3.6《带电粒子在匀强磁场中的运动》
- 格式:ppt
- 大小:1.14 MB
- 文档页数:36
3.6 带电粒子在匀强磁场中的运动三维教学目标1、知识与技能(1)理解洛伦兹力对粒子不做功;(2)理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀强磁场中做匀速圆周运动;(3)会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,知道它们与哪些因素有关;(4)了解回旋加速器的工作原理.2、过程与方法:通过带电粒子在匀强磁场中的受力分析,灵活解决有关磁场的问题.3、情感、态度与价值观:通过本节知识的学习,充分了解科技的巨大威力,体会科技的创新与应用历程。
教学重点:带电粒子在匀强磁场中的受力分析及运动径迹。
教学难点:带电粒子在匀强磁场中的受力分析及运动径迹。
教学方法:实验观察法、讲述法、分析推理法。
教学用具:洛伦兹力演示仪、电源、投影仪、投影片、多媒体辅助教学设备。
教学过程:(一)引入新课提问1:什么是洛伦兹力?答:磁场对运动电荷的作用力。
提问2:带电粒子在磁场中是否一定受洛伦兹力?答:不一定,洛伦兹力的计算公式为f=qvB sinθ,θ为电荷运动方向与磁场方向的夹角,当θ=90°时,f=qvB;当θ=0°时,f=0。
教师:带电粒子垂直磁场方向进入匀强磁场时会做什么运动呢?今天我们来学习——带电粒子在匀强磁场中的运动。
(二)进行新课1、带电粒子在匀强磁场中的运动介绍洛伦兹力演示仪,如图3。
6—1所示。
引导学生预测电子束的运动情况。
(1)不加磁场时,电子束的径迹;(2)加垂直纸面向外的磁场时,电子束的径迹;(3)保持出射电子的速度不变,增大或减小磁感应强度,电子束的径迹;(4)保持磁感应强度不变,增大或减小出射电子的速度,电子束的径迹。
演示:学生观察实验,验证自己的预测是否正确。
现象:在暗室中可以清楚地看到,在没有磁场作用时,电子的径迹是直线;在管外加上匀强磁场(这个磁场是由两个平行的通电环形线圈产生的),电子的径迹变弯曲成圆形。
磁场越强,径迹的半径越小;电子的出射速度越大,径迹的半径越大。
6 带电粒子在匀强磁场中的运动考点一 带电粒子在磁场中的圆周运动1.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又顺利垂直进入另一磁感应强度是原来磁感应强度一半的匀强磁场,则( ) A .粒子的速率加倍,周期减半 B .粒子的速率不变,轨迹半径减半 C .粒子的速率不变,周期变为原来的2倍 D .粒子的速率减半,轨迹半径变为原来的2倍 答案 C解析 因洛伦兹力对粒子不做功,则粒子的速率不变;当进入磁感应强度为原来的一半的磁场后,由R =m v Bq 可知,轨迹半径变为原来的2倍;由T =2πmBq 可知,粒子的周期变为原来的2倍,故C 正确,A 、B 、D 错误.2.质量和电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场并最终打在金属板上,运行的半圆轨迹如图1中虚线所示,不计重力,下列表述正确的是( )图1A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运行时间大于N 的运行时间 答案 A解析 根据左手定则可知N 带正电,M 带负电,A 正确;又因为r =m vBq ,而M 的轨迹半径大于N 的轨迹半径,所以M 的速率大于N 的速率,B 错误;洛伦兹力不做功,C 错误;M 和N 的运行时间都为t =πmBq,D 错误.3.质子p(11H)和α粒子(42He)以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和R α,周期分别为T p 和T α,则下列选项中正确的是( ) A .R p ∶R α=1∶2,T p ∶T α=1∶2B .R p ∶R α=1∶1,T p ∶T α=1∶1C .R p ∶R α=1∶1,T p ∶T α=1∶2D .R p ∶R α=1∶2,T p ∶T α=1∶1答案 A解析 质子p(11H)和α粒子(42He)的带电荷量之比为q p ∶q α=1∶2,质量之比m p ∶m α=1∶4.由带电粒子在匀强磁场中做匀速圆周运动的规律可知,轨道半径R =m v qB ,周期T =2πm qB ,因为两粒子速率相同,代入q 、m ,可得R p ∶R α=1∶2,T p ∶T α=1∶2,故选项A 正确. 4.薄铝板将同一匀强磁场分成 Ⅰ、Ⅱ 两个区域,高速带电粒子可穿过铝板一次,在两个区域内运动的轨迹如图2所示,半径R 1>R 2.假定穿过铝板前后粒子电荷量保持不变,则该粒子( )图2A .带正电B .在Ⅰ、Ⅱ区域的运动速度大小相同C .在Ⅰ、Ⅱ区域的运动时间相同D .从Ⅱ区域穿过铝板运动到Ⅰ区域答案 C解析 粒子穿过铝板受到铝板的阻力,速度将减小,由r =m vBq 可得粒子在磁场中做匀速圆周运动的轨道半径将减小,故可得粒子由Ⅰ区域穿过铝板运动到Ⅱ区域,结合左手定则可知粒子带负电,选项A 、B 、D 错误;由T =2πmBq 可知粒子运动的周期不变,粒子在Ⅰ区域和Ⅱ区域中运动的时间均为t =12T =πmBq ,选项C 正确.考点二 质谱仪5.如图3所示是质谱仪工作原理的示意图,带电粒子a 、b 经电压U 加速(在A 点初速度为0)后,进入磁感应强度为B 的匀强磁场做匀速圆周运动,最后分别打在感光板S 上的x 1、x 2处.图中半圆形的虚线分别表示带电粒子a 、b 所通过的路径,则( )图3A .a 的质量一定大于b 的质量B .a 的电荷量一定大于b 的电荷量C .a 运动的时间大于b 运动的时间D .a 的比荷大于b 的比荷答案 D解析 粒子经电场加速的过程,由动能定理有qU =12m v 02;粒子在磁场中运动,由牛顿第二定律知Bq v 0=m v 02R ,所以R =1B2mU q ,由题图知R a <R b ,故q a m a >q bm b,A 、B 错误,D 正确;因周期为T =2πmBq ,则T a <T b ,两粒子均运动了半个周期,所以a 运动的时间小于b 运动的时间,C 错误.6.1922年,英国科学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖.质谱仪的两大重要组成部分是加速电场和偏转磁场.如图4所示为质谱仪的原理图,设想有一个静止的带电粒子(不计重力)P ,经电压为U 的加速电场加速后,垂直进入磁感应强度为B 的匀强磁场中,最后打到底片上的D 点.设OD =x ,则在下列图中能正确反映x 2与U 之间函数关系的是( )图4A B C D答案 A解析 粒子在加速电场中根据qU =12m v 2得v =2qUm.粒子在磁场中偏转,洛伦兹力提供向心力,则q v B =m v 2R ,得轨道半径R =m v qB ,则x =2R =2B 2mUq,知x 2∝U ,故A 正确,B 、C 、D 错误. 考点三 回旋加速器7.(多选)回旋加速器D 形盒的半径为R ,所加磁场的磁感应强度为B ,加速电压为U ,用来加速质量为m 、电荷量为q 的质子(11H),质子从质子源由静止出发,经加速、回旋后射出,则下列说法正确的是( )A .回旋加速器加速完质子,在不改变所加交变电压和磁场的情况下,不可以直接对氦核(42He)进行加速B .只增大交变电压U ,则质子在加速器中获得的最大动能将变大C .回旋加速器所加交变电压的频率为Bq2πmD .加速器可以对质子进行无限加速 答案 AC解析 在加速粒子的过程中,电场的变化周期与粒子在磁场中运动的周期相等.由T =2πmBq 知,氦核42He 在回旋加速器中运动的频率是质子的12,不改变B 和f ,该回旋加速器不能用于加速氦核粒子,A 正确;根据q v B =m v 2R 得,粒子的最大速度v =qBR m ,即质子有最大速度,不能被无限加速,质子获得的最大动能E km =12m v 2=q 2B 2R 22m ,最大动能与加速电压的大小无关,B 、D 错误;粒子在回旋加速器磁场中运动的频率和高频交流电的频率相等,由T =2πm Bq 知f =1T =Bq2πm,C 正确. 8.(2020·扬州中学高二期中)1932年劳伦斯制成了世界上第一台回旋加速器,其原理如图5所示,核心部分为两个铜质D 形盒,其间留有空隙,将其置于匀强磁场中,两盒分别与高频交流电源相连,下列说法正确的是( )图5A .粒子被加速后的最大动能随加速电场电压的增大而增大B .粒子由加速器的边缘进入加速器C .电场变化周期由粒子的质量、电荷量和磁感应强度决定D .为使被加速的粒子获得的动能增加为原来的4倍,可只将D 形盒的半径增大为原来的4倍 答案 C解析 由q v B =m v 2r 得v =qBr m ,当粒子在D 形盒内运动半径最大时,速度最大,v m =qBR m ,粒子被加速后的最大动能E kmax =12m v m 2=q 2B 2R 22m ,则粒子被加速后的最大动能与加速电场电压无关,故A 错误;粒子由加速器的中间部分进入加速器,故B 错误;电场变化周期应等于粒子在磁场中运动的周期,T交=T =2πm qB,则电场变化周期由粒子的质量、电荷量和磁感应强度决定,故C 正确;被加速的粒子获得的动能E kmax =12m v m 2=q 2B 2R 22m ,只将D 形盒的半径增大为原来的4倍,粒子获得的动能增加为原来的16倍,故D 错误.9.质谱仪是测量带电粒子的质量和分析同位素的重要工具.如图6所示为质谱仪的原理示意图,现利用质谱仪对氢元素进行测量,让氢元素三种同位素的离子流从A 下方的小孔S 无初速度飘入电势差为U 的加速电场,加速后垂直进入磁感应强度为B 的匀强磁场中,氢的三种同位素最后打在底片D 上,形成a 、b 、c 三条“质谱线”,则下列判断正确的是( )图6A .进入磁场时速度从大到小排列的顺序是氚、氘、氕B .进入磁场时动能从大到小排列的顺序是氕、氘、氚C .在磁场中运动时间由大到小排列的顺序是氕、氘、氚D .a 、b 、c 三条“质谱线”依次排列的顺序是氚、氘、氕 答案 D解析 根据qU =12m v 2得v =2qUm,比荷最大的是氕,最小的是氚,所以进入磁场时速度从大到小排列的顺序是氕、氘、氚,故A 错误;根据动能定理可知E k =qU ,故动能相同,故B 错误;时间为t =T 2=πmqB ,故在磁场中运动时间由大到小排列的顺序是氚、氘、氕,故C错误;进入偏转磁场后有q v B =m v 2r ,解得r =m v qB =1B2mUq,氕比荷最大,轨道半径最小,c 对应的是氕,氚比荷最小,则轨道半径最大,a 对应的是氚,故D 正确.10.如图7甲所示是用来加速带电粒子的回旋加速器的示意图,其核心部分是两个D 形金属盒,在加速带电粒子时,两金属盒置于匀强磁场中,两盒分别与高频电源相连.带电粒子在磁场中运动的动能E k 随时间t 的变化规律如图乙所示.忽略带电粒子在电场中的加速时间,则下列判断中正确的是( )图7A .在E k -t 图象中应有t 4-t 3<t 3-t 2<t 2-t 1B .加速电压越大,粒子最后获得的动能就越大C .粒子加速次数越多,粒子最大动能一定越大D .增加D 形盒的面积,可使粒子获得的最大动能增大 答案 D解析 带电粒子在匀强磁场中做匀速圆周运动的周期与速度大小无关,因此,在E k -t 图象中应有t 4-t 3=t 3-t 2=t 2-t 1,A 错误;粒子获得的最大动能与加速电压无关,加速电压越小,粒子加速次数越多,由q v B =m v 2r 得r =m v qB =2mE k qB ,可知E k =q 2B 2r 22m ,增大D 形盒半径(面积),粒子获得的最大动能增大,故B 、C 错误,D 正确.11.如图8所示为一种质谱仪的示意图,由加速电场、静电分析器和磁分析器组成.若静电分析器通道中心线的半径为R ,通道内均匀辐射电场在中心线处的电场强度大小为E ,磁分析器内有范围足够大的有界匀强磁场,磁感应强度大小为B 、方向垂直于纸面向外.一质量为m 、电荷量为+q 的粒子从静止开始经加速电场加速后沿中心线通过静电分析器,由P 点垂直边界进入磁分析器,最终打到胶片上的Q 点.不计粒子重力.求:图8(1)加速电场的电压; (2)P 、Q 两点间的距离s . 答案 (1)ER 2 (2)2BmERq解析 (1)由题意知粒子在辐射电场中做圆周运动,电场力提供向心力,则qE =m v 2R在加速电场中有qU =12m v 2,解得U =ER2.(2)在磁分析器中,粒子所受洛伦兹力提供向心力, 则由q v B =m v 2r ,得r =m v qB 代入解得r =1B mERqP 、Q 两点间的距离s =2r =2BmERq.。