4.6 保角变换解法
- 格式:pdf
- 大小:472.33 KB
- 文档页数:5
通俗理解保角变换保角变换是一种数学中常用的线性变换方法,它在图像处理、计算机视觉以及计算机图形学等领域有着广泛的应用。
它可以将一个平面上的任意形状变换为另一个平面上的指定形状,同时保持原始图像的角度不变。
保角变换的原理是基于复平面上的一个定理,即保角变换可以通过将原始图像的每个点映射到一个新的点来实现。
这个新的点的位置是根据原始图像上的每个点的角度和距离来计算的。
换句话说,保角变换是通过对每个点进行角度和距离的调整来实现的。
保角变换的一个重要应用是图像的形变。
通过保角变换,我们可以将一个图像的形状变换为另一个图像的形状,同时保持图像的角度不变。
这在计算机图形学中非常有用,可以用于图像的纠正、图像的拼接以及图像的变形等方面。
另一个重要的应用是图像的纠正。
在拍摄照片或者录制视频时,由于摄像机的位置或角度的问题,导致图像出现畸变。
通过保角变换,我们可以对这些畸变进行纠正,使得图像恢复到原始形状。
除了图像处理领域,保角变换还广泛应用于计算机视觉中。
在计算机视觉中,我们常常需要对图像进行特征提取和匹配。
通过保角变换,我们可以将不同角度和尺度的图像进行统一处理,从而提取出它们的共同特征。
保角变换还可以应用于地图投影。
地球是一个球体,而地图是一个平面,因此在制作地图时必须进行投影。
保角投影是一种常用的地图投影方法,它可以保持地图上各个地区的角度不变,从而更准确地表现出地球的地形。
总的来说,保角变换是一种非常重要的数学变换方法,它在图像处理、计算机视觉以及计算机图形学等领域都有着广泛的应用。
通过保角变换,我们可以对图像进行形变、纠正畸变、提取特征以及制作地图等操作,从而帮助我们更好地理解和处理图像数据。
一、基础知识 1 定义在自变量域我们对同一个点从两个方向趋近,这两个趋近方向的夹角与在因变量上趋近的方向夹角一致,称为保角变换 2泊松方程与拉普拉斯方程对于泊松方程:20ρϕε∇=(在静电场中,可以表示电势与电荷的分布关系) 同时在没有电荷分布的地方满足拉普拉斯方程:20ϕ∇=3将在原来复杂的区域上的表达式通过一个变换,折射到宁一个区域上,使得某一分布函数得到简化变换的条件是泊松方程与拉普拉斯方程仍然成立22222x y∂∂∇=+∂∂,同时,我们定义x 、y 为ξ、η的函数:(,)x ξη、(,)y ξη 则x x x ξηξη∂∂∂∂∂=+∂∂∂∂∂2222222()x x x x x x x x x x ξηξξηηξηξξηη∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=+=+++ ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂ 其中:222x x x x x ξηξηξξξηξξηξ ∂∂∂∂∂∂∂∂∂∂∂∂=⋅+=+⋅∂∂∂∂∂∂∂∂∂∂∂∂∂ 同理:222x x x x x ηξηξηηηξηηξη∂∂∂∂∂∂∂∂∂∂∂∂=⋅+=+⋅ ∂∂∂∂∂∂∂∂∂∂∂∂∂ 所以:222222222222x x x x x x x ξηξηξηξηξηξη∂∂∂∂∂∂∂∂∂∂∂∂ =++++∂∂∂∂∂∂∂∂∂∂∂∂∂ 同理:222222222222y y y y y y y ξηξηξηξηξηξη∂∂∂∂∂∂∂∂∂∂∂∂=++++ ∂∂∂∂∂∂∂∂∂∂∂∂∂ 所以拉普拉斯方程变换为:22222222222222222222222x y x y x y xy xy x y y x ξξηηξξηηξηξηξηξηξη ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂ ∇=+=+++++++++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂要满足保角变换,其实部与虚部都需要满足拉普拉斯方程:20ξ∇=、20η∇= 将实部与虚部要满足的拉普拉斯方程代入上式:2222222222222x y x y x y ξξηηξη∂∂∂∂∂∂∂∂ ∇=+=+++∂∂∂∂∂∂∂∂ ()'f z ix xξη∂∂=+∂∂(对于趋近方向为:0,0x y ∆→∆=) 222222"()f z x x x y y x ξηξξηη ∂∂∂∂∂∂=+=+=+ ∂∂∂∂∂∂将其代入:22222222'()'()'f z f z ξη ∂∂∇=+=∇∂∂也就是说,原坐标下的拉普拉斯方程与泊松方程变换为:220'0ϕϕ∇=⇒∇=222001''()f z ρρϕϕεε∇=⇒∇= 那么对于一个线段,在原坐标系下长度为1,其在新的坐标系下长度为'()f z 二、常用的保角变换1. 线性变换f az b =+,显然'f a =,其几何效果如下:线性变换一般不单独使用:仅对原来的二位分布做了位似2.幂和根式n xn f z = i n in z Ae f A e ϕϕ=⇒=用来处理过原点的射线,原来的射线的长度ρ的取值范围为(0,+∞),求幂或根还是(0,+∞)将原来的自变量求幂次积,几何效果如下:假设有变换3f z =,其效果为:将原来的60°夹角变为180°,并且其中的点的分布也随之扩大角度,假设原来的函数为电势分布函数,求p 点的电势,则通过变换之后,在新的复平面得到了一个平行分布的电势图,设新的电势分布图中,边界上的电势为V 0,则空间中的电势分布为0u V C η=+⋅,其中,C 为常数,C 与介质表面的面密度σ相关,其正负与σ的正负相反我们在新的复平面中求出电势的表达式之后,再求逆变换得到在原来的复平面上的电势表达式:0u V C η=+⋅中,由原来的变换:()()()32332322333(3)(3)i x iy x x iy x iy iy x xy i x y y ξη+=+=+⋅++=−+−由实部对实部,虚部对虚部,得:233x y y η=− 将η代入电势表达式中:()2303u V C x y y =+⋅−得到电势关于x 、y 的表达式同理可以得到将原来的复平面上的表达式开根得到将原来的夹角缩小相应的倍数的变换方法3. 指对数变换(一)、对于指数函数:()z x iy x iy f e e e e +===⋅此处需要注意,这里使用了复变函数的幅角表示法,即:i z Ae ϕ=,所以此处的x e 为幅值,iy e 为幅角其几何空间意义如下: (1),复平面中平行于实轴的直线,其变换后的图像为过原点的射线对于原空间有一条平行于实轴的直线((,)y const x ∈−∞+∞,),原来的x 的值为幅角,y 的值为幅值。
无限长导体圆柱与无限大导体平面间单位长度的电容——保角变换方法的一例应用一、引言电容是一种重要的电气元件,它的作用是存储电荷和放大电压。
电容的电容量受其外形和材料特性的影响,特别是无限长导体圆柱与无限大导体平面间单位长度的电容量,这是电力系统中的一个非常重要的参数。
本文的目的是通过保角变换法计算无限长导体圆柱与无限大导体平面间单位长度的电容。
二、理论分析无限长导体圆柱与无限大导体平面的电容可以用保角变换法来计算,首先,将无限长导体圆柱和无限大导体平面变换成有限长导体圆柱和有限大导体平面,然后结合复变换计算有限长导体圆柱和有限大导体平面间单位长度的电容,最后再将计算出来的电容变换成无限长导体圆柱与无限大导体平面间的电容,就可以得到所要求的无限长导体圆柱与无限大导体平面间单位长度的电容了。
保角变换法的步骤如下:1)将无限长导体圆柱和无限大导体平面变换成有限长导体圆柱和有限大导体平面,即将无限长导体圆柱和无限大导体平面变换成有限长导体圆柱和有限大导体平面。
2)用复变换计算有限长导体圆柱和有限大导体平面间单位长度的电容,即先给出复变换的方程,然后求解出有限长导体圆柱和有限大导体平面间单位长度的电容。
3)将计算出来的电容变换成无限长导体圆柱与无限大导体平面间的电容,即根据保角变换的公式,变换出有限长导体圆柱和有限大导体平面间单位长度的电容,得到无限长导体圆柱与无限大导体平面间单位长度的电容。
三、特殊情况无限长导体圆柱与无限大导体平面间单位长度的电容,在某些特殊情况下,可以通过简单的计算来获得。
1)当无限长导体圆柱的半径为零时,无限长导体圆柱与无限大导体平面间单位长度的电容等于无限大导体平面间单位长度的电容,即C=2πε/ln22)当无限长导体圆柱的半径趋于无穷大时,无限长导体圆柱与无限大导体平面间单位长度的电容等于无限大导体圆柱与无限大导体平面间单位长度的电容,即C=ε/2四、实验1)准备材料:无限长导体圆柱,无限大导体平面,高频电容计,High-Frequency-Voltmeter,等2)实验步骤:(1)将无限长导体圆柱与无限大导体平面变换成有限长导体圆柱和有限大导体平面;(2)用高频电容计测量有限长导体圆柱和有限大导体平面间单位长度的电容;(3)将测量出来的电容变换成无限长导体圆柱与无限大导体平面间的电容;(4)用High-Frequency-Voltmeter测量无限长导体圆柱与无限大导体平面间单位长度的电容。
茹科夫斯基保角变换
茹科夫斯基保角变换是指一种变换方法,用于把一个凸多边形映射到另一个凸多边形,保持所有角的大小和方向不变。
在数学上,一个茹科夫斯基保角变换可表示为:
z = f(z) = A + B \frac{z-z_0}{\overline{z}-\overline{z_0}}。
其中,z和z_0是原凸多边形和目标凸多边形的顶点坐标,A、B是复数常数,\overline{z}表示z的共轭复数。
茹科夫斯基保角变换具有以下性质:
1.保持角的大小和方向不变;
2.把界面上的点映射到界面上的点;
3.把凸多边形映射为凸多边形;
4.对于给定的点z_0,存在唯一的茹科夫斯基保角变换f(z),将原凸多边形映射为目标凸多边形。
目录1 保角变换的基本理论 (1)1.1 保角变换的定义 (1)1.2 保角变换的性质 (1)2 波导截止频率的计算 (2)2.1 分析方法 (3)2.2 保角变换结合矩量法求解波导截止频率 (3)3 总结 (5)参考文献 (6)保角变换法在波导截止频率计算中的应用保角变换法使用复变函数将复杂的边界变换为简单的容易求解的边界。
特别是对于二维有势场,由于其力线与等位线总是正交的,因而可以采用保角变换的方法将一个复杂的甚至是解析法无法描述的区域变换到一个易于用解析法描述的区域进行求解,同时,其边界可以与常用的坐标面重合,从而使边界条件变得较为简单直观。
比如将复杂的区域变换到矩形区域,且力线和等位线分别和坐标轴平行,以方便求解。
1 保角变换的基本理论1.1 保角变换的定义定义1 0arg '()f z 称为变换w=f(z)在点0z 的旋转角;0|'()|f z 称为变换w=f(z)在点0z 的伸缩率。
定义2 若对区域D 内任一点z ,变换w=f(z)具有性质:(1)保持角度不变,且旋转方向也不变;(2)保持伸缩率不变。
则称此变换w=f(z)在区域D 内为保角变换,也称变换w=f(z)在区域D 内保形。
如果在区域D 内点0z 的某一个邻域内变换w=f(z)具有性质(1)、(2),则称变换w=f(z)在点0z 的邻域内保形。
定理1 正则变换w=f(z),在每一个使'()0f z ≠的点z 的邻域内保形。
保形变换是正则变换的主要特征。
值得注意的是使'()0f z =的点0z ,也必然是变换w=f(z)在0z 处不保形。
但在保形变换中这种使变换w=f(z) 不保形的点,能帮助我们实现许多特殊区域的转化。
后面我们将会看到任何一个扇形区域到上半平面的变换恰好是利用幂变换在原点的不保形性来实现的。
1.2 保角变换的性质所谓保角变换或者叫做保形映照,是指通过一个解析函数w=f(z)将z 平面上的点变换为w 平面上的点。
§1 复变函数的定义由两个实数x,y确定的数z=x+i y称为复数。
x,y分别称为复数z的实部和虚部,记作x=Re z 和y =Im z。
Re和Im分别为表示复数实部和虚部的符号。
其中称为虚数单位。
显然z可以用直角坐标系(x,y)表示,x称为实轴,y称为虚轴。
坐标平面称为复平面,或者z平面。
因此,z平面上的任一点可记作称为复数z的模,称为z的幅角,其在[0,2 ]之间的值称为主幅角。
显然,复数可以写作极坐标表达形式。
设有一个复数z=x+i y的集合g。
对于集合g中的每一个复数z都有对应的复数值,w=u+i v,则称w是z的复变函数,记作w = f (z)。
给定一个复变函数就是在点(x,y)与(u,v)之间给出了一一对应关系。
因此,u,v均随x,y而确定,这就是说给定了一个复变函数和给定两个实变函数u=u(x,y),v=v(x,y)是等价的。
而且w=u(x,y)+i v(x,y)复变函数和实变函数同样有单值函数和多值函数,应该注意到实变函数的性质对于复变函数可能是不成立的。
例如复变函数中的对数函数w=ln z是多值的。
为了便于理解,以对数函数为例。
设。
上式对于z的所有不等于零的复数值定义了函数ln z。
在公式中包含一个任意的整数k,这就是说ln z是一个多值函数。
对于k的任一整数值,就有函数ln z的一个分支。
通常取k=0的那一支叫做的主值,即如果z的一个值对应着w的一个值,那么函数f(z)是单值函数;如果z的一个值对应着两个或两个以上的w值,则f(z)是多值函数。
集合g称为f(z)的定义集合。
§2 解析函数--复变函数的可导性复变函数的导数与实变函数的导数定义是相同的。
因此,关于实变函数的一系列微分公式与法则,可以完全照搬到复变函数上。
不过应该注意的是,复变函数的变量是复变量,不是实变量。
值得指出的是,实变函数的可导性要求当x=x0+∆x 由左右两方趋近x0时,∆y/∆x的极限都存在而且相等。