解线性方程组的迭代法
- 格式:pptx
- 大小:609.25 KB
- 文档页数:55
第二章解线性代数方程组的迭代法2. 1 引言在许多实际问题中,常常需要求解这样的线性代数方程组,它的系数矩阵数很高,但非零元素很少,人们称其为大型稀疏线性代数方程组,对于这类方程组,如果它乂不具有带状性,那么,再用直接法求解就不太有效,因为用直接法进行消元或矩阵的三角分解时,没有考虑到系数矩阵的稀疏性,破坏了系数矩阵的形状,导致了计算量的增加和存储单元的浪费,于是,人们常用迭代法求解大型稀疏线性代数方程组。
迭代法只需要存储系数矩阵的非零元素,这样,占用内存在单元较少,能解高阶线性代数方程组。
山于迭代法是通过逐次迭代来逼近方程组的解,因此,收敛性和收敛速度是构造迭代法时要注意的问题。
那么,是否可以构造一种适用于一般情况的迭代法呢?回答是否定的,这是因为不同的系数矩阵具有不同的性态,一般地,每一种迭代法都具有一定的适用范围,在本章的学习中将会看到,有时,某种方法对一类方程组迭代收敛,而对另一类方程组进行迭代时就会发散。
因此,我们应该学会针对具有不同性质的线性代数方程组,构造合适的迭代方法。
本章主要介绍一些基本的迭代法,并在一定的范围内讨论其中儿种方法的收敛法。
2. 2 基本迭代法考虑线性方程组如坷+如勺+…+气兀”二勺a2t x i+a22x2 + - + a2…x n =b2■•••••••••••(2. 1)采用矩阵和向量记号,我们可以把(2.1)式写成Ax = h(2.2)其中,为非奇异矩阵,设下面我们介绍雅可比(Jacobi)迭代,高斯-塞德尔(Gauss-Seidel)迭代与S0R迭代以及SS0R迭代的基本思想和算法。
为了方便地给出矩阵表示式,我们引进下列矩阵分裂:4SD-U,(2.3)其中-a2\-a n\(1)雅可比迭代的基本思想从式(2.1)的第i个方程中解出X t=(/ = 1,2,•••,«)我们把迭代前面的值代入上式右边,山计算得到等式左边的值作为一次迭代的新值,然后再把这个新值代入右边,再从左边得到一个新值,如此反复,就得到了雅可比迭代公式。
计算方法3_线性方程组迭代解法线性方程组的迭代解法是解决线性方程组的一种常见方法,常用于大规模的线性方程组求解。
该方法通过不断迭代更新解的近似值,直到满足一定的收敛准则为止。
线性方程组的迭代解法有很多种,其中最经典的是雅可比迭代法、高斯-赛德尔迭代法和超松弛迭代法。
本文将分别介绍这三种迭代解法及其计算方法。
雅可比迭代法是一种比较简单的线性方程组迭代解法,它的基本思想是先将线性方程组转化为对角占优的形式,然后通过迭代求解逐渐接近精确解。
雅可比迭代法的迭代公式为:其中,x^(k+1)是第k+1次迭代的近似解,n是未知数的个数,a_ij 是系数矩阵A的元素,f_i是方程组的右端向量的元素。
雅可比迭代法的计算步骤如下:1.将线性方程组转化为对角占优的形式,即保证矩阵A的对角元素绝对值大于其它元素的绝对值。
2.初始化向量x^(0),设定迭代终止准则。
3.根据雅可比迭代公式,计算x^(k+1)。
4.判断迭代终止准则是否满足,如果满足,则停止迭代,返回近似解x^(k+1);否则,继续进行下一次迭代。
高斯-赛德尔迭代法是雅可比迭代法的改进方法,它的基本思想是在每次迭代计算x^(k+1)时,利用已经计算出的近似解作为x的一部分。
高斯-赛德尔迭代法的迭代公式为:其中,x^(k+1)_i是第k+1次迭代的近似解中第i个未知数的值,x^(k)_i是第k次迭代的近似解中第i个未知数的值。
高斯-赛德尔迭代法的计算步骤如下:1.将线性方程组转化为对角占优的形式。
2.初始化向量x^(0),设定迭代终止准则。
3.根据高斯-赛德尔迭代公式,计算x^(k+1)。
4.判断迭代终止准则是否满足,如果满足,则停止迭代,返回近似解x^(k+1);否则,继续进行下一次迭代。
超松弛迭代法是对高斯-赛德尔迭代法的一种改进方法,它引入了松弛因子ω,通过调整参数ω的值,可以加快迭代的收敛速度。
超松弛迭代法的迭代公式为:其中,0<ω<2,x^(k+1)_i是第k+1次迭代的近似解中第i个未知数的值,x^(k)_i是第k次迭代的近似解中第i个未知数的值。
线性方程组的迭代式求解方法迭代法解方程的基本原理1.概述把 Ax=b 改写成 x=Bx+f ,如果这一迭代格式收敛,对这个式子不断迭代计算就可以得到方程组的解。
道理很简单:对 x^{(k+1)}=bx^{(k)}+f 两边取极限,显然如果收敛,则最终得到的解满足 \lim_{k\rightarrow\infty } x^{(k)}=x^*=Bx^*+f ,从而必然满足原方程 Ax^*=b 。
迭代方法的本质在于这一次的输出可以当作下一次的输入,从而能够实现循环往复的求解,方法收敛时,计算次数越多越接近真实值。
2.收敛条件充要条件:迭代格式 x=Bx+f 收敛的充要条件是 \rho (B)<1充分条件: \Vert B\Vert <1即 \Vert B\Vert <1 \Rightarrow \rho(B)<1\Leftrightarrow 迭代收敛一、Jacobi迭代法怎样改写Ax=b ,从而进行迭代求解呢?一种最简单的迭代方法就是把第i行的 x_i 分离出来(假定 a_{ii} \ne 0 ):\sum_{j=1}^{n}a_{ij}x_j=b_i\Rightarrow x_i=\frac{b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j}{a_{ii}}\quad \\这就是Jacobi(雅可比)迭代法。
迭代格式给定x^{(0)}=\left[x_1^{(0)},x_2^{(0)},\cdots,x_n^{(0)}\rig ht]^T ,则Jacobi法的迭代格式(也称分量形式)为x_i^{(k+1)}=\frac{1}{a_{ii}}\left ( {b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j^{(k)}}\right),\quadi=1,2,\cdots,n\\矩阵形式设 A=D-L-U。
Jacobi法的矩阵形式(也称向量形式)为x^{(k+1)}=B_Jx^{(k)}+D^{-1}b\\其中迭代矩阵 B_J=D^{-1}(L+U)收敛条件\begin{eqnarray} \left. \begin{array}{lll} \VertB_J\Vert <1 \\ A 严格对角占优\\ A, 2D-A对称正定\end{array} \right \} \end{eqnarray} \Rightarrow \rho (B_J)<1\Leftrightarrow 迭代收敛特别地,若 A 对称正定且为三对角,则 \rho^2(B_J)=\rho (B_G)<1 。
解线性方程组的迭代法Haha送给需要的学弟学妹摘要:因为理论的分析表明,求解病态的线性方程组是困难的,但是实际情况是否如此,需要我们来具体检验。
系数矩阵H 为Hilbert 矩阵,是著名的病态问题。
因而决定求解Hx b =此线性方程组来验证上述问题。
详细过程是通过用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法求解Hx b =线性方程组。
关键词:病态方程组、Gauss 消去法、J 迭代法、GS 迭代法、SOR 迭代法目录:一、问题背景介绍二、建立正确额数学模型 三、求解模型的数学原理1、Gauss 消去法求解原理2、Jacobi 迭代法求解原理3、G-S 迭代法求解原理4、SOR 迭代法求解原理5、Jacobi 和G-S 两种迭代法收敛的充要条件 四、计算过程(一)Hilbert 矩阵维数n=6时1、Gauss 消去法求解2、Jacobi 迭代法求解3、G-S 迭代法求解4、SOR 迭代法求解(二)Hilbert 矩阵维数n=20、50和100时1、G-S 迭代法求解图形2、SOR 迭代法求解图形 五、编写计算程序 六、解释计算结果1、Gauss 消去法误差分析2、G-S 迭代法误差分析3、SOR 迭代法误差分析G-S 迭代法与SOR 迭代法的误差比较 七、心得体会正文:一、问题背景介绍。
理论的分析表明,求解病态的线性方程组是困难的。
实际情况是否如此,会出现怎样的现象呢?二、建立正确的数学模型。
考虑方程组Hx b =的求解,其中系数矩阵H 为Hilbert 矩阵,,,1(), , ,1,2,,1i j n n i j H h h i j n i j ⨯===+-这是一个著名的病态问题。
通过首先给定解(为方便计算,笔者取x 的各个分量等于1),再计算出右端,b Hx =这样Hx b =的解就明确了,再用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法分别求解,Hx b =将求解结果与给定解比较,而后求出上述四种方法的误差,得出哪种方法比较好。
线性方程组迭代法
线性方程组迭代法,又称坐标下降法,是一种用于解线性方程组的迭代求解方法,常用于线性规划以及单纯形法等技术。
早在上世纪50年代,此方法就在解决
线性规划问题中得到了广泛应用,到目前为止,这种技术仍然广泛使用。
线性方程组迭代法是一种基于不断迭代调整变量,使目标函数达到最优结果的
迭代求解法。
其基本步骤是:
(1) 初始化目标函数变量:首先,初始化线性方程组的目标函数的变量;
(2) 评估梯度:选择合适的算法计算目标函数的梯度;
(3) 根据该梯度更新变量:更新目标函数变量的值,使得在此次更新之后的值
更加有利于满足线性方程组的要求;
(4) 重复上述步骤,直到目标函数足够接近最优值为止;
线性方程组迭代法能够快速地求解出线性规划问题的最优解,因此,它在计算
机上经常被用来优化问题,进而提高系统运行效率。
随着网络技术的发展,线性方程组迭代法在互联网领域得到了广泛应用,这在大大缩短了计算机程序的运行时间,提高了互联网的效率。
同时,线性方程组迭代法也有助于提高系统的性能,改善用户的体验,提升企业的品牌形象。
1 / 8数值分析实验六:解线性方程组的迭代法2016113 张威震1 病态线性方程组的求解1.1 问题描述理论的分析表明,求解病态的线性方程组是困难的。
实际情况是否如此,会出现怎样的现象呢?实验内容:考虑方程组Hx=b 的求解,其中系数矩阵H 为Hilbert 矩阵,,,1(),,,1,2,,1i j n n i j H h h i j n i j ⨯===+-这是一个著名的病态问题。
通过首先给定解(例如取为各个分量均为1)再计算出右端b 的办法给出确定的问题。
实验要求:(1)选择问题的维数为6,分别用Gauss 消去法、列主元Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法求解方程组,其各自的结果如何?将计算结果与问题的解比较,结论如何?(2)逐步增大问题的维数(至少到100),仍然用上述的方法来解它们,计算的结果如何?计算的结果说明了什么?(3)讨论病态问题求解的算法1.2 算法设计首先编写各种求解方法的函数,Gauss 消去法和列主元高斯消去法使用实验5中编写的函数myGauss.m 即可,Jacobi 迭代法函数文件为myJacobi.m ,GS 迭代法函数文件为myGS.m ,SOR 方法的函数文件为mySOR.m 。
1.3 实验结果1.3.1 不同迭代法球求解方程组的结果比较选择H 为6*6方阵,方程组的精确解为x* = (1, 1, 1, 1, 1, 1)T ,然后用矩阵乘法计算得到b ,再使用Gauss 顺序消去法、Gauss 列主元消去法、Jacobi 迭代法、G-S 迭代法和SOR 方法分别计算得到数值解x1、x2、x3、x4,并计算出各数值解与精确解之间的无穷范数。
Matlab 脚本文件为Experiment6_1.m 。
迭代法的初始解x 0 = (0, 0, 0, 0, 0, 0)T ,收敛准则为||x(k+1)-x(k)||∞<eps=1e-6,SOR方法的松弛因子选择为w=1.3,计算结果如表1。
数值分析第六章线性方程组迭代解法线性方程组是数值分析中的重要内容之一,其求解方法有很多种。
其中一种常用的方法是迭代解法,即通过不断迭代逼近方程组的解。
本文将介绍线性方程组迭代解法的基本思想和常用方法。
线性方程组可以用矩阵形式表示为Ax=b,其中A是系数矩阵,b是常数向量,x是未知向量。
线性方程组的解可以是唯一解,也可以是无穷多个解。
迭代解法的基本思想是通过不断迭代,并利用迭代序列的极限,逼近线性方程组的解。
迭代解法适用于大型的线性方程组,而直接求解法则适用于小型的线性方程组。
常用的迭代解法有雅可比迭代法、高斯-赛德尔迭代法和逐次超松弛迭代法。
雅可比迭代法是最简单的线性方程组迭代解法之一、它的基本思想是将线性方程组的每个方程都单独表示为未知数x的显式函数,然后通过不断迭代求解。
雅可比迭代法的迭代公式为:x(k+1)=D^(-1)(b-(L+U)x(k))其中,D是A的对角元素构成的对角矩阵,L是A的下三角矩阵,U 是A的上三角矩阵,x(k)是第k次迭代的解。
高斯-赛德尔迭代法是雅可比迭代法的改进版。
它的基本思想是将每个方程的解带入到下一个方程中,而不是等到所有方程都迭代完毕后再计算下一组解。
高斯-赛德尔迭代法的迭代公式为:x(k+1)=(D-L)^(-1)(b-Ux(k))其中,D是A的对角矩阵,L是A的下三角矩阵(除去对角线),U是A的上三角矩阵(除去对角线),x(k)是第k次迭代的解。
逐次超松弛迭代法是对高斯-赛德尔迭代法的改进。
它引入了松弛因子w,通过调节松弛因子可以加快收敛速度。
逐次超松弛迭代法的迭代公式为:x(k+1)=(D-wL)^(-1)[(1-w)D+wU]x(k)+w(D-wL)^(-1)b其中,D是A的对角矩阵,L是A的下三角矩阵(除去对角线),U是A的上三角矩阵(除去对角线),w是松弛因子,x(k)是第k次迭代的解。
线性方程组迭代解法需要设置迭代停止准则,通常可以设置迭代次数上限或者设置一个精度要求。