("Input_Line %d : ",i);
for(j=1;j<=n;++j)
scanf("%f",&A[i][j]);
}
}
void VectorOutput(float x[],int n) //输出向量
{
int i;
for(i=1;i<=n;++i)
printf("\nx[%d]=%f",i,x[i]);
}
int IsSatisfyPricision(float x1[],float x2[],int n) //判断是否在规定精度内{
int i;
for(i=1;i<=n;++i)
if(fabs(x1[i]-x2[i])>PRECISION) return 1;
return 0;
}
int Jacobi_(float A[][MAX_n],float x[],int n) //具体计算
{
float x_former[MAX_n];
int i,j,k;
printf("\nInput vector x0:\n");
VectorInput(x,n);
k=0;
do{
for(i=1;i<=n;++i)
{
printf("\nx[%d]=%f",i,x[i]);
x_former[i]=x[i];
}
printf("\n");
for(i=1;i<=n;++i)
{
x[i]=A[i][n+1];
for(j=1;j<=n;++j)
if(j!=i) x[i]-=A[i][j]*x[j]; if(fabs(A[i][i])>PRECISION)
x[i]/=A[i][i];
else
return 1;
}
++k;
}while(IsSatisfyPricision(x,x_former,n) && k<MAX_Number);
if(k>=MAX_Number)
return 1;
else
{
printf("\nG-S %d times!",k);
return 0;
}
}
int main() //主函数
{
int n;
float A[MAX_n][MAX_n],x[MAX_n];
printf("\nInput n=");
scanf("%d",&n);
if(n>=MAX_n-1)
{
printf("\n\007n must <%d!",MAX_n);
exit(0);
}
MatrixInput(A,n,n+1);
if(Jacobi_(A,x,n))
printf("\nG-S Failed!");
else
{
printf("\nOutput Solution:");
VectorOutput(x,n);
}
printf("\n\n\007Press any key to quit!\n");
getch();
}
通过实验使我更加熟练的掌握和使用高斯赛贝尔迭代法来解线性方程组,而且这个方法可以用来解大型的稀疏矩阵,是的解线性方程组更加的便捷。
但是,这个实验很繁琐,必须要仔细的对待。
如有侵权请联系告知删除,感谢你们的配合!。