04--复保角变换与权函数法
- 格式:ppt
- 大小:1.77 MB
- 文档页数:31
(完整)人教版高数必修四第5讲:三角函数图像变换(教师版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)人教版高数必修四第5讲:三角函数图像变换(教师版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)人教版高数必修四第5讲:三角函数图像变换(教师版)的全部内容。
三角函数y A x =+sin()ωϕ的图像变换____________________________________________________________________________________________________________________________________________________________________1结合具体实例,理解y=Asin )(ϕω+x 的实际意义,会用“五点法”画出函数y=Asin )(ϕω+x 的简图。
会用计算机画图,观察并研究参数ϕω,,A ,进一步明确ϕω,,A 对函数图象的影响。
2能由正弦曲线通过平移、伸缩变换得到y=Asin )(ϕω+x 的图象。
3教学过程中体现由简单到复杂、特殊到一般的化归的数学思想。
1、函数图象的左右平移变换如在同一坐标系下,作出函数)3sin(π+=x y 和)4sin(π-=x y 的简图,并指出它们与y x=sin 图象之间的关系。
解析:函数)3sin(π+=x y 的周期为2π,我们来作这个函数在长度为一个周期的闭区间上的简图。
设Z x =+3π,那么Z x sin )3sin(=+π,3π-=Z x当Z 取0、ππππ2232,,,时,x 取-πππππ36237653、、、、。
§1 复变函数的定义由两个实数x,y确定的数z=x+i y称为复数。
x,y分别称为复数z的实部和虚部,记作x=Re z 和y =Im z。
Re和Im分别为表示复数实部和虚部的符号。
其中称为虚数单位。
显然z可以用直角坐标系(x,y)表示,x称为实轴,y称为虚轴。
坐标平面称为复平面,或者z平面。
因此,z平面上的任一点可记作称为复数z的模,称为z的幅角,其在[0,2 ]之间的值称为主幅角。
显然,复数可以写作极坐标表达形式。
设有一个复数z=x+i y的集合g。
对于集合g中的每一个复数z都有对应的复数值,w=u+i v,则称w是z的复变函数,记作w = f (z)。
给定一个复变函数就是在点(x,y)与(u,v)之间给出了一一对应关系。
因此,u,v均随x,y而确定,这就是说给定了一个复变函数和给定两个实变函数u=u(x,y),v=v(x,y)是等价的。
而且w=u(x,y)+i v(x,y)复变函数和实变函数同样有单值函数和多值函数,应该注意到实变函数的性质对于复变函数可能是不成立的。
例如复变函数中的对数函数w=ln z是多值的。
为了便于理解,以对数函数为例。
设。
上式对于z的所有不等于零的复数值定义了函数ln z。
在公式中包含一个任意的整数k,这就是说ln z是一个多值函数。
对于k的任一整数值,就有函数ln z的一个分支。
通常取k=0的那一支叫做的主值,即如果z的一个值对应着w的一个值,那么函数f(z)是单值函数;如果z的一个值对应着两个或两个以上的w值,则f(z)是多值函数。
集合g称为f(z)的定义集合。
§2 解析函数--复变函数的可导性复变函数的导数与实变函数的导数定义是相同的。
因此,关于实变函数的一系列微分公式与法则,可以完全照搬到复变函数上。
不过应该注意的是,复变函数的变量是复变量,不是实变量。
值得指出的是,实变函数的可导性要求当x=x0+∆x 由左右两方趋近x0时,∆y/∆x的极限都存在而且相等。
文章编号: 1005 0329(2010)04 0032 06技术进展流体机械CFD中的网格生成方法进展刘厚林,董 亮,王 勇,王 凯,路明臻(江苏大学,江苏镇江 212013)摘 要: 网格生成技术是流体机械内部流动数值模拟中的关键技术之一,直接影响数值计算的收敛性,决定着数值计算结果最终的精度及计算过程的效率;本文在分析大量文献的基础上,首先,对流体机械CFD中的网格生成方法即结构化网格、非结构化网格、混合网格进行了比较全面的总结,系统地分析这些网格划分方法的机理、特点及其适用范围;其次,对特殊的网格生成技术,如曲面网格生成技术、动网格技术、重叠网格生成技术、自适应网格技术进行了阐述;再次,指出了良好的网格生成方法应具备的特点;最后提出了网格生成技术的发展趋势。
关键词: 流体机械;网格生成;计算流体动力学;动网格;自适应网格中图分类号: TH311 文献标识码: A do:i10.3969/.j i ssn.1005-0329.2010.04.008Overvie w onM esh Generati o n M et hods i n CF D of F lui d M achineryL IU H ou-lin,DONG L iang,W ANG Y ong,W ANG K a,i LU M i ng-zhen(Jiangsu U n i v ers it y,Zhenji ang212013,Ch i na)Abstrac t: M esh genera ti on techno logy i s one of the cr iti ca l technology f o r fl u i d m ach i nery fl ow nume rica l s i m u l at-i on,and d-i rectly i nfl uence t he astr i ngency o f nume rical si m u l a ti on,wh ich has an i m portan t e ffect on the nu m er ica l s i m u l a tion results,fi na l precision and the effi c i ency o f compu tati onal process.O n the bas i s o f analyzi ng a great dea l litera t ures,firstl y,m esh genera ti on m ethods and t heory of fluid m ach i nery are comprehens i ve l y su mm ar i zed such as structured mesh,unstructured mesh,hybrid gr i d and respecti ve re lati ve m erits and the pr i nciple,charac teristcs and scopes of t hese m ethods we re sy stema ti ca lly ana l ysed.Second-ly,Spec i a lm esh generation m ethod w ere su mm ar i zed,such as surface m eshi ng,m ov ing gr i d,adapti ve gr i d and especiall y i ntro-duced the pr i nci p le and app licati on areao f adapti ve g ri d.T h irdly,the character i sti c o f m esh g enerati on m e t hod w ere pion ted out.F i na lly,t he trends of mesh generati on are presen ted,and the tre m endous d ifference i s analyzed i n mesh au t om atic gene ra tion at a-broad and the necessary o f exp l o iti ng CFD soft w are and resea rchi ng the m esh auto m atic gene ration techn i que i n our country are put forwa rd.K ey word s: fl uids m achi nery;m esh g enerati on;co m puta ti ona l fl u i d dyna m ics;mov i ng gr i d;adaptive gr i d1 前言计算流体动力学(CFD)中,按一定规律分布于流场中的离散点的集合叫网格,产生这些节点的过程叫网格生成。
复变函数与积分变换重点公式归纳复变函数是指变量为复数的函数,可以表示为f(z)=u(x, y)+iv(x, y),其中z=x+iy,u(x, y)和v(x, y)为实数函数。
复变函数与实变函数(实数域上的函数)相比较,具有一些独特的性质和变换。
复变函数的基本性质有:1. 复变函数的可导性:复变函数的可导性与实变函数的可导性略有不同。
如果f(z)=u(x, y)+iv(x, y)在域D上的偏导数u_x、u_y、v_x、v_y都存在,并且满足柯西-黎曼方程(u_x=v_y,u_y=-v_x),则f(z)在D上可导。
2. 柯西-黎曼方程:对于复变函数f(z)=u(x, y)+iv(x, y),满足柯西-黎曼方程的函数可以表示为全纯函数,也即f'(z)=u_x+iv_x存在。
复变函数的积分变换(Integral Transform)是通过对函数进行积分变换,得到新的函数表示形式。
常见的复变函数积分变换包括拉普拉斯变换、傅里叶变换、反傅里叶变换、正变换等。
以下是复变函数积分变换中的一些重点公式:1. 拉普拉斯变换(Laplace Transform)拉普拉斯变换将函数f(t)变换为F(s)(s为复数变量)的形式,公式表示为:F(s) = ∫[0,∞] e^(-st)f(t) dt2. 逆拉普拉斯变换(Inverse Laplace Transform)逆拉普拉斯变换将函数F(s)变换为f(t)的形式,公式表示为:f(t) = 1/2πi ∫[-i∞, i∞] e^(st)F(s) ds3. 傅里叶变换(Fourier Transform)傅里叶变换将函数f(t)变换为F(ω)(ω为频率)的形式,公式表示为:F(ω) = ∫[-∞,∞] e^(-iωt)f(t) dt4. 反傅里叶变换(Inverse Fourier Transform)反傅里叶变换将函数F(ω)变换为f(t)的形式,公式表示为:f(t)=1/2π∫[-∞,∞]e^(iωt)F(ω)dω5. 正变换(Forward Transform)正变换是指从时域到频域的变换,例如:拉普拉斯变换、傅里叶变换等。
第六章 保角映射§1保角映射的概念一、 保角映射的基本问题在实用上,往往是给出两个区域D 和G ,要求找出一个解析函数,它将区域D 保形地变换到区域G 。
这就是保交映射的基本问题,比较一般的是归结为要找出一个解析函数,将区域D 保形地变换到单位圆内部区域的问题。
另外,要求这种保形变换必须是一一对应的,因此,要求被变换的区域必须是单连域。
黎曼定理:1.一个边界至少包含两点的单连域D ,存在一个解析函数)(z f w =,将区域D 保形地变 换为单位圆1<w 。
如果在D 内再任意指定一点0z ,并令,0)(0≠z f 及)(0'z f 是正实数,则保形变换函数是唯一存在的。
这个定理从理论上指出保形变换函数的存在与唯一性。
2.如果给出两个单连域D 和G ,它们的边界分别是多于两点的曲线C 和Γ,若能找到在 D 内是解析的,在闭区域C D D +=上是连续的,且能作出将C 到Γ双方正向的,一一对应的变换函数)(z f w =,则)(z f w =将D 保形变换到G 。
3..边界对应原理:设单连域D 和G 的边界分别为C 和Γ。
若存在一个在D 内解析,在C 上连续的函数)(z f w =,它将z 平面上的边界C 一一对应地映射成w 平面上的边界Γ。
当原像点z 和像点w 在边界上的绕向一致时,则C 内的区域D 将映射成由边界Γ所围成的区域G ;反之,则C 内的区域D 将映射成Γ的外部区域'G 。
1)当321z z z →→,有321w w w →→,绕向一致时,则有00w z →,则区域D 将映射成区域G ;2)当321z z z →→,有123w w w →→,绕向相反时,则区域D 将映射成Γ的外部区域。
二、解析函数导数的几何意义设函数)(z f w =在区域D 内解析,0z 是D 内的一点,它与w 平面上的一点0w 对应,当z在经过0z 的某条曲线C 上移动时,则相应地w 在经过点0w 的一条曲线Γ移动。