上拉电阻和下拉电阻的作用
- 格式:doc
- 大小:62.50 KB
- 文档页数:7
上拉电阻上拉电阻,就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。
上拉电阻一般是一端接电源,一端接芯片管脚的电路中的电阻,下拉电阻一般是指一端接芯片管脚一端接地的电阻。
上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。
下拉同理。
也是将不确定的信号通过一个电阻钳位在低电平。
上拉电阻的作用1、当TTL电路驱动CMOS电路时,如果电路输出的高电平低于CMOS电路的最低高电平(一般为3.5伏),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须使用上拉电阻,以提高输出的高电平值。
3、为增强输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻以降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限,增强抗干扰能力。
6、提高总线的抗电磁干扰能力,管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上、下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻的原理在数字电路通电初期,由于输出状态的高电平及低电平具有不确定性,为了能够让电路状态正确,所以需要上拉或下拉电阻,将不确定的电路状态稳定下来。
上拉电阻就是就是将电阻接在该电源的状态口即可,简单的讲就是将高的电压加到该点,该店的电位即升高即可。
而下拉电阻则是讲电阻接到负极上,也有数字接地的情况。
当输入端口信号因为电路形式的不同而变化,该变化会反馈到输出口,从而输出口获取一个状态,本来应该完成的任务,但是输入口此时无信号,而输出端却依然是该状态。
上拉下拉电阻的作用
上拉下拉电阻是电子电路中常用的元器件,具有调节和控制电路电压
的作用。
下面是上拉下拉电阻的作用及应用场景的详细介绍:
1. 上拉电阻
上拉电阻是指将一个原本处于低电平状态的信号通过电阻连接到高电
平电源的电阻。
其作用是为了保证信号在停止发送时,能够保持在高
电平状态,同时在信号低电平状态下也有一个明确的电平值。
应用场景:在数字电路中,上拉电阻通常用于门控输入信号的稳定。
例如,在计数器或触发器中,输入引脚通常被连接到一个上拉电阻上,并通过这个电阻与正电源相连。
这一操作可以确保门的输入,在开启
时具有一个已知的状态。
2. 下拉电阻
下拉电阻是指将一个原本处于高电平状态的信号通过电阻连接到低电
平电源的电阻。
其作用是为了保证信号在停止发送时,能够保持在低
电平状态,同时在信号高电平状态下也有一个明确的电平值。
应用场景:在数字电路中,下拉电阻通常用于门控输入信号的稳定。
例如,在计数器或触发器中,输入引脚通常被连接到一个下拉电阻上,并通过这个电阻与负电源相连。
这一操作可以确保门的输入,在关断
时具有一个已知的状态。
3. 上拉下拉电阻的组合
在实际应用中,上拉下拉电阻通常会组合使用。
例如,在一个开关电
路中,当电子开关未接通时,输入脚会被连接到一个上拉电阻上,以
确保输入端保持在高电平状态。
当开关接通时,输入脚会与地线相连,以确保输入端在低电平状态下。
综上所述,上拉下拉电阻作为电子电路中常用的元器件,在数字电路
设计和控制方面起着至关重要的作用。
下拉电阻和上拉电阻的作用1.下拉电阻的作用:下拉电阻是将电路接地的电阻,其主要作用有以下几点:(1)保持逻辑低电平:在数字电路中,逻辑低电平常用0V表示。
当系统处于空闲状态时,下拉电阻将电路拉低到0V,确保所有未接入时电路处于逻辑低电平状态。
这样可以避免电路的未定义状态,确保电路的稳定性和可靠性。
(2)电路的信号接地:下拉电阻将电路接地,起到信号处理的接地作用,避免由于信号耦合引起的干扰和噪声。
(3)承担输出电阻:在一些电路中,下拉电阻也会作为输出电阻存在,通过控制下拉电阻的阻值来调节电路的输出电阻。
(4)限制电流:下拉电阻可以限制电路中的电流大小,保护电路和元器件不受损坏。
(5)消除漂移:在一些传感器电路中,由于工作环境和元器件特性的影响,电路可能会产生输出漂移,通过使用下拉电阻可以消除这种漂移效应。
2.上拉电阻的作用:上拉电阻是将电路接向电源的电阻,其主要作用有以下几点:(1)保持逻辑高电平:在数字电路中,逻辑高电平常用VDD电压表示。
当系统处于空闲状态时,上拉电阻将电路拉高到VDD电压,确保所有未接入时电路处于逻辑高电平状态。
这样可以避免电路的未定义状态,确保电路的稳定性和可靠性。
(2)电路的信号接电源:上拉电阻将电路接向电源,起到信号处理的接入电源的作用,提供稳定的电源电压,避免由于电源波动引起的干扰和噪声。
(3)承担输入电阻:在一些电路中,上拉电阻也会作为输入电阻存在,通过控制上拉电阻的阻值来调节电路的输入电阻。
(4)限制电流:上拉电阻可以限制电路中的电流大小,保护电路和元器件不受损坏。
(5)提供信号源:在一些传感器电路中,通过使用上拉电阻作为信号源,可以提供稳定的电压信号输出。
综上所述,下拉电阻和上拉电阻在电子电路中有着不同的作用。
它们通过控制电路的电平状态、接地或接电源、控制电流大小等方式,对信号进行稳定和控制。
在数字电路中,下拉电阻和上拉电阻常用于控制逻辑门的输入和输出电平状态,确保电路的稳定工作;在模拟电路中,它们常用于限流、输入输出电阻调节、电路信号源等方面。
下拉电阻电路和上拉电阻电路
在数字电路的应用中,时常会听到上拉电阻器和下拉电阻器这个词,其实上拉电阻和下拉电阻都是起稳定电路工作状态的作用。
1:下拉电阻是如何工作的:
如图:U1是数字电路中的反相器,输入端Ui通过下拉电阻R1接地,这样在没有高电平输入时,可以使输入端稳定地处于低电平状态,防止了可能出现的高电平干扰使反相器误动作。
如果没有下拉电阻R,反相器输入端悬空,而输入端为高阻状态,外界的高电平干扰很容易从输入端加入到反向其中,从而引起反相器朝输出低电平方向翻转的误动作。
在接入下拉电阻R后,电源电压在+5V时,上拉电阻R的取值一般在470R 左右,由于R值很小,所以将输入端的各种高电平干扰短接到地,达到抗干扰的目的。
2:上拉电阻是如何工作的:
如图:U1是数字电路中的反相器,当反相器输入端Ui没有输入低电平时,上拉电阻R可以使反相器输入端稳定的处于高电平状态,防止了可能出现的低电平干扰使反相器出现误动作。
如果没有上拉电阻R,反相器输入端悬空,外界的低电平干扰很容易从输入端加入到反相器中,从而引起反相器朝输出高电平方向翻转的误动作。
在接入上拉电阻R后,电源电压在+5V时,上拉电阻R的取值一般在5—10K之间,上拉电阻R使输入端为高电平状态,没有足够的低电平触发,反相器不会翻转,达到抗干扰的目的。
上拉电阻和下拉电阻的原理以及部分应用总结推荐图中上下两个电阻分别为下拉电阻和上拉电阻,上拉就是将A点的电位拉高,下拉就是将A点的电位拉低,图中的12k有些是没有画出来的,或者是没有的.他们的作用就是在电路驱动器关闭时,给该节点一个固定的电平.上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS 电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
431上拉下拉电阻作用-概述说明以及解释1.引言1.1 概述上拉电阻和下拉电阻是电路中常见的元件,它们在数字电路和模拟电路中起着重要的作用。
上拉电阻和下拉电阻通常用于控制电路中的开关状态,以确保正确的信号传输和电路逻辑运算。
本文将详细探讨上拉电阻和下拉电阻的作用,并介绍它们在不同应用场景下的具体应用。
上拉电阻和下拉电阻是一种电阻器,用于将电路中的信号电压拉高或拉低到特定的电平。
上拉电阻将信号电压拉高,下拉电阻则将信号电压拉低。
在数字电路中,上拉电阻通常用于将逻辑门的输入端连接到高电平,以确保输入信号在断开状态下保持稳定。
下拉电阻则用于将逻辑门的输入端连接到低电平,同样也是为了保持输入信号在断开状态时的稳定性。
在模拟电路中,上拉电阻和下拉电阻用于调整信号的电平。
通过改变电阻的阻值,可以控制信号的幅值和频率响应。
上拉电阻和下拉电阻的作用在模拟电路中更加广泛,涵盖了信号放大、滤波和匹配等多个方面。
在这些应用中,上拉电阻和下拉电阻的精确选择和设计对电路性能至关重要。
总的来说,上拉电阻和下拉电阻在电路中扮演着至关重要的角色。
它们可以确保信号的稳定性和正确传输,以及调整信号的电平和频率响应。
对于电路设计者和工程师来说,了解上拉电阻和下拉电阻的作用和应用是非常重要的,这将有助于优化电路的性能和可靠性。
在接下来的正文部分,我们将更详细地探讨上拉电阻和下拉电阻的作用,并介绍它们在具体应用中的技术要点和实际应用案例。
1.2文章结构文章结构:本文共分为引言、正文和结论三个部分。
引言部分主要概述了上拉下拉电阻的作用和本文结构,引出了文章的目的。
正文部分主要包含了上拉电阻的作用、下拉电阻的作用以及上拉下拉电阻的应用。
结论部分对上拉下拉电阻的作用进行了总结,比较了二者的优劣,并展望了上拉下拉电阻的未来发展。
通过这样的结构安排,本文旨在全面介绍上拉下拉电阻的作用,并探讨其在实际应用中的潜力和发展前景。
1.3 目的本文的目的是探讨431上拉下拉电阻在电路中的作用。
上拉电阻和下拉电阻的用处和区别上拉电阻的用处:1、当TTL电路驱动CMOS电路时,如果电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须使用上拉电阻,以提高输出的高电平值。
3、为增强输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻以降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限,增强抗干扰能力。
6、提高总线的抗电磁干扰能力,管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上、下拉电阻是电阻匹配,有效的抑制反射波干扰。
下拉电阻的用处:1、提高电压准位:a、当TTL电路驱动CMOS电路时,如果TTL电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
b、OC门电路必须加上拉电阻,以提高输出的高电平值。
2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
3、N/Apin防静电、防干扰:在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
同时管脚悬空就比较容易接受外界的电磁干扰。
4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
5、预设空间状态/缺省电位:在一些CMOS输入端接上或下拉电阻是为了预设缺省电位。
当你不用这些引脚的时候,这些输入端下拉接0或上拉接1。
在I2C总线等总线上,空闲时的状态是由上下拉电阻获得6、提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。
【硬件设计】上拉电阻和下拉电阻的用法一、什么是上拉电阻?什么是下拉电阻?上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、上拉电阻及下拉电阻作用:1、提高電壓准位:a.当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
b.OC门电路必须加上拉电阻,以提高输出的搞电平值。
2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
3、N/A pin防靜電、防干擾:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
同時管脚悬空就比较容易接受外界的电磁干扰。
4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
5、預設空閒狀態/缺省電位:在一些 CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端下拉接 0 或上拉接 1。
在I2C 总线等总线上,空闲时的状态是由上下拉电阻获得。
6. 提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。
同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。
从而提高芯片输入信号的噪声容限增强抗干扰能力。
三、上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
什么是上拉电阻?上拉电阻和下拉电阻都是电阻元器件,所谓上拉电阻就是接电源正极,下拉的就是接负极或地。
上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。
下拉同理,也是将不确定的信号通过一个电阻钳位在低电平。
那么,上拉电阻和下拉电阻的用处和区别分别又是什么呢?一、上拉电阻和下拉电阻是什么上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。
而下拉电阻是直接接到地上,接二极管的时候电阻末端是低电平,将不确定的信号通过一个电阻钳位在低电平。
上拉是对器件输入电流,下拉是输出电流;强弱只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提供电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、上拉电阻和下拉电阻的用处和区别上拉电阻和下拉电阻二者共同的作用是:避免电压的“悬浮”,造成电路的不稳定。
上拉电阻:1、概念:将一个不确定的信号,通过一个电阻与电源VCC相连,固定在高电平;2、上拉是对器件注入电流,灌电流;3、当一个接有上拉电阻的IO端口设置为输入状态时,它的常态为高电平。
下拉电阻:1、概念:将一个不确定的信号,通过一个电阻与地GND相连,固定在低电平;2、下拉是从器件输出电流,拉电流;3、当一个接有下拉电阻的IO端口设置为输入状态时,它的常态为低电平。
上拉是对器件注入电流,下拉是输出电流,弱强只是上拉电阻的阻值不同,没有什么严格区分,对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
由此可见,电源到器件引脚上的电阻叫上拉电阻,作用是平时使用该引脚为高电平;地(GND)到器件引脚的电阻叫下拉电阻,作用是平时使该引脚为低电平。
上拉电容,下拉电阻rc的作用
上拉电容和下拉电阻(通常用R表示)的作用通常涉及数字电路和信号线的输入、输出阶段的电路设计。
上拉电容:
上拉电容一般是指在数字电路中,当一个输入信号线(比如一个开关)没有被连接到高电平(逻辑"1")时,通过一个上拉电容将该输入信号线拉高到逻辑高电平。
这有助于防止输入信号线处于未定义的状态,保证在没有外部输入时信号线稳定在逻辑高电平。
上拉电容的大小一般较小,主要用于提供一个较弱的上拉效果。
典型的上拉电容值可能在几千皮法(pF)到几十微法(μF)之间。
下拉电阻:
下拉电阻则是为了将信号线拉低到逻辑低电平。
在数字电路中,通常通过连接到地(GND)的一个电阻来实现。
这是为了防止输入信号线在未连接时浮动,避免输入信号的不稳定。
下拉电阻的大小一般较小,通常在几千欧姆(Ω)到几十千欧姆(kΩ)之间。
综合起来,在数字电路中,上拉电容和下拉电阻的作用是确保输入信号线在未连接时具有良好的定义状态,从而防止电路中的不确定性。
这对于提高数字电路的抗干扰能力、稳定性和可靠性是很重要的。
浅谈上、下拉电阻的作用••油菜no1•14位粉丝•1楼浅谈上、下拉电阻的作用上下拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,以提高输出的高电平值。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理电阻的具体取值怎么计算的?上拉电阻是不是应该是接Vcc再接电阻,然后接到管脚上的?一般上下拉的电阻取值都有个特定的范围,不能太大,也不能太小.都在几K到几十K之间吧,具体的还要看电路要求.至于接法,上拉电阻简单来说就是把电平拉高,通常用4.7-10K的电阻接到Vcc电源,下拉电阻则是把电平拉低,电阻接到GND地线上。
所以是接电源或者接地,再接到需要拉高或者拉地电平的节点上的.一般说来,不光是重要的信号线,只要信号在一段时间内可能出于无驱动状态,就需要处理。
比如说,一个CMOS门的输入端阻抗很高,没有处理,在悬空状况下很容易捡拾到干扰,如果能量足够甚至会导致击穿或者闩锁,导致器件失效。
祈祷输入的保护二极管安全工作吧。
如果电平一直处于中间态,那输出就可能是不确定的情况,也可能是上下MOS都导通,对器件寿命造成影响。
总线上当所有的器件都处于高阻态时也容易有干扰出现。
因为这时读写控制线处于无效状态,所以不一定会引起问题。
你如果觉得自己能够接受的话也就将就了。
但是这时你就要注意到,控制线不能悬空,不然……TTL电路的输入端是一个发射极开路引出的结构,拉高或者不接都是高电平,但是强烈建议不要悬空不接。
上拉还是下拉?要看需要。
一方面器件可能又要求,另一方面,比如总线上两个器件,使能控制都是高有效,那么最好下拉,否则当控制信号没有建立的时候就会出现两个冲突,可能烧片。
如果计算机总线上面挂了一个D/A,上电复位信号要对它清零或者预置,那么总线可以上下拉到你需要的数字。
至于上下拉电阻的大小,这个情况就比较多了。
CMOS输入的阻抗很高,上下拉电阻阻值可以大一些,一般低功耗电路的阻值取得都比较大,但是抗干扰能力相应比较弱一些。
很多场合下拉电阻取值比上拉电阻要小,这个是历史遗留问题。
如上面所说,TTL电路上拉时输入3集管基射反偏,没有什么电流,但是下拉时要能够使得输入晶体管工作,这个在TTL的手册中可以查到。
也是为了这个历史遗留问题,有些CMOS器件内部采用了上拉,这时它会告诉你可以不处理这些管脚,但是这时你就要注意了,因为下拉再用10K可能不好使,因为也许内置的20K电阻和外置的10K把电平固定在了1V左右。
有时候你会看到150欧姆或者50欧姆左右的上下拉电阻,尤其是在高速电路中会看到。
150欧姆电阻下拉一般在PECL逻辑中出现。
PECL逻辑输出级是设计开路的电压跟随器,需要你用电阻来建立电压。
50欧姆的电阻在TTL电路中用的不多,因为静态功耗实在是比较大。
在CML电路和PECL电路中兼起到了端接和偏置的作用。
•2009-3-24 08:54•回复••油菜no1•14位粉丝•2楼CML电路输出级是一对集电极开路的三极管,需要一个上拉电阻来建立电平。
这个电阻可以放在发送端,那么接受端还需要端接处理,也可以放到接受端,这时候端接电阻和偏置电阻就是一个。
PECL电路结构上就好像CML 后面跟了一个射极跟随器。
OC 门也使用上拉电阻,这个和CML有一点相像,但是还不太一样。
CML和PECL电路中三极管工作在线形区,而普通门电路和OC/OD门工作在饱和区。
OC/OD门电路常用作电平转换或者驱动,但是其工作速度不会太快。
为什么?在OC/OD门中,上拉电阻不能太小,否则功耗会很大。
而一般门的负载呈现出一个电容,负载越多,电容越大。
当由高到低跳变时,电容的放电通过输出端下拉的M OS或者Bipolar管驱动,速度一般还是比较快的,但是由低到高跳变的时候,就需要通过上拉电阻来完成,R大了几十甚至上百倍,假设C不变,时间常数相应增加同样的倍数。
这个在示波器上也可以明显的看出:上升时间比下降时间慢了很多。
其实一般门电路上拉比下拉的驱动能力都会差一些,这个现象都存在,只不过不太明显罢了?在总线的上下拉电阻设计中,就要考虑同样的问题了:总线上往往负载很重,如果你要电阻来提供一些值,你就必须保证电容能通过电阻在一定时间内放电到可接受的范围。
如果电阻太大,那么就可能出错。
PLD可编程上下拉,还有总线保持也相当于上下拉,可以省去外接电阻。
但是有一些麻烦。
一般输入端才需要上下拉,假设器件10K是一个可行的值,那么10个元件并联会等效有多大的输入上拉电阻?1 K。
也就是说,如果你想给信号线预置一个低电平,可能需要200欧姆的外置下拉电阻。
这种情况下,如果还有一个3门驱动这个信号,高电平的时候需要扇出15mA左右的静态电流,有点太大了。
这就是附加的负载效应。
如果两个器件一个上拉一个下拉,当一个3态门驱动,输出3态时会怎么样?电平1.5V左右,两个门处于不高不低的状态,预置电平的目的没有达到,而且可能诱发震荡,对器件寿命造成影响。
内置上下拉电阻使得设计可靠的电路复杂性增加了,一个不留神就可能留下隐患,而且很难分析,使用中要非常非常小心。
如果能够外接电阻,尽量还是少采用内置上下拉或者总线保持的门电路吧。
电阻的上拉与下拉在网上看到一些对电阻的上拉和下拉不太明白的,输入端的上拉及下拉非常简单但也非常重要。
上拉:通过一个电阻对电源相连。
下拉:通过一个电阻到地。
上下拉一般有两个用处:提高输出信号的驱动能力、确定输入信号的电平(防止干扰)。
用过8051的都知道CPU的I/O上通常接有排阻(上拉到5V),这里主要是为了提高输出驱动能力的。
因为8051的CPU不是标准的I/O口,输出为低电平时可以吸收均2 0mA的电流,但输出为高的时候是通过内部一个很大的电阻上拉的,输出高电平时驱动能力很差,所以就通过外部上拉来提高电平输出驱动能力。
一般一个三极管的基极都有两个电阻,一个限流一个上拉或下拉,此处的上下拉主要为了确定输入信号的电平。
其实目标是为了防止干扰,因为器件的输入接口一般内阻都很大,很容易受干扰。
接一个上下拉电阻其实也就是降低了输入阻抗,提高了抗干扰能力。
一般元器件不用的输入口通要求接上拉或下拉电阻。
注意,不用的输出接口就不要接东西了。
拉电流和灌电流就是从芯片外电路通过引脚流入芯片内的电流,区别在于吸收电流是主动的,从芯片输入端流入的叫拉电流,灌入电流是被动的,从输出端流入的叫灌入电流。
上拉和下拉的区别是一个为拉电流,一个为灌电流一般来说灌电流比拉电流要大也就是灌电流驱动能力强一些当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。
由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越大。
逻辑门的低电平是有一定限制的,它有一个最大值UOLMAX。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOLMAX ≤0.4~0.5V。
当逻辑门输出端是高电平时,逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。
拉电流越大,输出端的高电平就越低。
这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。
拉电流越大,高电平越低。
逻辑门的高电平是有一定限制的,它有一个最小值UOHMIN。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOHMIN ≥2.4V。
由于高电平输入电流很小,在微安级,一般可以不必考虑,低电平电流较大,在毫安级。
所以,往往低电平的灌电流不超标就不会有问题,用扇出系数来说明逻辑门来同类门的能力。
扇出系数No是低电平最大输出电流和低电平最大输入电流的比值.对于标准TTL门,NO≥10;对于低功耗肖特基系列的TTL 门,NO≥20•2009-3-24 08:54•回复124.93.243.* 3楼我想知道,为什么加个上拉电阻,电平就升高了!!!!•2009-5-6 12:45•回复••油菜no1•14位粉丝•4楼上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
•2009-5-8 16:25 •回复••油菜no1•14位粉丝•5楼因为输出端通过一个电阻连到vdd,所以原来可能不确定的输出电位可以通过上拉电阻r,从vdd获得电流,该灌入电流提高了输出电阻。