必胜课奥数测试卷
- 格式:doc
- 大小:20.50 KB
- 文档页数:2
四年级数学奥数竞赛试卷及答案图文百度文库一、拓展提优试题1.甲,乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C 时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是米.2.(8分)小红去买水果,如果买5千克苹果则少4元,如果买6千克梨则少3元,已知苹果比梨每500克贵5角5分,那么小红买水果共带了元.3.小慧从开始站立的A点向西走了15米,到达B点,接着从B点向东走了23米,到达C点,那么从C点到A点的距离是米.4.如果今天是星期五,那么从今天算起,57天后的第一天是星期.5.某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是.6.如图,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有个,面积为8S 的正方形有个.7.在一个长方形内,任意画一条直线,长方形被分成两部分(如图),如果画三条互不重合的直线,那么长方形至少被分成部分,最多被分成部分.8.A说:“我10岁,比B小2岁,比C大1岁.”B说:“我不是年龄最小的,C和我差3岁,C是13岁.”C说:“我比A年龄小,A是11岁,B比A 大3岁.”以上每人所说的三句话中都有一句是错误的,请确定其中A的年龄是岁.9.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…10.一个两位数除723,余数是30,满足条件的两位数共有个,分别是.11.一列火车身长90米,火车以每分钟160米的速度通过山洞,用了3分钟,山洞长390米.12.五个人站成一排,每个人戴一顶不同的帽子,编号为1、2、3、4、5.每人只能看到前面的人的帽子.小王一顶都看不到;小孔只看到4号帽子;小田没有看到3号帽子,但看到了1号帽子;小严看到了有3顶帽子,但没有看到3号帽子;小韦看到了3号帽子和2号帽子,小韦戴号帽子.13.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生名.14.(8分)2015年1月1日是星期四,那么2015年6月1日是星期.15.(8分)杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两颗树之间的距离都是1米.杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等.那么梧桐树与桦树之间的距离是米.【参考答案】一、拓展提优试题1.【分析】由题目中的已知条件,得出甲乙的速度比,进而又得出他们的路程比,这样求出甲到达中点后再与乙共行240米,甲行的路程即CD之间的距离.解:由题意知“甲走360米时乙正好走240米”,甲、乙的速度比是360:240=3:2相同时间内,甲、乙的路程比等于他们的速度比即3:2甲乙共行240米,甲行的路程是240×3÷(2+3)=144(米)故:CD的距离是144米.【点评】解此题的突破口就是能得出他们的速度比,之后就可轻松解答了.2.解:设梨每千克x元,则每千克苹果x+0.55×2=(x+1.1)元6x﹣3=5×(x+1.1)﹣46x﹣3=5x+5.5﹣46x﹣5x=1.5+3x=4.56×4.5﹣3=27﹣3=24(元)答:小红买水果共带了24元.故答案为:24.3.【分析】我们通过画图进行解决,向西走15米,然后再向东走23米其实,从C点到A点的距离是就是23米与15米的差.解:画图如下:从C点到A点的距离是:23﹣15=8(米),答:从C点到A点的距离是8米.4.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.5.【分析】先假设男生和女生一样多,则男生有4人,女生有4人,因为女生比男生多,所以男生的人数一定小于4人,然后写出即可.解:8÷2=4(人),因为女生比男生多,所以男生的人数一定小于4人,所以男生可能是1人,2人或3人;故答案为:1人,2人或3人.【点评】解答此题的关键:先假设男、女生一样多,求出男生人数,进而根据题意,进行分析、继而得出结论.6.【分析】(1)观察题干可知,阴影部分的面积是S,则面积为2S的三角形是每个小正方形的面积的一半,即三角形的两条直角边都是小正方形的边长,由此即可计数;(2)阴影部分的面积是S,则它所在的正方形的面积是4S,则面积为8S的正方形只有中间1个,解:(1)观察图形可知,面积为2S的独三角形有4个;由两个面积为S的三角形组成的三角形有4×4=16(个),所以一共有4+16=20(个);(2)面积为8S的正方形只有1个.故答案为:20;1.【点评】本题考查平面图形数量的确定,属于中档题目,注意仔细地观察图形,要做到不重不漏.7.【分析】三条线不重合,不相交时,把长方形分成的部分最少;三条线不重合,但在长方形内两两相交,有3个交点,把长方形分成的部分最多,如下图所示,因此得解.解:由分析可得:故答案为:4,7.【点评】认真分析题意,找出规律是解决此题的关键,线的交点越多,图形被分的部分越多.8.解:根据题干分析,将讨论分析的过程利用表格的形式进行统计如下:×√第一句第二句第三句A说我10岁×比B小2岁√比C大1岁√B说我不是最小的C和我差3岁C是13岁C说我比A年龄小×A是11岁√B比A大3岁√以得出:B是11+2=13岁,C是11﹣1=10岁;即A11岁、B13岁、C10岁;将这个结论代入上表中,可以得出B说的C是13岁时错误的,其他两句正好符合题意是正确的,由此可得,此假设成立;答:由上述推理可以得出A是11岁.故答案为:11.9.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.10.解:723﹣30=693,693=3×3×7×11,所以一个两位数除723,除数大于30的两位数因数有:11×3=33,11×7=77,3×3×7=63,11×3×3=99,共4个;故答案为:33、63、77、99.11.解:160×3﹣90,=480﹣90,=390(米),答:山洞长390米.故答案为:390.12.解:根据分析,首先从“小王一顶都看不到”判断出小王排在第一位的位置上;然后从“小孔只看到4号帽子”判断出小孔排在第二的位置上;接着从“小严看到了有3顶帽子”判断出小严在第四的位置上;结合小田没看到3,小韦看到3对比可知小田在第三位,小韦在第五位;由于第二位的小孔只看到4,所以小王的帽子编号为4;由第三位的小田看到1,可知第二位的小孔的帽子编号为1;因为第四位的小严没看到3,而第五位的小韦看到了3和2,所以小田帽子编号为2,小严帽子编号为3,小韦帽子编号为5.故答案是:5.13.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.解:(730﹣16)÷17=714÷17=42(名);答:这个班共有学生42名.故答案为:42.【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.14.解:因为2015÷4=503…3,所以2015年是平年,2月有28天,(31×3+30+28)÷7=151÷7=21(个)…4(天)因为2015年1月1日是星期四,4+4﹣7=1所以2015年6月1日是星期一.故答案为:一.15.解:杨树与柳树、槐树之间的距离相等,所有三种树的位置有可能是:柳□杨□槐,柳杨槐□□,□柳杨槐□,□□柳杨槐,其中□表示暂时不知道.而桦树与杨树、槐树之间的距离相等,所以只有可能是:柳□杨桦槐,剩余的一个位置是梧桐树,所以梧桐树和桦树间的距离是2米.故答案为:2.。
【word直接打印】小学三年级数学奥数竞赛试卷及答案图文百度文库一、拓展提优试题1.★+★+★+■=36,■=●+●,●=★+★+★,■=,●=,★=.2.公园里有一排彩旗,按3面黄旗、2面红旗、4面粉旗的顺序排列,小红看到这排旗子的尽头是一面粉旗.已知这排彩旗不超过200面,这排旗子最多有面.3.五个连续的自然数的和是2010,其中最大的一个是.4.星期一,小强从家里出发,到学校去.他每分钟走60米,5分钟后发现语文书忘在家中的台子上了,此时他离开学校还有700米的路程.于是他赶紧以每分钟100米的速度回家,回家拿好书后又立即以每分钟100米的速度赶往学校.学校与小强的家相距1000米.小强这天至少走了分钟.5.下面有20个点,每相邻的两个点之间距离都相等,将四个点用直线连接起来可以得到一个正方形.用这样的方法,你可以得到个正方形.6.李老师将一根长12米的木条锯成4小段,要用12分钟.照这样的锯法,如果将这根木条锯成8小段一共需要用分钟.7.小亮家买了72个鸡蛋,他们家还养了一只每天都下一个蛋的母鸡.如果小亮家每天吃4个鸡蛋,那么这些鸡蛋够他们家连续吃天.8.5个只由数字8组成的自然数之和为1000,其中最大的数与第二大的数之差是.9.动物园的饲养员把一堆桃子分给若干只猴子,如果每只猴子分6个,剩57个桃子;如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个.那么,有()个桃子.A.216B.324C.273D.30110.在一道没有余数的除法中,被除数、除数与商三个数的和是103,商是3.被除数是()A.25B.50C.75【参考答案】一、拓展提优试题1.解:由■=●+●,●=★+★+★,可得■=6个★,代入★+★+★+■=36,3个★加6★等于9个★就等于36,即可得出★的值是4,★=4,代入●=★+★+★,求出●=12,●=12,代入■=●+●,求出■=24;故答案为:24,12,4.2.解:200÷(3+2+4),=200÷9,=22…2(面);所以剩下的2面彩旗是在第23个循环周期内,是2面黄旗,因为最后一面看到的是粉旗,所以第23个循环周期内没有旗了;这排彩旗最多有:22×9=198(面),答:这排彩旗最多有198面.故答案为:198.3.解:2010÷5=402,最大的数是402+1+1=404;故答案为:404.4.解:(1)60×5+700,=300+700,=1000(米);(2)(60×5×2+700)÷100+5,=1300÷100+5,=13+5,=18(分钟);答:学校与小强的家相距1000米.小强这天至少走了18分钟.故答案为:1000,18.5.解:边长是1个单位长度的正方形个数是12;边长是2个单位长度的正方形个数是6;边长是3个单位长度的正方形个数是2;边长最大是3个单位长度,正方形的边长再大就构不成正方形了;一共有正方形:12+6+2=20(个).答:可以得到20个正方形.故答案为:20.6.解:根据分析可得,12÷(4﹣1)×(8﹣1),=4×7,=28(分钟);答:将这根木条锯成8小段一共需要用28分钟.故答案为:28.7.解:依题意可知:小亮每天吃4个,吃掉每天鸡下的蛋还需要3个.72÷3=24(天)故答案为:248.解:1000=888+88+8+8+8888﹣88=800故填8009.解:依题意可知:如果每只猴子分6个,剩57个桃子.如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个证明少了5×9+6=51;猴子共有(57+51)÷(9﹣6)=36(只);桃子共有36×6+57=273.故选:C.10.解:因为被除数、除数与商三个数的和是103,商是3,所以被除数+除数=103﹣3=100;因为除数=,所以被除数是:100÷(1+)=100÷=75故选:C.。
一、拓展提优试题1.有20间房间,有的开着灯,有的关着灯,在这些房间里的人都希望与大多数房间保持一致.现在,从第一间房间的人开始,如果其余19间房间的灯开着的多,就把灯打开,否则就把灯关上,如果最开始开灯与关灯的房间各10间,并且第一间的灯开着.那么,这20间房间里的人轮完一遍后,关着灯的房间有()间.A.0B.10C.11D.202.期末考试到了,小蕾的前两门语文和数学的平均分是90分,如果他希望自己的语文、数学、英语三门平均分能够不低于92分,那么他的英语至少要考到分.3.六个数的平均数是24,加上一个数后的平均数是25,加上的这个数是.4.有3盒同样重的苹果,如果从每盒中都取出4千克,那么盒子里剩下的苹果的重量正好等于原来1 盒苹果的重量,原来每盒苹果重()千克.A.4B.6C.8D.125.如图,在边长10分米的正方形周围都贴上半圆形花边,需要买圆形纸片()个.A.8B.40C.60D.806.将一个大三角形分割成36 个小三角形,并且将其中一部分小三角形涂成红色,另一部分涂成蓝色,并且使得两个有公共边的三角形的颜色不同,如果红色的三角形比蓝色的多,那么多()个.A.1B.4C.6D.77.这个图形最少是由()个正方体整齐堆放而成的.A.12B.13C.14D.158.一只大熊猫从A地往B地运送竹子,他每次可以运送50根,但是他从A地走到B地和从B地返回A地都要吃5根,A地现在有200根竹子,那么大熊猫最多可以运到B地()根.A.150B.155C.160D.1659.用2、4、12、40四个数各一次,可以通过这样的运算得到24.10.动物园的饲养员把一堆桃子分给若干只猴子,如果每只猴子分6个,剩57个桃子;如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个.那么,有()个桃子.A.216B.324C.273D.30111.四月份共有30天,如果其中有5个星期六和星期日,那么4月1日是星期.12.6□4÷3,要使商的中间有一位是0,□里可以填.(几种情况填写完整)13.把一根15米长的钢管锯成5段,每锯一次用6分钟,一共要用分钟.14.同学们排成一个方阵进行广播操表演.小海的位置从前、从后、从左、从右数都是第5个,参加广播操表演的共有人.15.传说,能在三叶草中找到四叶草的人,都是幸运之人.一天,佳佳在大森林中摘取三叶草,当她摘到第一颗四叶草时,发现摘到的草刚好共有100片叶子,那么,她已经有颗三叶草.16.1千克大豆可以制成3千克豆腐,制成1千克豆油则需要6千克大豆,豆腐3元1千克,豆油15元1千克,一批大豆共460千克,制成豆腐或豆油销售后得到1800元,这批大豆中有千克被制成了豆油.17.有一种特殊的计算器,当输入一个数后.计算器会把这个数乘以2,然后将其结果的数字顺序颠倒,接着再加2后显示最后的结果.如果输入一个两位数,最后显示的结果是45,那么,最开始输入的是.18.小明有一本100道题的练习册,他决定单数的日子做2道题,双数的日子做3道题,如果周六或周日则额外多做2道题.小明从12月25日星期四开始做题,他1月26日能将练习册上的题都做完.19.小圆有一筐桃子,第一次他吃掉了全部桃子的一半多1个,第二次他又吃掉了剩余桃子的一半少1个,此时筐里还剩下4个桃子,那么这个筐里原有桃子个.20.(12分)一次考试有三道题,四个好朋友考完后互相交流了成绩.发现四人各对了3、2、1、0题.这时一个路人问:你们考的怎么样啊?甲:“我对了两道题,而且比乙对的多,丙考的不如丁.”乙:“我全对了,丙全错了,甲考的不如丁.”丙:“我对了一道,丁对了两道,乙考的不如甲.”丁:“我全对了,丙考的不如我,甲考的不如乙.”已知大家都是对了几道题就说几句真话,那么对了2题的人是()A.甲B.乙C.丙D.丁21.张、李、王三位老师分别来自北京、上海、深圳,分别教数学、语文、英语.根据下面提供的信息,可以推出张老师来自,教;王老师来自,教.①张老师不是北京人,李老师不是上海人;②北京的老师不教英语;③上海的老师教数学;④李老师不教语文.22.张老师将一根木料锯成9小段,每段长4公米.假如将这根木料锯成3公米的小段,一共要锯次.23.兄妹俩人去买文具,哥哥带的钱是妹妹的两倍,哥哥用去180元,妹妹用去30元,这是兄妹俩人剩下的钱正好相等.哥哥带了元钱,妹妹带了元钱.24.50个学生解答A、B两题,其中没答对A题的有12人,答对A题的且没答对B题的有30人.那么A、B两题都答对的有人.25.△=○+○+○,△+○=40,则○=,△=.26.用3、0、8这三个数字可以组成个数字不重复的三位数.27.公园里有一排彩旗,按3面黄旗、2面红旗、4面粉旗的顺序排列,小红看到这排旗子的尽头是一面粉旗.已知这排彩旗不超过200面,这排旗子最多有面.28.11×11=121,111×111=12321,1111×1111=1234321,1111111×1111111=.29.只用2,3,5三个数(可重复使用)填在右图中的○内,使得每个三角形三个顶点上的三个数的和都相等.30.60名探险队员过一条河,河上只有一条可乘坐6人的橡皮艇(来回算两次),过一次河需要3分钟,全体队员渡到河对岸一共需要分钟.31.★+★+★+■=36,■=●+●,●=★+★+★,■=,●=,★=.32.(8分)如图中共有20个三角形.33.★+■=24,■+●=30,●+★=36,■=,●=,★=.34.李老师将一根长12米的木条锯成4小段,要用12分钟.照这样的锯法,如果将这根木条锯成8小段一共需要用分钟.35.图中一共有个长方形,个三角形,条线段.36.切一个蛋糕,切1刀最多切成2块,切2刀最多切成4块,切3刀最多切成7块,照这样切下去,切5刀最多切成块.37.如图有5个点,在两个点之间可以画出一条线段,画出的图形中共可以得到条线段.38.超市中的某种汉堡每个10元,这种汉堡最近推出了“买二送一”的优惠活动,即花钱买两个汉堡,就可以免费获得一个汉堡,已知东东和朋友需要买9个汉堡,那么他们最少需要花元钱.39.已知:1×9+2=11,12×9+3=111,123×9+4=1111,…,△×9+〇=111111,那么△+〇=.40.小李、小华比赛爬楼梯,小李跑到第5层时,小华正好跑到第3层.照这样计算,小李跑到第25层时,小华跑到第层.【参考答案】一、拓展提优试题1.解:因为最开始开灯和关灯的各是10间,由于第一间的灯是开着的,所以,第一间人看到的,开灯的9间,关灯的10间,之后,他就关灯,以后无论开灯的出来看,还是关灯的出来看,始终关灯的多,即:一轮结束,灯全部会关闭,故选:D.2.解:92×3﹣90×2=276﹣180=96(分)答:他的英语至少要考到 96分.故答案为:96.3.解:25×7﹣24×6,=175﹣144,=31,答:加上的这个数是31.故答案为:31.4.解:3×4÷2=12÷2=6(千克)答:每盒苹果重6千克.故选:B.5.解:10分米=100厘米,100÷5×4÷2=20×4÷2=40(个)答:需要买圆形纸片40个.故选:B.6.解:根据分析,按题目要求来涂色的话,只有1 种涂法,如图:红色比蓝色多:(1+2+3+4+5+6)﹣(1+2+3+4+5)=6个.故选:C.7.解:观察如果俯视图是下面图形时(小正方形上的数字是上面立方体的个数),所放的立方体最少.所以所放的最少的立方体的个数为1+2+2+4+1+2+1=13个,故选:B.8.解:由题意,运四次,去四次回三次,吃掉了5×(4+3)=35根,则最多可以运到B地200﹣35=165根,故选:D.9.解:40÷4+12+2,=10+12+2,=24;故答案为:40÷4+12+2.10.解:依题意可知:如果每只猴子分6个,剩57个桃子.如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个证明少了5×9+6=51;猴子共有(57+51)÷(9﹣6)=36(只);桃子共有36×6+57=273.故选:C.11.解:4月份有30天;30÷7=4(周)…2(天);余下的2天是星期六和星期日;所以4月1日是星期六.故答案为:六.12.解:6□4÷3中,要使商的中间有一位是0,则□<3,所以□里可以填:0、1、2.故答案为:0、1、2.13.解:(5﹣1)×6=4×6=24(分钟)答:一共需要24分钟.故答案为:24.14.解:根据题干分析可得:5+5﹣1=9(人)9×9=81(人)答:参加广播操表演的共有81人.故答案为:81.15.解:(100﹣4)÷3=96÷3=32(棵)答:她已经有了32棵三叶草.故答案为:32.16.解:3×3=9(元)15÷6=2.5(元)(9×460﹣1800)÷(9﹣2.5)=2340÷6.5=360(千克)答:这批大豆中有 360千克被制成了豆油.故答案为:360.17.解:逆运算,乘积的数字顺序颠倒后为:45﹣2=43,则,颠倒前为34,输入的两位数为:34÷2=17;答:最开始输入的是17.故答案为:17.18.解:依题意可知:12月做题数量为:2+3+4+5+2+3+2=21(题);1月1日至1月7日也同样做了21题.1月8日至1月14日由于多了一个双数日子,所以做了22题.1月15日至1月21日做21题.这时候共做21+21+22+21=85题.接下来22日开始做题数量为3+2+5+4=14题.目前共做题85+14=99题,还需要1天.故答案为:2619.解:[(4﹣1)×2+1]×2=7×2=14(个)答:这个筐里原有桃子 14个.故答案为:14.20.解:全对的人不会说自己对的题少于3,故只有乙、丁可能全对.若乙全对,则排名是乙、丁、甲、丙,与丙所说的“丁对了2 道”是假话相矛盾;若丁全对,则丙的后两句是假话,不可能是第二名,又由丁的“甲考得不如乙”能知道第二名是乙,故丙全错,甲只有“丙考得不如丁”是真话,排名是丁、乙、甲、丙且4 人的话没有矛盾.所以对了2题的人是乙.故选:B.21.解:因为李老师不是上海人,上海的老师教数学,那李老师只可能教语文或英语,又因为李老师不教语文,所以李老师教英语,李老师不是上海人,北京的老师不教英语,所以李老师是深圳人;张老师不是北京人,只能是上海人,教数学;王老师是北京人,教语文.故答案为:上海,数学,北京,语文.22.解:4×9÷3=12(段),12﹣1=11(次),答:需要锯11次.故答案为:11.23.解:根据题意可得:他们的钱数差是:180﹣30=150(元);由差倍公式可得:妹妹带的钱数是:150÷(2﹣1)=150(元);哥哥带的钱数是:150×2=300(元).答:哥哥带了300元钱,妹妹带了150元钱.故答案为:300,150.24.解:50﹣12﹣30=38﹣30=8(人);答:A、B两题都答对的有8人.故答案为:8.25.解:因为,△=○+○+○,所以,△=3○,将△=3○代入△+○=40,3○+○=40,即4○=40,○=10,△=3○=3×10=30;故答案为:10;30.26.解:用3、0、8可以组成的不重复数字的三位数有:308,380,803,830;一共是4个.故答案为:4.27.解:200÷(3+2+4),=200÷9,=22…2(面);所以剩下的2面彩旗是在第23个循环周期内,是2面黄旗,因为最后一面看到的是粉旗,所以第23个循环周期内没有旗了;这排彩旗最多有:22×9=198(面),答:这排彩旗最多有198面.故答案为:198.28.解:根据分析可得:1111111×1111111=1234567654321,故答案为:1234567654321.29.解:这个幻方可以是(答案不唯一):30.解:(60﹣6)÷5,=54÷5,≈11次,3×(11×2+1),=3×23,=69(分钟),答:全体队员渡到河对岸一共需要69分钟.故答案为:69.31.解:由■=●+●,●=★+★+★,可得■=6个★,代入★+★+★+■=36,3个★加6★等于9个★就等于36,即可得出★的值是4,★=4,代入●=★+★+★,求出●=12,●=12,代入■=●+●,求出■=24;故答案为:24,12,4.32.解:根据分析可得,图中有三角形:12+6+2=20(个)答:图中共有 20个三角形..故答案为:20.33.解:★+■=24,■+●=30,●+★=36,则:★+■+■+●+●+★=24+30+36,2(★+■+●)=90,★+■+●=45,则:●=45﹣24=21;■=45﹣36=9,★=45﹣30=15;故答案为:9,21,15.34.解:根据分析可得,12÷(4﹣1)×(8﹣1),=4×7,=28(分钟);答:将这根木条锯成8小段一共需要用28分钟.故答案为:28.35.解:根据题干分析可得:长方形有(3+2+1)×(2+1)=18个;三角形有:12+9+2=23(个),线段有:19+18+12=49(条),故答案为:18;23;49.36.解:当切1刀时,块数为1+1=2块;当切2刀时,块数为1+1+2=4块;当切3刀时,块数为1+1+2+3=7块;…当切n刀时,块数=1+(1+2+3…+n)=1+.则切5刀时,块数为1+=16块;故答案为:16.37.解:如图:4+3+3=10(条),答:图形中共可以得到10条线段;故答案为:10.38.解:9÷(2+1)=3(个)10×[9÷(2+1)×2]=10×[9÷3×2]=10×6=60(元);答:他们最少需要花60元钱.故答案为:60.39.解:由题意得,1×9+2=11,12×9+3=111,123×9+4=1111,1234×9+5=11111,12345×9+6=111111,所以△=12345,〇=6,所以△+〇=12345+6=12351,故答案为12351.40.解:(25﹣1)×[(3﹣1)÷(5﹣1)]+1,=24×+1,=12+1,=13(层),答:小李跑到第25层时,小华跑到第13层.故答案为:13.。
必胜策略奥数题摘要:一、奥数题背景介绍1.奥数题的来源和发展2.奥数题在我国的重视程度二、必胜策略的重要性1.奥数竞赛的激烈程度2.必胜策略在解题中的关键作用三、必胜策略的分类及应用1.基础必胜策略a.逻辑推理b.排除法c.代入法2.进阶必胜策略a.构造法b.归纳法c.逆向思维四、必胜策略在实际解题中的应用案例1.基础必胜策略案例2.进阶必胜策略案例五、培养必胜策略能力的建议1.多做练习题2.培养逻辑思维能力3.学会总结和归纳正文:奥数题是奥林匹克数学竞赛的简称,它旨在选拔和培养具有优秀数学潜质的学生。
随着我国对奥数竞赛的重视程度不断提高,越来越多的小学生、初中生和高中生投入到奥数的学习和训练中。
在这个过程中,掌握必胜策略成为了取得好成绩的关键因素。
必胜策略是指在解决奥数题时,能够迅速找到解题方法,提高解题效率的一系列技巧。
在奥数竞赛中,时间就是分数,谁能更快地解决问题,谁就能在竞赛中占据优势。
因此,必胜策略在奥数题解题过程中具有非常重要的地位。
必胜策略可以分为基础必胜策略和进阶必胜策略。
基础必胜策略主要包括逻辑推理、排除法和代入法,这些方法适用于大部分的奥数题。
逻辑推理是通过分析题目中的条件,利用逻辑关系找到解题思路;排除法是在众多选项中,通过排除不可能成立的答案,缩小答案范围;代入法则是将选项代入题目中,检验哪个选项符合题意。
进阶必胜策略包括构造法、归纳法和逆向思维。
构造法是通过构造一个模型,将问题转化为已知的解题方法;归纳法是从特殊情况出发,推导出一般性规律;逆向思维则是从相反的角度思考问题,寻找解题思路。
在实际解题过程中,我们需要灵活运用这些必胜策略。
例如,对于一道需要运用构造法的题目,我们可以先尝试从已知条件入手,寻找可以构造的模型。
如果不行,我们再考虑使用其他策略,如归纳法或逆向思维。
通过不断尝试和总结,我们能够更好地掌握这些必胜策略,提高解题能力。
为了培养必胜策略能力,我们需要多做练习题,从题目中学习和总结。
小学二年级奥数必胜策略练习题及答案【三
篇】
导读:本文小学二年级奥数必胜策略练习题及答案【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【篇一】答案解析
【篇二】两人轮流报数,每人每次至少报1个数,*多报8个数,从1到60按顺序连续报数。
谁先报到60,谁就输了。
请给出取胜的方法。
答案解析先报5的必胜抢到60就输了,自己就必须抢到59,同上题,关键数59,50,41,32,23,14,5因此第一个报数的时候,就要先抢到5。
【篇三】有一种游戏称作“抢二十”,游戏规则是两人轮流报数,每人每次至少报1个数,*多报2个数,从1到20按顺序连续报数。
从1到20按顺序连续报数。
谁先报到20,谁就输了。
请给出取胜的方法。
答案解析先报1抢到20就输了,自己就必须抢到19,同上题,关键数16,13,10,7,4,1,因此第一个报数的时候,就要先抢到1。
2023年奥数冬令营试题奥数(奥林匹克数学竞赛)是一项旨在培养学生数学思维能力和解决问题能力的竞赛活动。
而冬令营则是为了给学生提供一个学习和交流的机会,让他们在寒假期间继续深化数学知识。
在2023年的奥数冬令营中,学生们将面临一系列挑战性的数学试题。
以下是其中的一道试题:试题:设 S 是一个三位数,它的个位数是1,百位数是3,十位数是奇数。
将 S 从十进制表示转换成八进制表示,得到的数是 A。
再将 A 从八进制表示转换成二进制表示,得到的数是 B。
问 B 的十进制表示是多少?解析:我们首先要找到满足条件的三位数S。
题目中给出了个位数是1,百位数是3,十位数是奇数。
因为个位数是1,所以百位数不能是1,因此百位数只能是3。
十位数是奇数,所以只能是1或者3。
因此,满足条件的数是131、133、311和313。
我们接下来将 S 从十进制表示转换成八进制表示。
我们可以使用除以8的方法来进行转换。
例如,我们以131为例,进行如下计算:131 ÷ 8 = 16 (3)16 ÷ 8 = 2 02 ÷ 8 = 0 (2)所以,131 的八进制表示是203。
然后,我们将 A 从八进制表示转换成二进制表示。
我们可以使用除以2的方法来进行转换。
以203为例,进行如下计算:203 ÷ 2 = 101 (1)101 ÷ 2 = 50 (1)50 ÷ 2 = 25 025 ÷ 2 = 12 (1)12 ÷ 2 = 6 06 ÷ 2 = 3 03 ÷ 2 = 1 (1)1 ÷ 2 = 0 (1)所以,203 的二进制表示是11001011。
最后,我们要求 B 的十进制表示。
我们可以将二进制转换成十进制,将每一位的值乘以2的相应次方,再相加。
以11001011为例,进行如下计算:1 × 2^7 + 1 × 2^6 + 0 × 2^5 + 0 × 2^4 + 1 × 2^3 + 0 × 2^2 + 1 × 2^1 + 1 × 2^0 = 128 + 64 + 0 + 0 + 8 + 0 + 2 + 1 = 203所以,B 的十进制表示是203。
数学奥林匹克测试题与答案(A)卷【编号】ZSWD2023B00951.计算: =________。
2.在左下图的乘法算式中,每个□表示一个数字,那么计算所得的乘积应该是________。
3.在右上图中,已知矩形GHCD的面积是矩形ABCD面积的,矩形MHCF的面积是矩形ABCD面积的,矩形BCFE的面积等于3平方米。
矩形AEMG的面积等于________平方米。
4.三个连续的自然数的最小公倍数是9828,这三个自然数的和等于________。
5.如果四个两位质数a、b、c、d两两不同,并且满足等式a+b=c+d,那么a+b的最大可能值是________。
6.某数除以11余8,除以13余10,除以17余12,那么这个数的最小可能值是________。
7.一个长方体,表面全涂上红色后,被分割成若干个体积都等于1立方厘米的小正方体。
如果在这些小正方体中,不带红色的小正方体的个数等于7,那么两面带红色的小正方体的个数等于________。
8.甲、乙两个车间共有94个工人,每天共生产1998把竹椅。
由于设备和技术的不同,甲车间平均每个工人每天只生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅。
甲车间每天竹椅的产量比乙车间多________把。
9.一个运输队包运1998套玻璃茶具。
运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元。
结果这个队实际得运费3059.6元。
在运输过程中被损坏的茶具套数是________。
10.买来一批苹果,分给幼儿园大班的小朋友。
如果每人分5个苹果,那么还剩余32个;如果每人分8个苹果,那么还有5个小朋友分不到苹果。
这批苹果的个数是________。
11.某司机开车从A城到B城。
如果按原定速度前进,可准时到达。
当路程走了一半时,司机发现前一半路程中,实际平均速度只可达到原定速度的 。
现在司机想准时到达B城,在后一半的行程中,实际平均速度与原速度的比是_______。
小学三年级数学奥数兴趣班选拔试卷(二)班级 姓名 学号一、开动你聪明的小脑筋填一填。
1、观察下面一列数有什么规律,( )里应该填什么数。
0、1、3、6、10、( )、21、( )……2、一串花边按○△△□○☆○△△□○☆○△……的排列情况,第30个是( )。
3、把左边两个图形重叠后,变成右边的( )号图形。
4、推一推。
5. 在右上九宫格的空格里填数,使横行、竖行、斜行的三个数相加得210。
6. 数一数。
有( )个长方形(包括正方形) 有( )个三角形7. 算“24”游戏。
你能用上面四张牌,列出结果是24的算式吗?写在下面的横线上:_______________________________。
4030 608、根据右边的竖式,写出“学好数学”数学好所代表的四位数是多少? + 好学数“学好数学”= 学学好学9、妈妈今年33岁,爸爸今年37岁,()年后,他们的年龄和是100岁。
10、小明家住7楼,他从一楼走到四楼花了12分钟,照这样的速度,他从一楼到家,一共要()分钟。
11、今天是星期五,再过17天(10月1日)是星期()。
12、三只乌龟爬的速度都一样,同时出发去找蛋,每次只能爬一格,不能对角爬。
()只乌龟最先找到蛋。
13、桌子上有变形金刚、赛车和遥控飞机三种玩具,小强说:“每人只玩一种玩具,我不玩遥控飞机;”小明说:“我既不玩赛车也不玩遥控飞机;”小林说:“请小朋友们猜猜我拿的是()。
14、20人排成一排,从左往右依次报数,5~8号,14~20号是男生,男生有()人,女生有()人。
15、A、B、C、D、E、F六个小朋友进行乒乓球比赛,每两个人之间赛一场,一共赛()场。
答案:1、15,28(10+5=15;21+7=28)2、☆(6个一周期,30÷6=5,第5个周期中的最后一个)3、34、10(2×5=10)5、(最先根据第一竖行填出110,然后根据第二横行填出70,再根据两条对角线填出80和100,最后根据第一、三横行填出90和50)6、11,18(分类数,先数一个基本图形的个数,再数由两个基本图形组成的,以此类推。
初二年级超常思维竞赛数学试卷考试时间:100分钟满分150分1.如图所示,左侧有一组排列好的方格,经过空间平面的顺时针或逆时针方向旋转之后,成为五个选项中的一组,那么正确的一组方格为( ).2.若一切非零实数x和y满足x=1y ,则(x−1x)(y+1y)=().A.2x2B.2y2C.x2+y2D.x2−y2E.y2−x23.正方形ABCD的边长为36,点E在AB边上且到B的距离为12,点F为BC边的中点,点G在CD边上且到C的距离为12. 则在△EFG之内且在△AFD之外区域的面积为( ).A.133B.144C.155D.166E.1774.如果4(√x+√y−1+√z−2)=x+y+z+9,那么xyz的值是().A.0B.2C.15D.120E.1505.在20182+2016×2017×2019×2020;20192+2017×2018×2020×2021;20202+2018×2019×2021×2022;20212+2019×2020×2022×2023这四个数中共有( )个是完全平方数.A.0B.1C.2D.3E.46.若√a+√b=1,又√a=m+a−b2,√b=n−a−b2,其中m,n均为有理数,则有( ).A.mn=12B.m2+n2=12C.m+n=12D.m−n=12E.m2−n2=147.把一个矩形剪去一个正方形,所剩矩形与原矩形相似,则原矩形长边与短边之比为( ).A.(1+√5):2B.3:2C.(1+√3):2D.(1+√6):2E.(1+√5):(1−√3)8.设x>0,y>0,√x(√x+2√y)=√y(6√x+5√y),则x+xy−y2x+√xy+3y的值为( ). A.14 B.13C.12D.1E.29.根式√810+41084+411的值等于( ). A.√2B.16C.32D.12E.512. 510.如图所示,已知菱形ABCD 的两条对角线长分别为a ,b ,分别以每条边为直径向菱形内作半圆,则四条半圆弧围成的花瓣形面积(阴影部分的面积)为( ).A.π(a 2+b 2)B.18π(a 2+b 2)−ab 2C.12π(a 2+b 2)−ab 2D.18π(a 2+b 2)+ab 2E.12π(a 2+b 2)+ab11.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的体积之比是p :1,而在另一个瓶子中是q :1.若把两瓶溶液混合在一起,则混合溶液中的酒精与水的体积之比是( ).A.p+q 2B.p 2+q 2p+qC.2pq p+qD.2(p 2+pq+q 2)3(p+q)E.p+q+2pq p+q+212.小明将一块正方形的钟面画成一块投镖的靶板,利用“钟点位置”作为边界线(如图). 如果t 是8个三角形之一(例如,12点与1点间的区域)的面积,q 是4个角上的四边形之一(例如,1点与2点间的区域)的面积,那么qt =( ).A.2√3−2B.32C.√5+12D.√3E.213.一矩形R 的边长为a 和b ,其中a <b ,要得到边长为x ,y (x <a ,y <a )的矩形,使其周长为R 的周长的13,面积为R 的面积的13,这样的不同矩形的个数为( ).A.0B.1C.2D.4E.无限多14.已知周长为28cm 的长方形ABCD ,如图所示,以A 为圆心,AD 为半径画弧交AB 于A 1,以B 为圆心,BA 1为半径画弧交BC 于A 2,依此类推,即依次以C ,D ,A ,B 为圆心,用同样方法画弧,分别得交点A 3,A 4,A 5,A 6,若点A 6与点C 重合,则长方形的长和宽分别为( ) cm .A.12,2B.11,3C.10,4D.9,5E.8,615.如图所示,两面墙间的距离为w ,它们之间的P 点处有一个梯子,梯子的长度为a ,梯子向一侧墙靠去,上端触墙于Q 点,Q 到地面的距离为k ,此时梯子与地面成45°角,梯子向另一侧墙靠去,上端触墙于R 点,R 到地面的距离为ℎ,此时梯子与地面成75°角,那么两墙间的距离w 为( ).A.aB.RQC.kD.ℎ+k 2E.ℎ16.P 是高为ℎ的等边三角形内部一点,设P 到各边的距离分别为x ,y ,z ,若以x ,y ,z 为长度的三条线段可以构成一个三角形,则x ,y ,z 各自所应满足的条件是( ). A.x <ℎ,y <ℎ,z <ℎ B.x <ℎ2,y <ℎ2,z <ℎ2C.x ≤ℎ2,y ≤ℎ2,z ≤ℎ2 D.x <ℎ3,y <ℎ3,z <ℎ3E.x ≤ℎ3,y ≤ℎ3,z ≤ℎ317.如图所示,把正方形ABCD的对角线AC分成n段,以每一段为对角线作正方形,设这n个小正方形的周长为p,正方形ABCD的周长为l,则p与l的关系是( ).A.p>lB.p≥lC.p=lD.p≤lE.p<l18.若x+y+z=30,3x+y−z=50,其中x,y,z皆为非负数,则M=5x+4y+2z的取值范围是( ).A.100≤M≤110B.110≤M≤120C.120≤M≤130D.130≤M≤140E.M的范围无法确定19.如图所示,展示了12个排成一圈的30°−60°−90°三角形,并使每个三角形的斜边恰好为相邻下一个,其中m和n 大三角形的较长直角边. 图中第4个和最后一个三角形以阴影标记,其周长之比可以表示为mn为互素正整数. 则m+n的值为().A.333B.334C.335D.336E.33720.已知存在正整数m和n,使得x=m+√n是等式x2−10x+1=√x(x+1)的一个解,则m+n的值为().A.11B.22C.33D.44E.5521.如图所示,ABCD是正方形,BF//AC,AEFC是菱形,则∠ACF与∠F的度数之比是().A.7:1B.6:1C.5:1D.4:1E.3:122.已知a =√43+√23+1,那么,3a +3a 2+1a 3的值是( ).A.√23B.13C.14D.15E.123.正方形A 与正方形B 毗邻,正方形B 又与正方形C 毗邻. 如图所示,这3个正方形的底边都在同一条直线上,其左上角的顶点共线. 若A 的面积为24,B 的面积为36,则C 的面积为( ).A.48B.50C.52D.54E.以上都不对24.各边不相等的△ABC 的两条高的长度分别是4和12,若第三条高的长度也是整数,则它的最大值是( ).A.4 B.5 C.6 D.7 E.以上都不对25.如图中的(1)(2)(3)(4)是同样的小等边三角形,(5)(6)也是等边三角形且边长为(1)的2倍,(7)(8)(9)(10)是同样的等腰直角三角形,(11)是正方形. 那么,以(5)(6)(7)(8)(9)(10)(11)为平面展开图的立体图形的体积是以(1)(2)(3)(4)为平面展开图的立体图形体积的( )倍.A.2B.4C.8D.16E.以上都不对26.n 为正整数,若2n 有28个正因子,3n 有30个正因子,则6n 的正因子的个数为( ).A.32 B.33 C.34 D.35E.3627.矩形ABCD 的尺寸为70×40,对角线AC 上标记的18个点(包括A 和C )将对角线分成17等份,AB 边上标记的22个点(包括A 和B )将该边分成21等份. 我们进而构建如图所示的17个无交叠的三角形,每个三角形的2个顶点即为矩形边上相邻的2点,而另一顶点则是矩形对角线上的一点. 如此,在矩形边的21等份中,只有左侧17等份被用来作为这些三角形的底. 则这17个三角形的面积之和为( ).A.600B.700C.800D.900E.100028.小明的父亲在小明过生日时送给小明一个L形的生日蛋糕. 小明的父亲让小明只用一刀将蛋糕切为三块,以便将蛋糕分给小明的弟弟及妹妹. 因此,小明可以如图(a)(b)的方式切,但不可以如图(c)的方式切.但小明的父亲说切完后,必须让弟弟和妹妹先挑选,他们一定是挑比较大块的,而小明只能挑选最后剩下的那块. 所以小明要设法使切完后的三块蛋糕中,最小的那块要越大越好. 若小明达成了目标,则小明能分到的那块蛋糕的面积为()cm2.A.60B.70C.80D.90E.400329.环形跑道周长为400米,甲、乙两人同时同地顺时针沿环形跑道跑,甲每分钟跑52米,乙每分钟跑46米,甲、乙两人每跑100米休息1分钟. 问:甲需()分钟追上乙.A.14713B.145213C.142313D.139413E.以上都不对30.一间4m×4m房间的地板可以被8块1m×2m的地毯以不同形式覆盖,如图所示的三种不同的形式如下:则共有()种不同的覆盖形式.A.28B.32C.36D.40E.以上都不对初二年级超常思维竞赛数学试卷答案考试时间:100分钟满分150分。
小学三年级数学奥数测试题及答案图文百度文库一、拓展提优试题1.五个连续的自然数的和是2010,其中最大的一个是.2.有一个挂钟,3时敲3下,要用6秒.这个挂钟12时敲12下,需要用秒.3.某个码头有一艘渡船.有一天,这艘船从南岸出发驶向北岸,来回送游客,一共202次(来回算做两次),此时,渡船停靠在岸.4.60名探险队员过一条河,河上只有一条可乘坐6人的橡皮艇(来回算两次),过一次河需要3分钟,全体队员渡到河对岸一共需要分钟.5.时钟2点敲2下,2秒钟敲完.12点敲了12下,秒可以敲完.6.在中,不同的字母代表不同的数字,则A+B+C+D+E+F+G =.7.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.A.25B.36C.49D.648.长方形的周长是48厘米,已知长是宽的2倍,长方形的长是()A.8厘米B.16厘米C.24厘米9.如图,薷薷家的菜园是一个由4块正方形的菜地和1个小长方形的水池组成的大长方形.如果每块菜地的面积都是20平方米且菜园的长为9米,那么菜园中水池(图中阴影部分)的周长是米.10.有一个挂钟,每到整点的时候会敲一次,而且几点钟就会敲几下.四点钟时,挂钟用了12秒钟敲完;那么到十二点时,要用秒钟才能敲完.【参考答案】一、拓展提优试题1.解:2010÷5=402,最大的数是402+1+1=404;故答案为:404.2.解:6÷(3﹣1)×(12﹣1),=6÷2×11,=3×11,=33(秒),答:需要33秒;故答案为:33.3.解:在摆渡奇数次后,船在北岸,摆渡遇数次后,船在南岸.202为奇数,则摆渡202次后,小船在南岸.故答案为:南.4.解:(60﹣6)÷5,=54÷5,≈11次,3×(11×2+1),=3×23,=69(分钟),答:全体队员渡到河对岸一共需要69分钟.故答案为:69.5.解:根据分析可得,2÷(2﹣1)×(12﹣1),=2×11,=22(秒);答:12点敲了12下,22秒可以敲完.故答案为:22.6.解:因为A、B、C、D、E、F、G是不同的数字,由题意可得:D+G=10,C+F=10,B+E=9,A=1,所以:A+B+C+D+E+F+G=A+(B+E)+(C+F)+(D+G)=1+9+10+10=30故答案为:30.7.解:根据分析,一条阴影部分的面积为10÷2=5平方厘米.因为都是整数,所以只能为1×5.故,大正方形面积=(1+5)×(1+5)=6×6=36平方厘米.故选:B.8.解:48÷2÷(1+2)×2=24÷3×2=16(厘米)答:长方形的长是16厘米.故选:B.9.解:根据分析,根据图中4块正方形和小长方形的关系,易知水池的长和宽之和为9,菜园中水池(图中阴影部分)的周长=2×9=18(米),故答案是:18.10.解:12÷(4﹣1)×(12﹣1)=12÷3×11=44(秒)答:敲十二点时要用44秒.故答案为:44.。
汽船每小时行千米,在长千米地河中逆流航行要小时到达,返回需几小时?
有甲、乙两船,甲船和漂流物同时由河西向东而行,乙船也同时从河东向西而行.甲船行小时后与漂流物相距千米,乙船行小时后与漂流物相遇,两船地划速相同,河长多少千米?个人收集整理 勿做商业用途
轮船以同一速度往返于两码头之间.它顺流而下,行了小时;逆流而上,行了小时.如果水流速度是每小时千米,求两码头之间地距离.个人收集整理 勿做商业用途
两块等腰直角三角形地三角板,直角边分别是厘米和厘米.如下图那样重合.求重合部分(阴影部分)地面积.个人收集整理 勿做商业用途 D
G E B A C
F
如下图,在正方形中,三角形地面积是平方厘米,它是三角形地面积地
5
4.求正方形地面积.个人收集整理 勿做商业用途 F D C E B A
梯形地面积是平方米,高米,△地面积是平方米,米,求阴影部分地面积.
E D
C B A
假设所有自然数如下图排列起来,、、、应分别排在哪个字母下面?
…
同学们做早操,个同学排成一排,每相邻两个同学之间地距离相等,第一个人到最后一个人地距离是米,相邻两个人隔多少米?个人收集整理勿做商业用途
个连续奇数地和是,其中最大地一个奇数是多少?
若干人围成圈,一圈套一圈,从外向内各圈人数依次少人.如果最内圈有人,共有多少?。