三年高考两年模拟答案数学高一
- 格式:docx
- 大小:8.40 KB
- 文档页数:5
§1.2命题与充要条件A组基础题组1.(2015浙江延安中学段考)命题“若a2+b2=0,a,b∈R,则a=b=0”的逆否命题是( )A.若a≠b≠0,a,b∈R,则a2+b2=0B.若a=b≠0,a,b∈R,则a2+b2≠0C.若a≠0且b≠0,a,b∈R,则a2+b2≠0D.若a≠0或b≠0,a,b∈R,则a2+b2≠02.(2015湖南,2,5分)设A,B是两个集合,则“A∩B=A”是“A⊆B”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(2015四川文,4,5分)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.(2015浙江文,3,5分)设a,b是实数,则“a+b>0”是“ab>0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件 D .既不充分也不必要条件5.(2015杭州学军中学第五次月考,1,5分)>1的一个充分不必要条件是( )A.x>yB.x>y>0C.x<yD.y<x<06.(2015桐乡一中等四校联考,3,5分)设a,b为非零实数,命题甲:ab>b2,命题乙:<<0,则甲是乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(2016浙江新高考研究联盟一联,2,5分)已知m>0且m≠1,则log m n>0是(1-m)(1-n)>0的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(2014广东文,7,5分)在△ABC中,角A,B,C所对的边分别为a,b,c,则“a≤b”是“sinA ≤sinB”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件9.(2015青岛诊断)“0≤m≤1”是“函数f(x)=sinx+m-1有零点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件B组提升题组1.(2015安徽,3,5分)设p:1<x<2,q:2x>1,则p是q成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(2015湖北文,5,5分)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线;q:l1,l2不相交,则( )A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件3.(2015浙江金华一中期中检测)在△ABC中,“·>0”是“△ABC为锐角三角形”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(2015四川,8,5分)设a,b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(2015金华十校一模,2,5分)若a,b∈R,则>的一个充要条件是( )A.a>bB.ab(a-b)<0C.a<b<0D.a<b6.(2015金华一中全真模拟考,1,5分)设a,b∈R,则“0<a<1且0<b<1”是“ab+1>a+b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(2015宁波一模,2,5分)在△ABC中,“A>”是“sinA>”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件8.(2016领航高考冲刺卷二,3,5分)已知p:x>k,q:≥1,若p是q的必要不充分条件,则实数k 的取值范围是( )A.(2,+∞)B.[2,+∞)C.(-∞,-1)D.(-∞,-1]9.(2016领航高考冲刺卷六,3,5分)设x、y是两个实数,命题“x、y中至少有一个大于1”成立的充分不必要条件是( )A.x+y=2B.x+y>2C.x2+y2>2D.xy>110.(2015嘉兴一模,5,5分)已知p:x2-3x-4≤0,q:x2-6x+9-m2≤0.若p是q的充分不必要条件,则m的取值范围是( )A.[-1,1]B.[-4,4]C.(-∞,-4]∪[4,+∞)D.(-∞,-1]∪[4,+∞)11.(2016超级中学原创预测卷六,3,5分)已知a,b∈R,则“a2+b2<1”是“ab+1>a+b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A组基础题组1.D “若p,则q”的逆否命题为“若¬q,则¬p”,又a=b=0的实质为a=0且b=0,故其否定为a≠0或b≠0.故选D.2.C 若A∩B=A,任取x∈A,则x∈A∩B,∴x∈B,故A⊆B;若A⊆B,任取x∈A,都有x∈B,∴x∈A∩B,∴A⊆(A∩B),又A∩B⊆A显然成立,∴A∩B=A.综上,“A∩B=A”是“A⊆B”的充要条件,故选C.3.A ∵y=log2x是增函数,∴当a>b>1时,有log2a>log2b>log21=0.另一方面,当log2a>log2b>0=log21时,有a>b>1.故选A.4.D 当a=2,b=-1时,a+b=1>0,但ab=-2<0,所以充分性不成立;当a=-1,b=-2时,ab=2>0,但a+b=-3<0,所以必要性不成立,故选D.5.B >1⇔x>y>0或x<y<0,知>1的一个充分不必要条件是x>y>0.6.B 命题甲等价于:若b>0,则a>b,若b<0,则a<b,命题乙等价于a<b<0,所以甲是乙的必要不充分条件,故选B.7.A log m n>0等价于m>1,且n>1,或0<m<1,且0<n<1,此时有(1-m)(1-n)>0,即充分性成立.当0<m<1,n≤0时,有(1-m)(1-n)>0,此时log m n无意义,即必要性不成立,故选A.8.A 设R为△ABC外接圆的半径.由正弦定理可知,若a≤b,则2RsinA≤2RsinB⇒sinA≤sinB,故“a≤b”是“sinA≤sinB”的充分条件;若sinA≤sinB,则≤⇒a≤b,故“a≤b”是“sinA≤sinB”的必要条件.综上所述,“a≤b”是“sinA≤sinB”的充要条件.故选A. 9.A 函数f(x)=sinx+m-1有零点,则m-1=-sinx∈[-1,1],所以0≤m≤2,故选A.B组提升题组1.A 由2x>1,得x>0.∵{x|1<x<2}⫋{x|x>0},∴p是q成立的充分不必要条件.2.A 在空间中,两条直线的位置关系有平行、相交、异面.直线l1、l2是异面直线,一定有l1与l2不相交,因此p是q的充分条件;若l1与l2不相交,那么l1与l2可能平行,也可能是异面直线,所以p不是q的必要条件.故选A.3.B ·>0只能说明△ABC中的角A是锐角,不能说明△ABC为锐角三角形;但反过来,若△ABC 为锐角三角形,则角A一定是锐角,从而·>0,故选B.4.B “3a>3b>3”等价于“a>b>1”,“log a3<log b3”等价于“a>b>1或0<a<1<b或0<b<a<1”,从而“3a>3b>3”是“log a3<log b3”的充分不必要条件.故选B.5.B >⇔->0⇔<0⇔ab(a-b)<0,故选B.6.A ab+1>a+b⇔(a-1)(b-1)>0,则a>1,且b>1,或a<1,且b<1,故选A.7.B △ABC中,由A>得不到sinA>.由sinA>可推出A>.故选B.8.D ∵≥1,∴≥0,∴-1<x≤2,又p是q的必要不充分条件,即q能推出p,但p不能推出q,∴k∈(-∞,-1],选D.9.B 命题“x、y中至少有一个大于1”等价于“x>1或y>1”,若x+y>2,则必有x>1或y>1,否则x+y≤2;而当x=2,y=-1时,2-1=1<2,所以由x>1或y>1不能推出x+y>2.当x=1,且y=1时,满足x+y=2,不能推出x>1或y>1,所以A错;对于x2+y2>2,当x<-1,y<-1时,满足x2+y2>2,不能推出x>1或y>1,故C错;对于xy>1,当x<-1,y<-1时,满足xy>1,不能推出x>1或y>1,故D错.综上知选B.10.C p:-1≤x≤4;在x2-6x+9-m2≤0中,当m>0时,解得3-m≤x≤3+m,要满足条件应满足且两个等号不能同时取到,解得m≥4.当m<0时,解得m≤-4.当m=0时,不满足条件.故m的取值范围是(-∞,-4]∪[4,+∞).11.A a2+b2<1⇒-1<a<1,-1<b<1⇒(a-1)·(b-1)>0⇒ab+1>a+b,反之,取a=2,b=2,满足ab+1>a+b,但不能得出a2+b2<1,故选A.。
§7.3点、直线与平面的位置关系A组基础题组1.(2015湖北,5,5分)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线;q:l1,l2不相交,则( )A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件2.(2013浙江,4,5分)设m,n是两条不同的直线,α,β是两个不同的平面( )A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β3.(2015宁波一模,4,5分)下列命题中,错误的是( )A.平行于同一平面的两个不同平面平行B.一条直线与两个平行平面中的一个相交,则必与另一个平面相交C.如果两个平面不垂直,那么其中一个平面内一定不存在直线与另一个平面垂直D.若直线不平行于平面,则此直线与这个平面内的直线都不平行4.(2015浙江五校二联,2,5分)下列四个命题:①若一个平面内的两条直线都与另一个平面平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( )A.①和②B.②和③C.③和④D.②和④5.(2015浙江五校二联,4,5分)若α、β是两个相交平面,则在下列命题中,真命题的序号为( )①若直线m⊥α,则在平面β内,一定不存在与直线m平行的直线;②若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直;③若直线m⊂α,则在平面β内,不一定存在与直线m垂直的直线;④若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线.A.①③B.②③C.②④D.①④6.(2016超级中学原创预测卷六,2,5分)设不在同一条直线上的A,B,C三点到平面α的距离相等,且A∉α,则( )A.α∥平面ABCB.△ABC中至少有一条边平行于αC.△ABC中至多有两条边平行于αD.△ABC中只可能有一条边平行于α7.(2015福建,7,5分)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(2015浙江名校(杭州二中)交流卷六,4)下列命题正确的是( )A.空间四面体的四个顶点到平面α的距离相等,则α最多有4个B.如果平面α与平面β同时垂直于平面γ,则α∥βC.如果三棱锥的三条侧棱两两垂直,则顶点在底面的射影一定是底面三角形的垂心D.过空间中的任意一点P都可以作出同时与异面直线a,b平行的平面9.(2015贵州遵义高三模拟,6)对于任意的直线l与平面α,在平面α内必有直线m,使m与l( )A.平行B.相交C.垂直D.互为异面直线10.(2015广东,6,5分)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交11.(2015台州一模,7,5分)平行六面体ABCD-A1B1C1D1中,AA1与平面A1B1C1D1垂直,且AD=AB,E 为CC1中点,P在对角面BB1D1D内运动,若EP与AC成30°角,则点P轨迹为( )A.圆B.抛物线C.双曲线D.椭圆12.(2016超级中学原创预测卷一,7,5分)如图,在长方形ABCD中,AB=,BC=1,E为线段DC上一动点.现将△AED沿AE折起得到△D'AE,且点D'在平面ABCE上的射影K在直线AE上,当点E从点D运动到点C时,点K所形成的轨迹的长度为( )A. B. C. D.13.(2015宁波一模,8,5分)如图,四棱柱ABCD-A1B1C1D1中,AA1⊥面ABCD,四边形ABCD为梯形,AD∥BC,且AD=3BC,过A1,C,D三点的平面记为α,BB1与α的交点为Q,则以下四个结论:①QC∥A1D;②B1Q=2QB;③直线A1B与直线CD相交;④四棱柱被平面α分成的上下两部分的体积相等,其中正确的个数为( )A.1个B.2个C.3个D.4个14.(2015浙江名校(绍兴一中)交流卷五,11)长方体ABCD-A1B1C1D1的底面是边长为1的正方形,点E在侧棱AA1上(不与A,A1重合),满足∠C1EB=90°,则异面直线BE与C1B1所成的角为,侧棱AA1的长的最小值为.15.(2015浙江模拟训练冲刺卷四,14)四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD.将四边形ABCD沿对角线BD折成四面体A1-BCD,使平面A1BD⊥平面BCD,给出下列结论:(1)A1C⊥BD;(2)∠BA1C=90°;(3)四面体A1-BCD的体积为.其中正确的命题是.(把所有正确命题的序号都填上)16.在正方体ABCD-A1B1C1D1中,E、F分别为棱AA1、CC1的中点,则在空间中与三条直线A1D1、EF、CD都相交的直线有条.17.如图所示,正方体ABCD-A1B1C1D1中,E、F分别是AB和AA1的中点.求证:(1)E、C、D1、F四点共面;(2)CE、D1F、DA三线共点.18.(2015课标Ⅱ,19,12分)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.B组提升题组1.(2016超级中学原创预测卷九,3,5分)如果直线a∥平面α,直线b⊂平面α,则下列说法正确的为( )A.有且只有一个平面β,使得a⊥β,且b⊂βB.有无数个平面β,使得a⊥β,且b⊂βC.不存在平面β,使得a⊥β,且b⊂βD.至多有一个平面β,使得a⊥β,且b⊂β2.(2015浙江,4,5分)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β.( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m3.(2014辽宁,4,5分)已知m,n表示两条不同直线,α表示平面.下列说法正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α4.(2016领航高考冲刺卷六,4,5分)已知a,b,c是三条不同的直线,α,β是两个不同的平面,给出下列命题:①任意给定一条直线a和一个平面α,则平面内必存在与直线a垂直的直线;②任意给定三条不同的直线a,b,c,必存在与a,b,c都相交的直线;③若α∥β,a⊂α,b⊂β,则必存在与a,b都垂直的直线;④已知α⊥β,α∩β=c,a⊂α,b⊂β,若a不垂直于c,则a不垂直于b.其中正确命题的个数是( )A.1B.2C.3D.45.(2013课标全国Ⅱ,4,5分)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l6.(2015安徽,5,5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β,则在α内与β平行的直线D.若m,n,则m与n垂直于同一平面7.(2015浙江学军中学仿真考,4,5分)若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中真命题的个数是( )①若m、n都平行于平面α,则m、n一定不是相交直线;②若m、n都垂直于平面α,则m、n一定是平行直线;③已知α、β互相垂直,m、n互相垂直,若m⊥α,则n⊥β;④m、n在平面α内的射影互相垂直,则m、n互相垂直.A.1B.2C.3D.48.(2015浙江高考冲刺卷(3),6)下列命题中正确的是( )A.如果两条直线都平行于同一个平面,那么这两条直线互相平行B.过已知平面的一条斜线有且只有一个平面与已知平面垂直C.平面α不垂直于平面β,但平面α内存在直线垂直于平面βD.若直线l不垂直于平面α,则在平面α内不存在与l垂直的直线9.(2013广东,6,5分)设m,n是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是( )A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β10.(2015广东,8,5分)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.至多等于3B.至多等于4C.等于5D.大于511.(2015温州八校联考,9)在正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值t构成的集合是( )A. B.C.{t|2≤t≤2}D.{t|2≤t≤2}12.(2016超级中学原创预测卷二文,7,5分)对于正方体ABCD-A1B1C1D1,点E在平面ABCD上运动,且满足EB=ED1,则点E的轨迹是( )A.抛物线B.直线C.椭圆D.双曲线13.(2015郑州二模)如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是( )A.BM是定值B.点M在某个球面上运动C.存在某个位置,使DE⊥A1CD.存在某个位置,使MB∥平面A1DE14.(2015浙江冲刺卷二,9,5分)下列四个命题:①分别和两条异面直线均相交的两条直线一定是异面直线.②一个平面内任意一点到另一个平面的距离均相等,那么这两个平面平行.③一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的平面角相等或互补.④过两异面直线外一点能作且只能作出一条直线和这两条异面直线同时相交.其中正确命题的个数是( )A.1B.2C.3D.415.(2016超级中学原创预测卷四,7,5分)已知二面角α-l-β的大小为120°,AB垂直于平面β交l于点B,动点C满足AC与AB的夹角为30°,则点C在平面α和平面β上的轨迹分别是( )A.双曲线、圆B.双曲线、椭圆C.抛物线、圆D.椭圆、圆16.( 2015镇海中学仿真考,14,4分)在棱长为1的正方体ABCD-A1B1C1D1中,M,N分别是AC1,A1B1的中点.点P在正方体的表面上运动,则总能使MP与BN垂直的点P的轨迹的周长等于.17.(2015温州二模,15,4分)如图所示的一块长方体木料中,已知AB=BC=4,AA1=1,设E为底面ABCD的中心,=λ,则该长方体中经过点A1,E,F的截面面积的最小值为.18.(2015安徽安庆三模)如图,正方体ABCD-A1B1C1D1,下面结论中正确的是(把你认为正确结论的序号都填上).①AC∥平面A1DC1;②BD1⊥平面A1DC1;③过点B与异面直线AC和A1D所成的角均为60°的直线有且只有2条;④四面体DA1C1D1与正方体ABCD-A1B1C1D1的内切球半径之比为;⑤与平面A1DC1平行的平面与正方体的各个面都有交点,则这个截面的周长为定值.19.在长方体ABCD-A1B1C1D1的A1C1面上有一点P(如图所示,其中P点不在对角线B1D1)上.(1)过P点在空间内作一条直线l,使l∥直线BD,应该如何作图?并说明理由;(2)过P点在平面A1C1内作一条直线m,使m与直线BD成α角,其中α∈,这样的直线有几条,应该如何作图?20.(2015四川,18,12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;(3)证明:直线DF⊥平面BEG.21.(2014安徽,20,13分)如图,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD.四边形ABCD为梯形,AD∥BC,且AD=2BC.过A1,C,D三点的平面记为α,BB1与α的交点为Q.(1)证明:Q为BB1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.A组基础题组1.A 在空间中,两条直线的位置关系有平行、相交、异面.直线l1、l2是异面直线,一定有l1与l2不相交,因此p是q的充分条件;若l1与l2不相交,那么l1与l2可能平行,也可能是异面直线,所以p不是q的必要条件.故选A.2.C 设直线a⊂α,b⊂α,a∩b=A,∵m⊥α,∴m⊥a,m⊥b.又n∥m,∴n⊥a,n⊥b,∴n⊥α.故选C.3.D 当直线l在平面α内,即l⊂α时,直线l不平行于平面α,但平面α内存在直线与直线l平行,可知D选项错误,故选D.4.D ①显然错误,因为这两条直线相交才满足条件;②成立;③错误,这两条直线可能平行,相交,也可能异面;④成立,用反证法容易证明.故选D.5.C 若α⊥β且直线m⊥α,则在平面β内,一定存在与直线m平行的直线,所以①错误;若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直,故②正确;若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线,故③错误,④正确,故选C.6.B 因为A∉α,所以A,B,C均不在平面α内.当A,B,C三点在平面α的同侧时,α∥平面ABC,此时△ABC的三条边都平行于α,排除C,D;当A,B,C三点不在平面α的同侧时,易知△ABC中只有一条边平行于α,此时平面α和平面ABC相交,故选B.7.B 因为l⊥m,m⊥α,所以l∥α或l⊂α.故充分性不成立.若l∥α,m⊥α,一定有l⊥m.故必要性成立.选B.8.C 对于A,在空间四面体中,过其高线的中点且与高垂直的平面即为平面α,这样的平面α有四个,而过空间四面体的任意两对对棱的中点的直线所确定的平面也符合要求,这样的平面α有三个,故有7个平面,故A错;B选项的两个平面可以相交;C选项正确;D选项中点P 在过直线a且与直线b平行的平面内时,不正确.9.C 当直线l与平面α相交时A不成立;当直线l与平面α平行时B不成立;当直线l在平面α内时D不成立.故选C.10.D 解法一:如图1,l1与l2是异面直线,l1与l平行,l2与l相交,故A,B不正确;如图2,l1与l2是异面直线,l1,l2都与l相交,故C不正确,选D.解法二:因为l分别与l1,l2共面,故l与l1,l2要么都不相交,要么至少与l1,l2中的一条相交.若l与l1,l2都不相交,则l∥l1,l∥l2,从而l1∥l2,与l1,l2是异面直线矛盾,故l至少与l1,l2中的一条相交,选D.11.A 因为平行六面体ABCD-A1B1C1D1中,AA1与平面A1B1C1D1垂直,且AD=AB,所以该平行六面体ABCD-A1B1C1D1是一个底面为菱形的直四棱柱,所以对角面BB1D1D⊥底面ABCD,AC⊥对角面BB1D1D.取AA1的中点F,连结EF,则EF∥AC,因为EP与AC成30°角,所以EP与EF成30°角.设EF与对角面BB1D1D的交点为O,则EO⊥对角面BB1D1D,所以点P的轨迹是以CO为轴的一个圆锥的底面,故选A.12.A 由于D'K⊥平面ABCE,所以D'K⊥AE.连结DK,则在折叠前,有DK⊥AE.因此,点K的轨迹是以AD为直径的圆上∠DAC所对的那部分圆弧,所以点K所形成的轨迹的长度为2π××=,故选A.13.B 易知平面BCC1B1∥平面ADD1A1,又平面α∩平面BCC1B1=QC,平面α∩平面ADD1A1=A1D,故QC∥A1D,①正确;△QBC与△A1AD的对应边相互平行,于是△QBC∽△A1AD,∴===,故B1Q=2QB,②正确;直线A1B与直线CD异面,③错误;如图所示,连结QA,QD.设AA1=h,梯形ABCD的高为d,四棱柱被平面α分成的上下两部分的体积分别为V上和V下,BC=a,则AD=3a,=×·3a·h·d=ahd,V Q-ABCD=··h=ahd,所以V下=+V Q-ABCD=ahd,又=·d·h=2ahd,所以V上=-V下=ahd,故=≠1,④错误.故正确的结论有2个,故选B.14.答案90°;2解析在长方体ABCD-A1B1C1D1中,CB⊥平面ABB1A1,∴∠CBE=90°,又C1B1∥BC,∴异面直线BE与C1B1所成的角为90°.连结BC1,设AA1=x,AE=m(m>0),则有BE2=1+m2,E=(x-m)2+2,B=1+x2,因为∠C1EB=90°,所以B=E+BE2,即1+x2=(x-m)2+2+1+m2,即m2-mx+1=0,所以x=m+≥2当且仅当m=,即m=1时,“=”成立.15.答案(2)解析若A1C⊥BD,∵BD⊥CD,A1C∩CD=C,∴BD⊥平面A1CD,∴BD⊥A1D.而由A1B=AB=1,A1D=AD=1,BD=,得A1B⊥A1D,与BD⊥A1D矛盾,故(1)错.∵CD⊥BD,平面BCD⊥平面A1BD,∴CD⊥平面A1BD,则CD⊥A1B.又A1B⊥A1D,A1D∩CD=D,∴A1B⊥平面A1CD,则A1B⊥A1C,故(2)正确.由(2)知=××A1B×A1D×CD=,故(3)错.16.答案无数解析在A1D1上任取一点P,过点P与直线EF作一个平面α,因为CD与平面α不平行,所以它们相交,设α∩CD=Q,连结PQ,则PQ与EF必然相交.由点P的任意性,知有无数条直线与A1D1、EF、CD都相交.17.证明(1)如图所示,连结CD 1、EF、A1B,∵E、F分别是AB和AA1的中点,∴EF∥A1B且EF=A1B.又∵A1D1BC,∴四边形A1BCD1是平行四边形,∴A1B∥CD1,∴EF∥CD1,∴EF与CD1确定一个平面α,∴E、F、C、D1∈α,即E、C、D1、F四点共面.(2)由(1)知EF∥CD1,且EF=CD1,∴四边形CD1FE是梯形,∴CE与D1F必相交,设交点为P,则P∈CE⊂平面ABCD,且P∈D1F⊂平面A1ADD1,∴P∈平面ABCD且P∈平面A1ADD1.又平面ABCD∩平面A1ADD1=AD,∴P∈AD,∴CE、D1F、DA三线共点.18.解析(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,所以AH=10.以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),=(10,0,0),=(0,-6,8).设n=(x,y,z)是平面EHGF的法向量,则即所以可取n=(0,4,3).又=(-10,4,8),故|cos<n,>|==.所以AF与平面EHGF所成角的正弦值为.B组提升题组1.D 直线a∥平面α,直线b⊂平面α,则直线a与直线b平行或异面,当a∥b时,无法过b 作平面β,使得a⊥β,而a与直线b异面但不垂直时,也无法过b作平面β,使得a⊥β,只有当a与直线b异面且垂直时,才能存在唯一的平面β,使得a⊥β,故选D.2.A对于选项A,由面面垂直的判定定理可知选项A正确;对于选项B,若α⊥β,l⊂α,m⊂β,则l与m可能平行,可能相交,也可能异面,所以选项B错误;对于选项C,当l平行于α与β的交线时,l∥β,但此时α与β相交,所以选项C错误;对于选项D,若α∥β,则l与m可能平行,也可能异面,所以选项D错误.故选A.3.B A选项m、n也可以相交或异面,C选项也可以n⊂α,D选项也可以n∥α或n与α斜交.根据线面垂直的性质可知选B.4.B 显然①正确;当a∥b,a,b⊂α,c∥α时,不存在与a,b,c都相交的直线,故②错误;显然③正确;当b⊥c时,b⊥α,显然此时无论a是不是垂直于c,a都垂直于b,故④错误.所以正确命题的个数是2,选B.5.D 若α∥β,则m∥n,这与m、n为异面直线矛盾,所以A不正确.易知α与β不一定垂直,但α与β的交线一定平行于l,从而排除B、C.故选D.6.D 若α,β垂直于同一个平面γ,则α,β可以都过γ的同一条垂线,即α,β可以相交,故A错;若m,n平行于同一个平面,则m与n可能平行,也可能相交,还可能异面,故B错;若α,β不平行,则α,β相交,设α∩β=l,在α内存在直线a,使a∥l,则a∥β,故C错;从原命题的逆否命题进行判断,若m与n垂直于同一个平面,由线面垂直的性质定理知m∥n,故D正确.7.A 因为平行于同一平面的两条直线可以平行、相交、异面,所以①为假命题;因为垂直于同一平面的两条直线平行,所以②为真命题;③中,n可以与β平行或相交,也可以在β内,所以③为假命题;④中,m,n也可以不互相垂直,所以④为假命题.综上,真命题只有一个,故选A.8.B 平行于同一个平面的两条直线可能平行,也可能相交,还可能异面,故A错;在斜线上取一点作已知平面的垂线,垂线与斜线确定唯一的平面且该平面与已知平面垂直,故B正确;若平面α内存在直线垂直于平面β,则平面α垂直于平面β,故C错;D显然错.故选B. 9.D 若α⊥β,m⊂α,n⊂β,则m与n可能平行,也可能相交或异面,故A错;若α∥β,m⊂α,n⊂β,则m与n可能平行,也可能异面,故B错;若m⊥n,m⊂α,n⊂β,则α与β可能相交,也可能平行,故C错;对于D项,由m⊥α,m∥n,得n⊥α,又知n∥β,故α⊥β,所以D项正确.10.B 由正四面体的定义可知n=4能满足条件.当n≥5时,可设其中三个点为A、B、C,由直线与平面垂直的性质及点到点的距离定义可知到A、B、C三点距离相等的点必在过△ABC的重心且与平面ABC垂直的直线上,从而易知到A、B、C的距离等于正三角形ABC边长的点有两个,分别在平面ABC的两侧.此时可知这两点间的距离大于正三角形的边长,从而不可能有5个点满足条件.当然也不可能有多于5个的点满足条件.故选B.11.D 设平面AD1E与直线BC交于点G,连结AG、EG,则G为BC的中点,分别取B1B、B1C1的中点M、N,连结A1M、MN、A1N,∵A1M∥D1E,A1M⊄平面D1AE,D1E⊂平面D1AE,∴A1M∥平面D1AE.同理可得MN∥平面D1AE,∵A1M、MN是平面A1MN内的相交直线,∴平面A1MN∥平面D1AE,由此结合A1F∥平面D1AE,可得直线A1F⊂平面A1MN,即点F是线段MN上的动点.设直线A1F与平面BCC1B1所成角为θ,当F与M(或N)重合时,A1F与平面BCC1B1所成角等于∠A1MB1(∠A1NB1),此时θ达到最小值,满足tanθ==2;当F与MN中点重合时,A1F与平面BCC1B1所成角达到最大值,满足tanθ==2,∴A1F与平面BCC1B1所成角的正切值的取值范围为[2,2].故选D.12.B 由于点E在平面ABCD上运动,且满足EB=ED1,即点E在BD1的垂直平分面上,所以点E 的轨迹是平面ABCD与BD1的垂直平分面的交线,即直线,所以选B.13.C 延长CB至F,使CB=BF,连结A1F,则MB为△A1FC的中位线,即MB=A1F,因为在翻折过程中A1F为定值,所以BM为定值.点A1绕DE的中点做圆周运动,点M运动的轨迹与点A1相似,所以点M在某个球面上运动.由题意知DE⊥EC,若DE⊥A1C,则直线DE⊥平面ECA1,于是∠DEA1=90°,又因为∠DAE=90°,即∠DA1E=90°,此时在一个三角形中有两个直角,所以DE不可能垂直于A1C.由MB A1F,可知当A1F在平面A1DE内时,MB∥平面A1DE.14.A 设直线a,b与两异面直线c,d相交,若直线a,b与直线c交于同一点,则直线a,b不是异面直线,故①错.②显然对.在正方体ABCD-A1B1C1D1中,平面AA1D1D⊥平面CDD1C1,平面A1D1C1B1⊥平面ACC1A1.而平面AA1D1D与平面A1D1C1B1所成角为直角,平面CDD1C1与平面ACC1A1所成角为45°,故③错.设直线a,b为两异面直线,则过直线a存在一个与直线b平行的平面α,过平面α内且不在直线a上的点M的直线就不能与两异面直线a,b同时相交,故④错.因此正确的命题只有一个.15.C 因为AB垂直于平面β,所以点C在平面β上的轨迹为以A为顶点,AB所在直线为旋转轴,AC为一条母线的圆锥与平面β的交线,即该轨迹为圆.因为二面角α-l-β的大小为120°,所以平面α与上述圆锥的一条母线AC平行,故点C在平面α上的轨迹是抛物线. 16.答案2+解析取BB1,CC1的中点E,F,连结AE,EF,FD,易知BN⊥平面AEFD,设M在平面ABB1A1内的射影为O,过MO与平面AEFD平行的平面为α,则使MP与BN垂直的点P的轨迹为矩形,其周长与矩形AEFD的周长相等.∵正方体ABCD-A1B1C1D1的棱长为1,∴矩形AEFD的周长为2+. 17.答案解析以AA1所在直线为z轴,AB所在直线为y轴,AD所在直线为x轴建立空间直角坐标系,连结FE并延长交BC于K,则K(4-4λ,4,0),A1(0,0,1),F(4λ,0,0),则=(4-8λ,4,0),=(-4λ,0,1),S=||||sin∠A1FK,则S2=||2||2-(·)2=[(4-8λ)2+16](16λ2+1)-[-4λ(4-8λ)]2=32(10λ2-2λ+1),0≤λ≤,所以S2的最小值为,则面积的最小值为.18.答案①②⑤解析∵AC∥A1C1,AC⊄平面A1DC1,A1C1⊂平面A1DC1,∴AC∥平面A1DC1,∴①正确;∵BD1⊥A1D,BD1⊥C1D,A1D∩C1D=D,∴BD1⊥平面A1DC1,∴②正确;∵异面直线AC和A1D所成的角为60°,∴过点B与异面直线AC和A1D所成的角均为60°的直线有且只有3条,故③错误;设AA1=a,可求得四面体DA1C1D1的内切球半径为a,而正方体ABCD-A1B1C1D1的内切球半径为a,所求的比应为1-,故④错误;将正方体展开,如图所示,易知截面的周长为定值,等于3a(a为正方体的棱长),故⑤正确.综上所述,①②⑤正确.19.解析(1)连结B 1D1,BD,在平面A1C1内过P点作直线l,使l∥直线B1D1,则l即为所求作的直线.∵直线B1D1∥直线BD,l∥直线B1D1,∴l∥直线BD.如图(1).图(1)(2)在平面A1C1内作直线m,使直线m与B1D1相交成α角,∵BD∥B1D1,∴直线m与直线BD也成α角,即直线m为所求作的直线,如图(2).由图(2)知m与BD是异面直线,且m与BD所成的角α∈.图(2)当α=时,这样的直线m有且只有一条,当α≠时,这样的直线m有两条.20.解析(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH.证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是BCHE为平行四边形.所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连结FH.因为ABCD-EFGH为正方体,所以DH⊥平面EFGH,因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.21.解析(1)证明:因为BQ∥AA 1,BC∥AD,BC∩BQ=B,AD∩AA1=A,所以平面QBC∥平面A1AD.从而平面A1CD与这两个平面的交线相互平行,即QC∥A1D.故△QBC与△A1AD的对应边相互平行,于是△QBC∽△A1AD.所以===,即Q为BB1的中点.(2)如图1,连结QA,QD.设AA1=h,梯形ABCD的高为d,四棱柱被平面α所分成上下两部分的体积分别为V上和V下,BC=a,则AD=2a.图1=×·2a·h·d=ahd,V Q-ABCD=··d·h=ahd,所以V下=+V Q-ABCD=ahd,又=·d·h=ahd,所以V上=-V下=ahd-ahd=ahd,故=.(3)解法一:如图1,在△ADC中,作AE⊥DC,垂足为E,连结A1E,AC.又DE⊥AA1,且AA1∩AE=A,所以DE⊥平面AEA1,于是DE⊥A1E.所以∠AEA1为平面α与底面ABCD所成二面角的平面角.因为BC∥AD,AD=2BC,所以S△ADC=2S△BCA.又因为梯形ABCD的面积为6,DC=2,所以S△ADC=4,AE=4.于是tan∠AEA1==1,∠AEA1=.故平面α与底面ABCD所成二面角的大小为.解法二:如图2,以D为原点,,的方向分别为x轴和z轴正方向建立空间直角坐标系.图2设∠CDA=θ.因为S四边形ABCD=·2sinθ=6,所以a=.从而C(2cosθ,2sinθ,0),A1,所以=(2cosθ,2sinθ,0),=.设平面A1DC的一个法向量为n=(x,y,1),由得x=-sinθ, y=cosθ,所以n=(-sinθ,cosθ,1).又因为平面ABCD的一个法向量为m=(0,0,1),所以cos<n,m>==,由图知平面α与底面ABCD所成二面角的平面角为锐角,故平面α与底面ABCD所成二面角的大小为.。
§8.6抛物线A组基础题组1.(2022安徽,3,5分)抛物线y=x2的准线方程是( )A.y=-1B.y=-2C.x=-1D.x=-22.(2021浙江杭州六中期末)已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0和y轴的距离之和的最小值是( )A. B. C.2 D.-13.(2022课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )A. B. C. D.4.(2021浙江嘉兴桐乡第一中学调研卷一,9,5分)抛物线y2=x的焦点为F,点P(x,y)为该抛物线上的动点,点A,则的最小值是( )A. B. C. D.5.(2022四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.6.(2021陕西,14,5分)若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p= .7.(2021浙江名校(镇海中学)沟通卷一,14)过抛物线y2=2x的焦点的直线与该抛物线交于A,B两点,且|AB|=4,则AB的中点的横坐标是.8.(2021浙江模拟训练冲刺卷一,11)已知点F为抛物线x2=4y的焦点,O为坐标原点,点M是抛物线准线上一动点,A在抛物线上,且|AF|=2,则|OA|= ;|MA|+|MO|的最小值是.9.(2021浙江新高考争辩卷四(舟山中学),11)已知抛物线C:y2=2px(p>0),抛物线C上横坐标为的点到焦点的距离为3.(1)p= ;(2)点M在抛物线C上运动,点N在直线x-y+5=0上运动,则|MN|的最小值等于.10.(2022超级中学原创猜测卷七,11,6分)已知正六边形ABCDEF的边长是2,抛物线y2=2px(p>0)恰好经过该正六边形的四个顶点,,过抛物线的焦点Q的直线交抛物线于M,N两点.若焦点Q是弦MN靠近点N的三等分点,则该抛物线的标准方程是,直线MN的斜率k等于.11.(2021浙江冲刺卷一,14,4分)已知直线x=my+2与抛物线y2=8x交于A,B两点,点C(-1,0),若∠ACB=90°,则m= .12.(2021浙江名校(绍兴一中)沟通卷五,14)已知M(a,4)为抛物线y2=2px(p>0)上一点,F为抛物线的焦点,N 为y轴上的动点,当sin∠MNF的值最大时,△MNF的面积为5,则p的值为.13.(2021浙江七校联考,18)已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值. 14.(2021福建,19,12分)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.15.(2021浙江,22,14分)已知抛物线C的顶点为O(0,0),焦点为F(0,1).(1)求抛物线C的方程;(2)过点F作直线交抛物线C于A,B两点.若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.16.(2021浙江模拟训练冲刺卷一,19)已知抛物线C1:x2=4y的焦点为F,过点F且斜率不为零的直线l与抛物线C1相交于不同的两点A,C,并与曲线C2:x2=-4(y-2)相交于不同的两点B,D,其中A,B两点在y轴右侧.(1)求A,B两点的横坐标之积;(2)记直线OA,OB,OC,OD的斜率分别为k1,k2,k3,k4,是否存在常数λ,使得k1+k3=λ(k2+k4)?若存在,求出λ的值;若不存在,请说明理由.B组提升题组1.(2021陕西,3,5分)已知抛物线y2=2px(p>0)的准线经过点(-1,1),则该抛物线焦点坐标为( )A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)2.(2022课标Ⅰ,10,5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=( )A.1B.2C.4D.83.(2021宁波高考模拟考试,5,5分)已知F是抛物线y2=4x的焦点,A,B是抛物线上的两点,|AF|+|BF|=12,则线段AB的中点到y轴的距离为( )A.4B.5C.6D.114.(2021河南焦作期中,11)已知点P在抛物线y2=4x上,点M在圆(x-3)2+(y-1)2=1上,点N的坐标为(1,0),则|PM|+|PN|的最小值为( )A.5B.4C.3D.+15.(2022课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=( )A. B.6 C.12 D.76.已知点P为抛物线y2=2px(p>0)上一点,F为抛物线的焦点,直线l过点P且与x轴平行,若同时与直线l、直线PF、x轴相切且位于直线PF左侧的圆与x轴相切于点Q,则( )A.Q点位于原点的左侧B.Q点与原点重合C.Q点位于原点的右侧D.以上均有可能7.(2021四川,10,5分)设直线l与抛物线y2=4x相交于A,B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是( )A.(1,3)B.(1,4)C.(2,3)D.(2,4)8.(2021稽阳联考,13,6分)过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是.9.(2021浙江六校联考,13,4分)已知F为抛物线C:y2=2px(p>0)的焦点,过F作斜率为1的直线交抛物线C于A、B两点,设|FA|>|FB|,则= . 10.(2021杭州二中高三仿真考,13,4分)已知点A在抛物线C:y2=2px(p>0)的准线上,点M,N在抛物线C上,且位于x轴的两侧,O是坐标原点,若·=3,则点A到动直线MN的最大距离为.11.(2021嘉兴教学测试二,14,4分)抛物线y2=4x的焦点为F,过点(0,3)的直线与抛物线交于A,B两点,线段AB的垂直平分线交x轴于点D,若|AF|+|BF|=6,则点D的横坐标为.12.(2022超级中学原创猜测卷五,14,6分)已知抛物线y2=4x的焦点为F,则点F的坐标为,若A,B是抛物线上横坐标不相等的两点,且线段AB的垂直平分线与x轴的交点为M(4,0),则|AB|的最大值为.13.(2021稽阳联考文,19,15分)点P是在平面坐标系中不在x轴上的一个动点,满足:过点P可作抛物线x2=y 的两条切线,切点分别为A,B.(1)设点A(x1,y1),求证:切线PA的方程为y=2x1x-;(2)若直线AB交y轴于R,OP⊥AB于点Q,求证:R是定点并求的最小值.14.(2021浙江五校二联文,19,15分)已知抛物线y2=2x上有四点A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),点M(3,0),直线AB、CD都过点M,且都不垂直于x轴,直线PQ过点M且垂直于x轴,交AC于点P,交BD于点Q.(1)求y1y2的值;(2)求证:MP=MQ.15.(2021浙江冲刺卷一,22)已知点M(0,-1),抛物线E:x2=4y,过点N(-4,1)的直线l交抛物线E于A,B两点,点A在第一象限.(1)若直线MA与抛物线相切,求直线MA的方程;(2)若直线MA交抛物线E于另一点C,问直线BC是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.16.(2022浙江,22,14分)已知△ABP的三个顶点都在抛物线C:x2=4y上,F为抛物线C的焦点,点M为AB的中点,=3.(1)若||=3,求点M的坐标;(2)求△ABP面积的最大值. A组基础题组1.A 由y=x2得x2=4y,焦点在y轴正半轴上,且2p=4,即p=2,因此准线方程为y=-=-1.故选A.2.D 由题意知,抛物线的焦点为F(1,0),设点P到直线l的距离为d,由抛物线的定义可知,点P到y轴的距离为|PF|-1,所以点P到直线l的距离与到y轴的距离之和为d+|PF|-1,易知d+|PF|的最小值为点F到直线l的距离,故d+|PF|的最小值为=,所以d+|PF|-1的最小值为-1.3.D 易知直线AB的方程为y=,与y2=3x联立并消去x得4y2-12y-9=0.设A(x1,y1),B(x2,y2),则y1+y2=3,y1y2=-.S△OAB=|OF|·|y1-y2|=×==.故选D.4.C 点A是抛物线的准线与x轴的交点,过P作抛物线准线的垂线,记垂足为B,则由抛物线的定义可得==sin∠PAB,当∠PAB最小时,的值最小,此时,直线PA与抛物线相切,可求得直线PA的斜率k=±1,所以∠PAB=45°,的最小值为,故选C.5.B 依题意不妨设A(x1,),B(x2,-),·=2⇒x1x2-=2⇒=2或=-1(舍去).当x1=x2时,有x1=x2=2,则S△ABO+S△AFO=2+=;当x1≠x2时,直线AB的方程为y-=(x-x1),则直线AB与x轴的交点坐标为(2,0).于是S△ABO+S△AFO=×2×(+)+×=+≥2=3当且仅当=时取“=”,而>3.故选B.6.答案 2解析抛物线y2=2px(p>0)的准线方程为x=-(p>0),故直线x=-过双曲线x2-y2=1的左焦点(-,0),从而-=-,得p=2.7.答案解析由已知得AB为抛物线的焦点弦,则|AB|=x A+x B+1=4,∴x A+x B=3,故AB的中点的横坐标是.8.答案;解析易知F(0,1).设A(x,y),由|AF|=2,得y+1=2,∴y=1,代入x2=4y得x=±2,所以A(±2,1),则|OA|=.设B(0,-2),因点M在抛物线准线上,则|MO|=|MB|,从而|MA|+|MO|的最小值就是|MA|+|MB|的最小值.因A,B为定点,则|MA|+|MB|的最小值即为|AB|=,故|MA|+|MO|的最小值是.9.答案(1)1 (2)解析(1)依题意得+=3,解得p=1.(2)设M(x,y),则y2=2x.则|MN|的最小值等于点M到直线x-y+5=0的距离d的最小值.而d====,则当y=1时,d min=,故|MN|的最小值等于.10.答案y2=x;±2解析如图所示,依据对称性,可设正六边形ABCDEF的顶点A,B,C,F在抛物线y2=2px(p>0)上,A(x1,1),F(x2,2),则即x2=4x1,又|AF|==2,即(x1-x2)2=(x1-4x1)2=3,所以=,x1=,则p===,则抛物线的方程是y2=x,则Q,设直线MN的方程为x=my+.将直线MN的方程与抛物线的方程联立,消去x得y2-my-=0.设M(x3,y3),N(x4,y4),所以y3+y4=m①,y3y4=-②,由于焦点Q是弦MN靠近点N的三等分点,所以=2,所以y3=-2y4③,联立①②③消去y3,y4,得m=±,所以直线MN的斜率k=±2.11.答案±解析设A(x1,y1),B(x2,y2),联立得消去x得y2-8my-16=0,则有y1+y2=8m,y1y2=-16.由∠ACB=90°,知·=0,即有(x1+1)(x2+1)+y1y2=0,则有(my1+3)(my2+3)+y1y2=0,即(m2+1)y1y2+3m(y1+y2)+9=0,则-16(m2+1)+24m2+9=0,解得m=±.12.答案2或8解析设N(0,n),当sin∠MNF的值最大时,有∠MNF=,从而有·=0,得ap+n2-4n=0.又2ap=16,所以n2-4n+4=0,所以n=2,所以N的坐标为(0,2)时,sin∠MNF的值最大.过M作MM'⊥y轴,垂足为M',则梯形OFMM'的面积为10,10=·4,又ap=8,得p=2或8.13.解析(1)直线AB的方程是y=2,由消去y得4x2-5px+p2=0,所以x1+x2=.由抛物线定义得|AB|=x1+x2+p=9,所以p=4,从而抛物线方程是y2=8x.(2)由p=4,4x2-5px+p2=0可得x2-5x+4=0,从而x1=1,x2=4,y1=-2,y2=4,从而A(1,-2),B(4,4).设=(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2), 由=8x3,得[2(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.14.解析(1)由抛物线的定义得|AF|=2+.由于|AF|=3,即2+=3,解得p=2,所以抛物线E的方程为y2=4x.(2)证法一:由于点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),所以k GA==,k GB==-,所以k GA+k GB=0,从而∠AGF=∠BGF,这表明点F到直线GA,GB的距离相等,故以F为圆心且与直线GA相切的圆必与直线GB相切.证法二:设以点F为圆心且与直线GA相切的圆的半径为r.由于点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),故直线GA的方程为2x-3y+2=0,从而r==.又直线GB的方程为2x+3y+2=0,所以点F到直线GB的距离d===r.这表明以点F为圆心且与直线GA相切的圆必与直线GB相切.15.解析(1)由题意可设抛物线C的方程为x2=2py(p>0),则=1,所以抛物线C的方程为x2=4y.(2)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1.由消去y,整理得x2-4kx-4=0,所以x1+x2=4k,x1x2=-4.从而|x1-x2|=4.由解得点M的横坐标x M===.同理,点N的横坐标x N=.所以|MN|=|x M-x N|==8=.令4k-3=t,t≠0,则k=.当t>0时,|MN|=2>2.当t<0时,|MN|=2≥.综上所述,当t=-,即k=-时,|MN|的最小值是.16.解析(1)设A(x1,y1),B(x2,y2),则x1>0,x2>0.又易知F(0,1),则由A,B,F三点共线得=,即x2=x1,得(x1+x2)x1x2=4(x1+x2),∵x1>0,x2>0,∴x1+x2>0,∴x1x2=4,故A,B两点的横坐标之积为4.(2)存在.明显直线l的斜率存在,且不为零,故可设直线l的方程为y=kx+1(k≠0).由得x2-4kx-4=0.设C(x3,y3),则有x1+x3=4k,且x1x3=-4.则k1+k3=+=+=+==k.由得x2+4kx-4=0.设D(x4,y4),则有x2+x4=-4k,且x2x4=-4.则k2+k4=+=+=+--=+k=+k=3k,∵k≠0,∴k1+k3=(k2+k4).故存在常数λ=,使得k1+k3=λ(k2+k4).B组提升题组1.B 抛物线y2=2px(p>0)的准线方程为x=-,由题设知-=-1,即=1,所以焦点坐标为(1,0).故选B.2.A 由y2=x得2p=1,即p=,因此焦点F,准线方程为l:x=-,设A点到准线的距离为d,由抛物线的定义可知d=|AF|,从而x0+=x0,解得x0=1,故选A.3.B 记A,B在抛物线准线x=-1的投影分别为A',B',故|AA'|+|BB'|=|AF|+|BF|=12,由中位线定理可得所求距离d=-1=5,故选B.4.C 由于抛物线y2=4x的焦点为N(1,0),所以|PM|+|PN|的最小值等于点M到抛物线的准线x=-1的距离的最小值.而点M在圆(x-3)2+(y-1)2=1上,则点M到准线x=-1的距离的最小值等于圆心(3,1)到准线的距离减去半径1,即(|PM|+|PN|)min=4-1=3,故选C.5.C 焦点F的坐标为,直线AB的斜率为,所以直线AB的方程为y=, 即y=x-,代入y2=3x,得x2-x+=0,设A(x1,y1),B(x2,y2),则x1+x2=,所以|AB|=x1+x2+=+=12,故选C.6.B 如图,设直线l,x轴分别与抛物线的准线交于C,D两点,由抛物线的定义知|PC|=|PF|,由圆的切线性质知|PA|=|PB|,于是|AC|=|BF|.又|AC|=|DO|,|BF|=|FQ|,所以|DO|=|FQ|,而|DO|=|FO|,得O,Q两点重合.故选B.7.D 明显0<r<5.当直线l的斜率不存在时,存在两条满足题意的直线,所以当直线l的斜率存在时,存在两条满足题意的直线,设直线l的斜率为k,由抛物线和圆的对称性知,k>0、k<0时各有一条满足题意的直线.设A(x1,y1),B(x2,y2),M(x0,y0),k====.记圆心为C(5,0).∵k CM=,k·k CM=-1,∴x0=3.∴r2=(3-5)2+>4(y0≠0),即r>2.另一方面,由AB的中点为M,知B(6-x1,2y0-y1),∴(2y0-y1)2=4(6-x1),又∵=4x1,∴-2y0y1+2-12=0.∴Δ=4-4(2-12)>0,即<12.∴r2=(3-5)2+=4+<16,∴r<4.综上,r∈(2,4).故选D.8.答案±解析由题意设l:x=ty+1,A(x1,y1),B(x2,y2).将x=ty+1代入y2=4x,得y2-4ty-4=0,∴y1+y2=4t,y1y2=-4.又=3,∴y1=-3y2,∴∴t2=,即k=±.9.答案3+2解析过抛物线C的焦点,斜率为1的直线方程为y=x-,代入抛物线C的方程,整理得4x2-12px+p2=0.又由题意可得x A>x B,解得x A=p,x B=p,所以====3+2.10.答案解析由题意知抛物线的准线方程为x=-=-,解得p=1,所以抛物线的方程为y2=2x.设直线MN的方程为x=ty+m,M(x1,y1),N(x2,y2),直线MN与x轴的交点为D(m,0),联立直线MN与抛物线的方程,得y2-2ty-2m=0,所以y1y2=-2m.由于·=3,所以x1x2+y1y2=3,即(y1y2)2+y1y2-3=0.由于M,N位于x轴的两侧,所以y1y2=-6,所以m=3,则直线MN恒过点D(3,0).当直线MN绕定点D(3,0)旋转时,旋转到AD⊥MN时,点A到动直线MN的距离最大,且为=.11.答案 4解析设A(x1,y1),B(x2,y2),直线AB的方程为y-3=kx(k<0),即y=kx+3,联立直线AB的方程与抛物线方程消去y,得k2x2+(6k-4)x+9=0,所以x1+x2=.又p=2,依据抛物线的定义有|AF|+|BF|=x1+x2+p=x1+x2+2=6,所以x1+x2==4,解得k=(舍)或k=-2,所以y1+y2=-2(x1+x2)+6=-2,所以线段AB的中点坐标为(2,-1),所以线段AB的垂直平分线的方程为y+1=(x-2),即x-2y-4=0,令y=0,得x=4,所以点D的横坐标为4.12.答案(1,0);6解析抛物线y2=4x的焦点为F(1,0).设A(x1,y1),B(x2,y2),由于线段AB的垂直平分线与x轴的交点为M(4,0),所以|MA|2=|MB|2,即(x1-4)2+=(x2-4)2+,又A,B是抛物线上两点,所以=4x1,=4x2,代入上式并化简得-=4x1-4x2,又x1≠x2,所以x1+x2=4,所以|AB|≤|AF|+|BF|=x1+1+x2+1=6(当且仅当A,B,F三点共线时取等号),所以|AB|的最大值为6.13.解析(1)证明:设以A(x1,)为切点的切线方程为y-=k(x-x1),与x2=y联立得x2-kx+kx1-=0,由Δ=k2-4kx1+4=(k-2x1)2=0得k=2x1,所以切线PA的方程为y=2x1x-.(2)设B(x2,y2),由(1)知点P的坐标为,设直线AB的方程为y=kx+m,与x2=y联立得x2-kx-m=0,所以P,由题意知k·k OP=k·=-2m=-1⇒m=,即R.|PQ|=,|QR|==,所以==|k|+≥2,当且仅当|k|=时,的最小值为2.14.解析(1)设直线AB的方程为x=my+3,与抛物线联立得:y2-2my-6=0,∴y1y2=-6.(2)证明:直线AC的斜率为=,∴直线AC的方程为y=(x-x1)+y1,∴点P的纵坐标为y P===,同理,点Q的纵坐标为y Q=,∴y P+y Q=0,又PQ⊥x轴,∴MP=MQ.15.解析(1)设A(x1,y1)(x1>0),则直线MA的方程为y=x-1,与x2=4y联立消去y,得x1x2-(+4)x+4x1=0,由Δ=-16=0,得=4,而x1>0,故x1=2,即有A(2,1).则直线MA的方程为y=x-1.(2)明显直线BC的斜率存在,设直线BC的方程为y=kx+n,与x2=4y联立消去y,得x2-4kx-4n=0.设B(x2,y2),C(x3,y3),则有x2+x3=4k,x2x3=-4n.由(1)知x1,x3是方程x1x2-(+4)x+4x1=0的两根,且x1≠2.则有x1x3=4,即x1=,从而y1==.由于N,A,B三点共线,所以===+,即有-1=+x2++,化简得x2+x3+x2x3+4=0,即有4k-4n+4=0,得n=k+1.从而直线BC的方程为y=kx+k+1=k(x+1)+1,故直线BC过定点,且定点坐标为(-1,1). 16.解析(1)由题意知焦点F(0,1),准线方程为y=-1.设P(x0,y0),由抛物线定义知|PF|=y0+1,得到y0=2,所以P(2,2)或P(-2,2).由=3,分别得M或M.(2)设直线AB的方程为y=kx+m,点A(x1,y1),B(x2,y2),P(x0,y0). 由得x2-4kx-4m=0,于是Δ=16k2+16m>0,x1+x2=4k,x1x2=-4m,所以AB中点M的坐标为(2k,2k2+m).由=3,得(-x0,1-y0)=3(2k,2k2+m-1),所以由=4y0得k2=-m+.由Δ>0,k2≥0,得-<m≤.又由于|AB|=4·,点F(0,1)到直线AB的距离为d=,所以S△ABP=4S△ABF=8|m-1|=.记f(m)=3m3-5m2+m+1.令f'(m)=9m2-10m+1=0,解得m1=,m2=1.可得f(m)在上是增函数,在上是减函数,在上是增函数.又f=>f,所以,当m=时,f(m)取到最大值,此时k=±.所以,△ABP面积的最大值为.。
2025届湖南省东安一中高考数学三模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知点(3,0),(0,3)A B -,若点P 在曲线21y x =--上运动,则PAB △面积的最小值为( ) A .6B .3C .93222- D .93222+ 2.已知等差数列{}n a 的前n 项和为n S ,且282,10a a =-=,则9S =( ) A .45B .42C .25D .363.已知数列{}n a 是公比为2的正项等比数列,若m a 、n a 满足21024n m n a a a <<,则()21m n -+的最小值为( ) A .3B .5C .6D .104.如果0b a <<,那么下列不等式成立的是( ) A .22log log b a < B .1122b a⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .33b a >D .2ab b <5.若复数2(2)(32)m m m m i -+-+是纯虚数,则实数m 的值为( ) A .0或2 B .2C .0D .1或26.已知复数,则的共轭复数在复平面对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知集合{}2(,)|A x y y x ==,{}22(,)|1B x y xy =+=,则A B 的真子集个数为( )A .1个B .2个C .3个D .4个8.在我国传统文化“五行”中,有“金、木、水、火、土”五个物质类别,在五者之间,有一种“相生”的关系,具体是:金生水、水生木、木生火、火生土、土生金.从五行中任取两个,这二者具有相生关系的概率是( ) A .0.2B .0.5C .0.4D .0.89.宁波古圣王阳明的《传习录》专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“—”表示一根阳线,“——”表示一根阴线).从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为( )A .514B .314C .328D .52810.已知2cos(2019)3πα+=-,则sin(2)2πα-=( )A .79B .59C .59-D .79-11.已知集合{}1,0,1,2A =-,{}|lg(1)B x y x ==-,则A B =( )A .{2}B .{1,0}-C .{}1-D .{1,0,1}-12.已知命题p :若1a >,1b c >>,则log log b c a a <;命题q :()00,x ∃+∞,使得0302log x x <”,则以下命题为真命题的是( ) A .p q ∧B .()p q ∧⌝C .()p q ⌝∧D .()()p q ⌝∧⌝二、填空题:本题共4小题,每小题5分,共20分。
2023~2024学年普通高等学校招生模拟考试数学试卷本试卷共6页,共19小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效,4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,且复数2024i 6z =,则下列说法中正确的是( ).A. 复数z 实数B. 2024i i =C. 复数z 为纯虚数D. 6i z =-2. 已知集合{}31,Z A x x k k ==+∈,则下列表示正确的是( ). A. 2A -∈ B. 2023A ∉ C. 231k A +∉D. 35A -∉3. 已知正三棱台的高为1,上、下底面边长分别为积为( ) A. 100πB. 128πC. 144πD. 192π4. 若a ,b 都是正数,且1ab =,则11822a b a b+++的最小值为( ) A. 4 B. 8C.D.5. 神舟十五号飞行任务是中国载人航天工程2022年的第六次飞行任务,也是中国空间站建造阶段最后一次为飞行任务,航天员乘组将在轨工作生活6个月.某校为了培养学生们的航天精神,特意举办了关于航天知识的知识竞赛,竞赛一共包含两轮.高三(9)班派出了u 和v 两位同学代表班级参加比赛,每轮竞赛u 和v 两位同学各答1题.已知u 同学每轮答对的概率是45,v 同学每轮答对的概率是34,每轮竞赛中u 和v 两位同学答对与否互不影响,每轮结果亦互不影响,则u 和v 两位同学至少答对3道题的概率为( ).A.39200B.129200C.12950D.39506. 椭圆()2222:10x y E a b a b+=>>左顶点为M ,点,A B 均在E 上,且点,A B 关于点y 轴对称,若直线,MA MB 均存在斜率,且斜率之积为18,记E 的离心率为e ,则2e =( ).A.18B.C.78D.147. 若直线π4x =是πsin()4y x ω=-(0)>ω的一条对称轴,且在区间π[0,12上不单调,则ω的最小值为( ) A. 9B. 7C. 11D. 38. 设函数()f x 在R 上满足()()22f x f x -=+,()()77f x f x -=+,且在区间[]07,上只有()()130f f ==,则方程()0f x =在闭区间[]20232023-,上根的个数为( ). A. 806B. 810C. 807D. 811二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,在下列给出的正方体中,点M N ,为顶点,点O 为下底面的中心,点P 为正方体的棱所在的中点,则OP 与MN 不垂直的是( ).A. B.C. D.10. 已知直线2:0l mx ny r +-=与圆222:C x y r +=,点(),P m n ,则下列命题中是假命题的是( ).的A. 若点P 在圆C 外,则直线l 与圆C 相离B. 若点P 在圆C 内,则直线l 与圆C 相交C. 若点P 在圆C 上,则直线l 与圆C 相切D. 若点P 在直线l 上,则直线l 与圆C 相切11. 中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究,设a ,b ,m (m >0)为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为a ≡b (mod m ).如9和21除以6所得的余数都是3,则记为9≡21(mod 6).若0122222222222222C C 2C 2C 2a =+⋅+⋅++⋅ ,a ≡b (mod 10),则b 的值可以是( ). A. 2019B. 2023C. 2029D. 2033三、填空题:本题共3小题,每小题5分,共15分.12. 已知向量a 与b相互垂直,且3a = ,2b = ,则()()a b a b +⋅-= _____.13. 已知符号“lim ”代表极限的意思,现给出两个重要极限公式:①0sin lim1x xx →=;②10lim(1)e x x x →+=,则依据两个公式,类比求0sin cos limx x xx→=_____;1sin cos 0lim(1sin 2)x x x x →+= ________. 14. 已知函数()2e e e xxxg x x x =--,若方程()g x k =有三个不同实根,则实数k 的取值范围是_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 当今社会面临职业选择时,越来越多的青年人选择通过创业、创新的方式实现人生价值.小明是一名刚毕业的大学生,通过直播带货的方式售卖自己家乡的特产,下面是他近5个月的家乡特产收入y (单位:万元)情况,如表所示. 月份 5 6 7 8 9 时间代号t 1 2 3 4 5 家乡特产收入y 32.42.221.8(1)根据5月至9月的数据,求y 与t 之间的线性相关系数(精确到0.001),并判断相关性;(2)求出y 关于t 的回归直线方程(结果中b 保留两位小数),并预测10月收入能否突破1.5万元,请说明理由.的附:相关系数公式:nnt y nt yr ==.(若0.75r >,则线性相关程度很强,可用线性回归模型拟合)②一组数据()11,x y ,()22,x y ,…,(),nnx y ,其回归直线方程y bx a =+$$$的斜率和截距的最小二乘估计公式分别为1221ni ii ni i x y nx yb x nx==-=-∑∑ , a y bx=- .③参考数据:2.91≈.16. 已知数列{}n a 是公差为d 的等差数列,2n na b n-=. (1)证明:数列{}n b 也等差数列;(2)若13a d ==,数列{}n c 是以数列{}n b 的公差为首项,2为公比的等比数列,数列{}n n b c 的前n 项和n T ,证明:1n T ≥.17. 如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥; 条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.18. 已知1(2,0)F -,2(2,0)F ,点P 满足122PF PF -=,记点P 的轨迹为E .直线l 过点2F 且与轨迹E 交为于P 、Q 两点.(1)无论直线l 绕点2F 怎样转动,在x 轴上总存在定点(,0)M m ,使MP MQ ⊥恒成立,求实数m 值;(2)在(1)的条件下,求MPQ 面积的最小值. 19. 已知当π02x ⎛⎫∈ ⎪⎝⎭,时,2()πxf x =,()sin g x x =,()h x x =. (1)证明:()()()f x g x h x <<;(2)已知()()()0f x g x h x --<,证明:()π()2πh x g x -(π可近似于3.14). 参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,且复数2024i 6z =,则下列说法中正确的是( ).A. 复数z 为实数B. 2024i i =C. 复数z 为纯虚数D. 6i z =-【答案】A 【解析】【分析】借助复数的运算法则计算即可得. 【详解】()()1012101220242i i 11==-=,故6z =,故A 正确,B 、C 、D 错误. 故选:A.2. 已知集合{}31,Z A x x k k ==+∈,则下列表示正确的是( ). A. 2A -∈ B. 2023A ∉ C. 231k A +∉ D. 35A -∉【答案】A 【解析】【分析】令31k +分别为选项中不同值,求出k 的值进行判定.的【详解】当1k =-时,2x =-,所以2A -∈,故A 正确;当674k =时,367412023x =⨯+=,所以2023A ∈,故B 错误; 当1k =或0k =时,23131k k +=+,所以231k A +∈,故C 错误; 当12k =-时,123135x =-⨯+=-,所以35A -∈,故D 错误. 故选:A3. 已知正三棱台的高为1,上、下底面边长分别为积为( ) A. 100π B. 128πC. 144πD. 192π【答案】A 【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以1222r r ==123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =,2d =121d d -=或121d d +=1=,解得225R =符合题意,所以球的表面积为24π100πS R ==. 故选:A .4. 若a ,b 都是正数,且1ab =,则11822a b a b+++的最小值为( )A. 4B. 8C. D.【答案】A 【解析】【分析】将1ab =代入,利用基本不等式直接求解即可得出结论. 【详解】若a ,b 都是正数,且1ab =∴11888422222b a a b a b a b a b a b +++=++=+=+++≥, 当且仅当4a b +=时等号成立, 故选:A.5. 神舟十五号飞行任务是中国载人航天工程2022年的第六次飞行任务,也是中国空间站建造阶段最后一次飞行任务,航天员乘组将在轨工作生活6个月.某校为了培养学生们的航天精神,特意举办了关于航天知识的知识竞赛,竞赛一共包含两轮.高三(9)班派出了u 和v 两位同学代表班级参加比赛,每轮竞赛u 和v 两位同学各答1题.已知u 同学每轮答对的概率是45,v 同学每轮答对的概率是34,每轮竞赛中u 和v 两位同学答对与否互不影响,每轮结果亦互不影响,则u 和v 两位同学至少答对3道题的概率为( ).A.39200B.129200C.12950D.3950【答案】D 【解析】【分析】分别求出答对4道题,答对3道题的概率,再求和事件的概率即可.【详解】若u 和v 两位同学答对4道题,则其概率为224395425⎛⎫⎛⎫⨯= ⎪ ⎪⎝⎭⎝⎭;若u 和v 两位同学答对3道题,则其概率为22143134212255444550⎛⎫⎛⎫⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭;故u 和v 两位同学至少答对3道题的概率为92139255050+=. 故选:D.6. 椭圆()2222:10x y E a b a b+=>>的左顶点为M ,点,A B 均在E 上,且点,A B 关于点y 轴对称,若直线,MA MB 均存在斜率,且斜率之积为18,记E 的离心率为e ,则2e =( ).A.18B.C.78D.14【答案】C 【解析】【分析】根据题意得到,,M A B 的坐标,进而利用两点距离公式与点在椭圆上得到关于,a b 的齐次方程,从而得解.【详解】由题可得(),0M a -,设()()0000,,,A x y B x y -. 则20002200018AM BMy y y k k x a a x a x ⋅=⋅==+--, 又222222000022222118x y y a x b a b b a a -+=⇒=⇒=, 则22222287a b c a b b ==-=,.则222227788c b e a b===. 故选:C 7. 若直线π4x =是πsin()4y x ω=-(0)>ω的一条对称轴,且在区间π[0,12上不单调,则ω的最小值为( ) A. 9 B. 7C. 11D. 3【答案】C 【解析】【分析】根据给定条件求出ω的关系式,再求出函数πsin()4y x ω=-含0的单调区间即可判断作答.【详解】因直线π4x =是πsin (0)4y x ωω⎛⎫=-> ⎪⎝⎭的一条对称轴,则ππππ,Z 442k k ω-=+∈,即43,Z k k ω=+∈,由πππ242x ω-≤-≤,得π3π44x ωω-≤≤,则πsin()4y x ω=-在π3π[,44ωω-上单调递增, 而πsin(4y x ω=-在区间π[0,12上不单调,则3ππ412ω<,解得9ω>, 综上,ω的最小值为11. 故选:C8. 设函数()f x 在R 上满足()()22f x f x -=+,()()77f x f x -=+,且在区间[]07,上只有()()130f f ==,则方程()0f x =在闭区间[]20232023-,上根的个数为( ). A. 806 B. 810C. 807D. 811【答案】B 【解析】【分析】先根据条件确定函数周期,然后确定一个周期内的根的个数,进而得到在闭区间[]20232023-,上根的个数.【详解】因为()()22f x f x -=+,所以()()4f x f x -=+, 又()()77f x f x -=+,所以()()14f x f x -=+, 所以()()414f x f x +=+,即()()10f x f x =+, 所以函数()f x 的周期为10,在区间[]07,上只有()()130f f ==, 所以()0f x =在(]4,7上无解, 则()70f x -=在(]0,3上无解, 又()()77f x f x -=+,所以()70f x +=在(]0,3上无解,,即()0f x =在(]7,10上无解, 即一个周期[]0,10内,方程的根只有1,3,闭区间[]20202020-,上含有404个周期,此时有4042808⨯=个根, 在区间(]20202023,内,()()()()202110,202330,f f f f ==== 对于区间[)2023,2020--,根据周期等价于区间[)7,10,该区间上无解,故方程()0f x =在闭区间[]20232023-,上根的个数为810. 故选:B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,在下列给出的正方体中,点M N ,为顶点,点O 为下底面的中心,点P 为正方体的棱所在的中点,则OP 与MN 不垂直的是( ).A. B.C. D.【答案】CD 【解析】【分析】建立适当空间直角坐标系,利用空间向量分析判断即可. 【详解】设正方体的棱长为2,对A :建立如图所示空间直角坐标系,则(2,2,2),(0,2,0),(0,0,1),(1,1,0)M N P O ,可得(2,0,2),(1,1,1)MN OP =--=-- ,则2020MN OP ⋅=+-=,所以MN OP ⊥,即MN OP ⊥,故A 错误;对B :建立如图所示空间直角坐标系,则(0,0,2),(2,0,0),(2,0,1),(1,1,0)M N P O ,可得(2,0,2),(1,1,1)MN OP =-=- ,则2020MN OP ⋅=+-=,所以MN OP ⊥,即MN OP ⊥,故B 错误;对C :建立如图所示空间直角坐标系,则(0,2,0),(0,0,2),(2,1,2),(1,1,0)M N P O ,可得(0,2,2),(1,0,2)MN OP =-= ,则0040MN OP ⋅=++≠,所以MN 与OP不垂直,即MN 与OP 不垂直,故C 正确;对D :建立如图所示空间直角坐标系,则(2,0,2),(0,2,2),(0,2,1),(1,1,0)M N P O ,可得(2,2,0),(1,1,1)MN OP =-=- ,则2200MN OP ⋅=++≠,所以MN 与OP不垂直,即MN 与OP 不垂直,故D 正确.故选:CD.10. 已知直线2:0l mx ny r +-=与圆222:C x y r +=,点(),P m n ,则下列命题中是假命题的是( ). A. 若点P 在圆C 外,则直线l 与圆C 相离 B. 若点P 在圆C 内,则直线l 与圆C 相交 C. 若点P 在圆C 上,则直线l 与圆C 相切 D. 若点P 在直线l 上,则直线l 与圆C 相切【答案】AB【解析】【分析】根据直线和圆相切、相交、相离的等价条件进行求解即可. 【详解】对于A ,因为点(),P m n 在圆C 外,所以222m n r +>, 则圆心()0,0C 到直线l的距离为d r <,所以直线l 与圆C 相交,故命题A 是假命题;对于B ,因为点(),P m n 在圆C 内,所以222m n r +<, 则圆心()0,0C 到直线l的距离为d r >,所以直线l 与圆C 相离,故命题B 是假命题;对于C ,因为点(),P m n 在圆C 上,所以222m n r +=, 则圆心()0,0C 到直线l的距离为d r =,所以直线l 与圆C 相切,故命题C 是真命题;对于D ,因为点(),P m n 在直线l 上,所以2220m n r +=-,即222m n r +=, 则圆心()0,0C 到直线l的距离为d r =,所以直线l 与圆C 相切,故命题D 是真命题; 故选:AB.11. 中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究,设a ,b ,m (m >0)为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为a ≡b (mod m ).如9和21除以6所得的余数都是3,则记为9≡21(mod 6).若0122222222222222C C 2C 2C 2a =+⋅+⋅++⋅ ,a ≡b (mod 10),则b 的值可以是( ). A. 2019 B. 2023 C. 2029 D. 2033【答案】AC 【解析】【分析】先利用二项式定理化简得223a =;再利用二项式定理将()11221139101==-展开可得到a 除以10所得的余数是9,进而可求解.【详解】因为()22012222222222222222C C 2C 2C 2123a =+⋅+⋅++⋅=+=()()112211011110101101019101111111111111139101C 10C 10C 10C 10C 10C 10C 19==-=⨯-⨯++⨯-=⨯-⨯++-+所以a 除以10所得的余数是9. 又因为a ≡b (mod 10) 所以b 除以10所得的余数是9.而2019201109=⨯+,2023202103=⨯+,2029202109=⨯+,2033203103=⨯+ 故选:AC.三、填空题:本题共3小题,每小题5分,共15分.12. 已知向量a 与b相互垂直,且3a = ,2b = ,则()()a b a b +⋅-= _____.【答案】5 【解析】【分析】根据向量的数量积运算法则即可求解.【详解】()()2222325a b a b a a b b a b +⋅-=⋅-⋅=-=-= ,故答案为:513. 已知符号“lim ”代表极限的意思,现给出两个重要极限公式:①0sin lim1x xx →=;②10lim(1)e x x x →+=,则依据两个公式,类比求0sin cos lim x x x x→=_____;1sin cos 0lim(1sin 2)x x x x →+= ________. 【答案】 ①. 1②. 2e【解析】【分析】根据题意,结合极限的运算法则,准确计算,即可求解.【详解】由极限的定义知:①0sin lim1x xx→=;②10lim(1)e x x x →+=, 因为sin cos sin 22x x x x x =,sin 2t x =,可得sin 2sin 2x tx t =, 则00sin cos sin limlim 1x t x x tx t→→==; 又因为12sin cos sin 2(1sin 2)(1sin 2)x x x x x +=+,令sin 2t x =,可得22sin 2(1sin 2)(1)x t x t +=+, 所以12122sin cos 0lim(1sin 2)lim(1)lim (1e [)]x xt t x t t x t t →→→+=+=+=.故答案为:1;2e .14. 已知函数()2e e e xxxg x x x =--,若方程()g x k =有三个不同的实根,则实数k 的取值范围是_________. 【答案】()20,5e -【解析】【分析】通过求导得出函数的单调性和极值,即可得出有三个实根时实数k 的取值范围. 【详解】由题意,()2e e e xxxg x x x =--中,()()2e2xg x xx '=+-,当()0g x '=时,解得2x =-或1,当()0g x '<即2<<1x -时,()g x 单调递减, 当()0g x '>即<2x -,1x >时,()g x 单调递增,∵()()()2222222e 2e e 5e g -----=----=,()1111e e e e g =--=-,当()()22,1e0xx g x x x -=--,方程()g x k =有三个不同的实根, ∴()02k g <<-即205e k -<<, 故答案为:()20,5e-.【点睛】易错点点点睛:本题考查函数求导,两函数的交点问题,在研究函数的图象时很容易忽略()()22,1e 0x x g x x x -=--这个条件.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 当今社会面临职业选择时,越来越多的青年人选择通过创业、创新的方式实现人生价值.小明是一名刚毕业的大学生,通过直播带货的方式售卖自己家乡的特产,下面是他近5个月的家乡特产收入y (单位:万元)情况,如表所示. 月份 5 6 7 8 9 时间代号t 1 2 3 4 5 家乡特产收入y32.42.221.8在(1)根据5月至9月的数据,求y 与t 之间的线性相关系数(精确到0.001),并判断相关性;(2)求出y 关于t 的回归直线方程(结果中b 保留两位小数),并预测10月收入能否突破1.5万元,请说明理由.附:相关系数公式:nnt y nt yr ==.(若0.75r >,则线性相关程度很强,可用线性回归模型拟合)②一组数据()11,x y ,()22,x y ,…,(),nnx y ,其回归直线方程y bx a =+$$$的斜率和截距的最小二乘估计公式分别为1221ni ii ni i x y nx yb x nx==-=-∑∑ , a y bx=- .③参考数据:2.91≈.【答案】(1)0.962r ≈-,y 与t 具有很强的线性相关关系(2) 0.28 3.12y t =-+,10月收入从预测看不能突破1.5万元,理由见解析 【解析】【分析】(1)直接套公式求出y 与t 之间的线性相关系数,即可判断; (2)套公式求出系数b 、a ,即可得到回归方程,并求出10月份的收入.小问1详解】(1)由5月至9月的数据可知1234535t ++++==,3 2.4 2.22 1.82.285y ++++==,51132 2.43 2.2425 1.831.4i i i t y ==⨯+⨯+⨯+⨯+⨯=∑,()5214101410i i t t=-=++++=∑,()522222210.720.120.080.280.480.848ii y y =-=++++=∑,所以所求线性相关系数【为550.962t yr ===≈-.因为相关系数的绝对值0.9620.9620.75r =-=>, 所以认为y 与t 具有很强的线性相关关系. 【小问2详解】 由题得522222211234555ii t==++++=∑,51522215 3.1453 2.28 2.80.285553105i ii i i t y t ybt t==--⨯⨯-====--⨯-∑∑ , 所以 ()2.280.283 3.12a y bt=-=--⨯= , 所以y 关于t 的回归直线方程为 0.28 3.12y t =-+. 当6t =时, 0.286 3.12 1.44y =-⨯+=,因为144 15<..,所以10月收入从预测看不能突破1.5万元. 16. 已知数列{}n a 是公差为d 的等差数列,2n na b n-=. (1)证明:数列{}n b 也为等差数列;(2)若13a d ==,数列{}n c 是以数列{}n b 的公差为首项,2为公比的等比数列,数列{}n n b c 的前n 项和n T ,证明:1n T ≥. 【答案】(1)证明见解析;(2)证明见解析. 【解析】【分析】(1)通过计算1n n b b +-为定值可证明等差数列;(2)先求出数列的通项公式,然后利用错位相减法求n T ,根据n T 的结构即可证明不等式. 【小问1详解】∵2n na b n-=, ∴2n n b a n =-,∴()()1112122n n n n n n b b a n a n a a +++⎡⎤-=-+--=--⎣⎦, 又∵数列{}n a 是公差为d 的等差数列, ∴1n n a a d +-=, ∴12n n b b d +-=-,∴数列{}n b 是以2d -为公差的等差数列; 【小问2详解】 ∵13a d ==,∴112321b a =-=-=,2321d -=-=, ∴数列{}n b 是以1为首项,1为公差的等差数列. ∴1(1)1n b n n =+-⨯=,∴数列{}n c 是以1为首项,2为公比的等比数列, ∴11122n n n c --=⨯=,∴1·2n n n b c n -=,∴1121112222n n T n ---=⨯+⨯++⨯ ①,∴2n T =()21112122n n n n --⨯+++⨯⨯- ②,∴②-①得,11222n n n T n n -=----⨯+⨯()11222n n n n -=-+++⨯+⨯12212n n n -=-+⋅-122n n n =-+⋅()121n n =-+,∵1n ≥且n 为正整数, ∴10n -≥,20n >,∴()1211nn T n =-+≥(当1n =时取等).17. 如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值. 条件①:AB MN ⊥; 条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分. 【答案】(1)见解析 (2)见解析【解析】【分析】(1)取AB 的中点为K ,连接,MK NK ,可证平面//MKN 平面11BCC B ,从而可证//MN 平面11BCC B .(2)选①②均可证明1BB ⊥平面ABC ,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值. 【小问1详解】取AB 的中点为K ,连接,MK NK ,由三棱柱111ABC A B C -可得四边形11ABB A 为平行四边形, 而11,B M MA BK KA ==,则1//MK BB ,而MK ⊄平面11BCC B ,1BB ⊂平面11BCC B ,故//MK 平面11BCC B , 而,CN NA BK KA ==,则//NK BC ,同理可得//NK 平面11BCC B , 而,,NK MK K NK MK =⊂ 平面MKN ,故平面//MKN 平面11BCC B ,而MN ⊂平面MKN ,故//MN 平面11BCC B , 【小问2详解】因为侧面11BCC B 为正方形,故1CB BB ⊥,而CB ⊂平面11BCC B ,平面11CBB C ⊥平面11ABB A , 平面11CBB C ⋂平面111ABB A BB =,故CB ⊥平面11ABB A , 因为//NK BC ,故NK ⊥平面11ABB A , 因AB ⊂平面11ABB A ,故NK AB ⊥,若选①,则AB MN ⊥,而NK AB ⊥,NK MN N = , 故AB ⊥平面MNK ,而MK ⊂平面MNK ,故AB MK ⊥,所以1AB BB ⊥,而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则0n BN n BM ⎧⋅=⎨⋅=⎩ ,从而020x y y z +=⎧⎨+=⎩,取1z =-,则()2,2,1n =-- ,设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n AB θ===⨯ .若选②,因为//NK BC ,故NK ⊥平面11ABB A ,而KM ⊂平面11ABB A , 故NK KM ⊥,而11,1B M BK NK ===,故1B M NK =, 而12B B MK ==,MB MN =,故1BB M MKN ≅ , 所以190BB M MKN ∠=∠=︒,故111A B BB ⊥,为而1CB BB ⊥,CB AB B ⋂=,故1BB ⊥平面ABC ,故可建立如所示的空间直角坐标系,则()()()()0,0,0,0,2,0,1,1,0,0,1,2B A N M ,故()()()0,2,0,1,1,0,0,1,2BA BN BM ===,设平面BNM 的法向量为(),,n x y z =,则00n BN n BM ⎧⋅=⎪⎨⋅=⎪⎩,从而020x y y z +=⎧⎨+=⎩,取1z =-,则()2,2,1n =-- , 设直线AB 与平面BNM 所成的角为θ,则42sin cos ,233n BA θ===⨯ .18. 已知1(2,0)F -,2(2,0)F ,点P 满足122PF PF -=,记点P 的轨迹为E .直线l 过点2F 且与轨迹E 交于P 、Q 两点.(1)无论直线l 绕点2F 怎样转动,在x 轴上总存在定点(,0)M m ,使MP MQ ⊥恒成立,求实数m 的值;(2)在(1)的条件下,求MPQ 面积的最小值. 【答案】18. 1m =-19. 9 【解析】【分析】(1)由双曲线定义即可得点P 的轨迹方程,设出直线l 方程,联立双曲线方程可得与x 有关韦达定理,借助向量垂直数量积为0可计算出M 点坐标;(2)借助弦长公式与点到直线的距离公式可表示出面积,再借助换元法计算即可得解.【小问1详解】由12122PF PF F F -=<知,点P 的轨迹E 是以1F 、2F 为焦点的双曲线的右支,设轨迹E 的方程为22221(1)x y x a b-=≥,0a >,0b >,2c = ,22a =,23b ∴=,故轨迹E 的方程为221(1)3y x x -=≥,当直线l 的斜率存在时,设直线方程为(2)y k x =-,()11,P x y ,()22,Q x y ,与双曲线方程联立2213(2)y x y k x ⎧-=⎪⎨⎪=-⎩,可得()222234430k x k x k --++=, 有()()24222122212230Δ16434304034303k k k k k x x k k x x k ⎧-≠⎪=--+>⎪⎪⎪⎨+=>⎪-⎪+⎪⋅=>⎪-⎩,解得23k >, ()()()12121MP MQ x m x m y y x m ⋅=--+=-.()()()221222x m k x x -+--()()()22221212124k x x k m x x m k =+-++++()()()222222214342433k k k k m m k k k +++=-++--2223(45)3m k m k -+=+- ()()222245313m m k m k --+-=-MP MQ ⊥ ,0MP MQ ∴⋅=, 故得()()22231450mk mm -+--=对任意的23k >恒成立,2210,450,m m m ⎧-=∴⎨--=⎩解得1m =-, ∴当1m =-时,MP MQ ⊥.当直线l 斜率不存在时,可得(2,3)P ,则(2,3)Q -,此时有()()3312121-⋅=-----,即此时结论也成立,综上,当1m =-时,MP MQ ⊥;【小问2详解】由(1)知(1,0)M -,当直线l的斜率存在时,()222613k PQ x k +=-=-,点M 到直线PQ 的距离为d,则d =,1||2MPQS PQ d ∴====令23(0)k t t-=>,则MPQ S = 10t> ,9MPQ S ∴=> , 当直线l 的斜率不存在时,13692MPQ S =⨯⨯= , 综上可知,MPQ S 的最小值为9.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.19. 已知当π02x ⎛⎫∈ ⎪⎝⎭,时,2()πx f x =,()sin g x x=,()h x x =. 的(1)证明:()()()f x g x h x <<;(2)已知()()()0f x g x h x --<,证明:()π()2πh x g x -(π可近似于3.14). 【答案】(1)证明见解析;(2)证明见解析. 【解析】【分析】(1)令π()()()sin ,02F x h x g x x x x ⎛⎫=-=-∈ ⎪⎝⎭,,求导得到函数单调性,得到sin x x >,要证()()f x g x <,只需证2sin πx x <,构造πsin 2()x G x x =-,π(0)2x ∈,,二次求导得到单调性,得到π()02G x G ⎛⎫= ⎪⎝⎭>,证明出()(),(0)π2f x g x x ∈<,,证明出不等式;(2)变形得到0ππ(2)sin x x --<,两边同时除以(2)s πin 0x -<得到:πsin 2πx x ->,证明出不等式. 【小问1详解】令π()()()sin ,02F x h x g x x x x ⎛⎫=-=-∈ ⎪⎝⎭,,∴()1cos 0F x x =->'在π02x ⎛⎫∈ ⎪⎝⎭,上恒成立,∴()F x 在π02x ⎛⎫∈ ⎪⎝⎭,上单调递增, ∴()(0)0F x F =>, ∴sin x x >,∴π()(),(0)2g x h x x ∈<,, 要证()()f x g x <,只需证2sin πxx <, ∵π02x ⎛⎫∈ ⎪⎝⎭,,∴只需证2sin πx x <, 令πsin 2()x G x x =-,π(02x ∈,,∴2cos sin ()x x xG x x -'=,∴22cos tan cos cos ()(tan )x x x x xG x x x x x-'==-, 令()tan M x x x =-,π(02x ∈,,∴2221cos 1()1cos cos x M x x x-'=-=, 又∵当π(02x ∈,时,20cos 1x <<, ∴当π(0)2x ∈,时,()0M x '<, ∴()M x 在(0)π2,上单调递减, ∴()(0)0M x M =<, ∴当π(0)2x ∈,时,()0G x '<, ∴()G x 在(0π2,上单调递减∴π()02G x G ⎛⎫= ⎪⎝⎭>,∴2sin πx x<, ∴()(),(0)π2f x g x x ∈<,, ∴综上所述,当π(02x ∈,时,()()()f x g x h x <<,证毕.【小问2详解】∵当π(0)2x ∈,时,()()()0f x g x h x --<,∴2sin 0πxx x --<, ∴2sin 0πππx x x--<, ∴0ππ2)i π(s n x x--<,① 将①式两边同时乘以π得到:0ππ(2)sin x x --<,② ∵20π-<,但当π(02x ∈,时,sin 0x >,∴(2)s πin 0x -<,将②式两边同时除以(2)s πin 0x -<得到:(2)sin 0(2)n ππsi πx xx-->-,∴0πsin 2πx x ->-, ∴πsin 2πx x -, ∴当π(0)2x ∈,时,()π()2πh x g x ->,证毕. 【点睛】方法点睛:证明不等式或比较两函数大小,需构造函数,并根据导函数得到函数单调性,结合特殊点函数值得到结论.。
§2.5指数与指数函数A组基础题组1.(2015浙江杭州模拟,5)函数f(x)=的图象( )A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称2.(2014广东韶关调研,3)若a=20.5,b=logπ3,c=log2,则( )A.a>b>cB.b>a>cC.c>a>bD.b>c>a3.(2016超级中学原创预测卷七,2,5分)设a=,b=,c=,则a,b,c的大小关系是( )A.a>b>cB.a>c>bC.b>a>cD.c>b>a4.(2015黑龙江哈尔滨三中段考)函数y=的值域为( )A. B.C. D.(0,2]5.(2015西安八校联考)已知0<m<n<1,1<a<b,下列各式一定成立的是( )A.b m>a nB.b m<a nC.m b>n aD.m b<n a6.不论a为何值,函数y=(a-1)2x-的图象过定点,则这个定点的坐标是( )A. B.C. D.7.(2015江苏,7,5分)不等式<4的解集为.8.(2016浙江新昌中学期中,12,4分)若0<3a=4b<1,则a,b的大小关系是.9.若60a=3,60b=5,则1的值为.10.(2015山东,14,5分)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b= .11.(2015浙江金华磐安中学期中)若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点,则实数a的取值范围是.12.(2015浙江镇海中学新高考调研卷二,12)已知函数f(x)=2x-,且g(x)=则函数g(x)的最小值是.B组提升题组1.函数y=a x-(a>0,且a≠1)的图象可能是( )2.(2016浙江高三调研卷文,5,5分)若函数f(x)=a x-b的图象如图所示,则( )A.a>1,b>1B.a>1,0<b<1C.0<a<1,b>1D.0<a<1,0<b<13.(2015杭州二中第六次月考文,4,5分)函数f(x)=-( )A.是奇函数B.是偶函数C.是非奇非偶函数D.既是奇函数又是偶函数4.(2015浙江金丽衢二模,4,5分)设<<<1,那么( )A.a a<a b<b aB.a a<b a<a bC.a b<a a<b aD.a b<b a<a a5.(2016浙江深化课程改革协作校11月期中,3,5分)已知a=,b=,c=log32,则( )A.c<a<bB.c<b<aC.a<c<bD.a<b<c6.(2015天津,7,5分)已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数.记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为( )A.a<b<cB.a<c<bC.c<a<bD.c<b<a7.(2015浙江名校(绍兴一中)交流卷五,7)对于函数f(x)=4x-m·2x+1,若存在实数x0,使得f(-x0)=-f(x0)成立,则实数m的取值范围是( )A.m≤B.m≥C.m≤1D.m≥18.(2015江苏连云港模拟,4)当x>0时,函数y=(a-8)x的值恒大于1,则实数a的取值范围是.9.(2015浙江温州外国语学校段考)已知f(x)=a x+a-x(a>0且a≠1),且f(1)=3,则f(0)+f(1)+f(2)的值是.10.(2015浙江模拟训练冲刺卷五,10)设函数f(x)=则f= ,f(x)>的解集为.11.(2015浙江萧山中学摸底测试)若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是.A组基础题组1.D f(x)==e x+,∵f(-x)=e-x+=e x+=f(x),∴f(x)是偶函数,∴函数f(x)的图象关于y轴对称.2.A ∵a=20.5>20=1,b=logπ3∈(0,1),c=log2<log21=0,∴a>b>c,选A.3.B 因为指数函数y=为减函数,所以>,又函数y=在(0,+∞)上为增函数,所以<,故a>c>b.4.A 令t=2x-x2=-(x-1)2+1,则t≤1,∵y=在定义域R上是减函数,∴y=≥,故选A.5.D ∵f(x)=x a(a>1)在(0,+∞)上为单调递增函数,且0<m<n<1,∴m a<n a,又g(x)=m x(0<m<1)在R上为单调递减函数,且1<a<b,∴m b<m a.综上,m b<n a,故选D.6.C y=(a-1)2x-=a-2x,令2x-=0,得x=-1,则函数y=(a-1)2x-的图象过定点,故选C.7.答案{x|-1<x<2}解析不等式<4可转化为<22,利用指数函数y=2x的性质可得,x2-x<2,解得-1<x<2,故所求解集为{x|-1<x<2}.8.答案a<b解析结合图象即可判断.9.答案 2解析a=log603,b=log605,1-b=1-log605=log6012,1-a-b=1-log603-log605=log604,==log124,1=1=1=2.10.答案-解析①当a>1时,f(x)在[-1,0]上单调递增,则无解.②当0<a<1时,f(x)在[-1,0]上单调递减,则解得∴a+b=-.11.答案解析y=|a x-1|(a>0且a≠1)的图象是由y=a x的图象向下平移一个单位,再将x轴下方的图象翻折到x轴上方得到的,分a>1和0<a<1两种情况(如图所示).当a>1时,y=2a>2,不合题意;当0<a<1时,需要满足0<2a<1,即0<a<.12.答案0解析当x≥0时,g(x)=2x-为增函数,其最小值为g(0)=0;当x<0时,g(x)=2-x-=2-x-2x是减函数,此时g(x)>0.故函数g(x)的最小值是0.B组提升题组1.D 令f(x)=a x-,当a>1时,f(0)=1-∈(0,1),所以A与B均错;当0<a<1时,f(0)=1-<0,所以C错D对,故选D.2.D 根据图象结合a,b的几何意义即可判断.3.A f(x)=-=1--=-,f(-x)=-=-,所以f(-x)=-f(x),即f(x)为奇函数,故选A.4.C 因为指数函数y=是减函数,所以由<<<1,得0<a<b<1.因为0<a<1,所以y=a x是减函数,又a<b,所以a b<a a.又因为幂函数y=x a(a>0)在(0,+∞)上是增函数,所以a a<b a,所以a b<a a<b a,选C.5.A 易知0<c<1,a>1,b>1,又a10=24=16,b10=35=243,故选A.6.C∵f(x)=2|x-m|-1为偶函数,∴m=0.∵a=f(lo3)=f(log23),b=f(log25),c=f(0),log25>log23>0,且函数f(x)=2|x|-1在(0,+∞)上为增函数,∴f(log25)>f(log23)>f(0),即b>a>c,故选C.7.B 若存在实数x0,使得f(-x0)=-f(x0),则-m·=-+m·,整理得2m(+)=+,即2m===+-.设+=t(t≥2),得2m=t-,令g(t) =t-(t≥2),则g(t)=t-在[2,+∞)上为增函数,则g(t)min=g(2)=1,故2m≥1,即m≥,故选B.8.答案(9,+∞)解析由题意得a-8>1,所以a>9.9.答案12解析由题意得f(1)=a+a-1=3,∴f(0)+f(1)+f(2)=a0+a0+a1+a-1+a2+a-2=2+3+(a+a-1)2-2=12.10.答案;{x|-ln2<x≤0或x>}解析∵f=ln<0,∴f=f==.f(x)>等价于或解得-ln2<x≤0或x>,故f(x)>的解集为{x|-ln2<x≤0或x>}.11.答案-1≤b≤1解析作出曲线|y|=2x+1(如图),要使该曲线与直线y=b没有公共点,只需-1≤b≤1.。
参考答案第一章 集合与常用逻辑用语1.集 合【三年高考真题演练】[2016年高考真题]1.C [A ={0,2,4,6,8,10},B ={4,8},∴∁A B ={0,2,6,10}.]2.D [由x 2<9解得-3<x <3,∴B ={x |-3<x <3},又因为A ={1,2,3},所以A ∩B ={1,2},故选D.]3.B [A ={1,3,5,7},B ={x |2≤x ≤5},得A ∩B ={3,5},故选B.]4.A [∵A ∪B ={1,3,4,5},∴∁U (A ∪B )={2,6},故选A.]5.D [S ={x |x ≥3或x ≤2},T ={x |x >0},则S ∩T =(0,2]∪[3,+∞).]6.C [A ={x ||x |<2}={x |-2<x <2},所以A ∩B ={x |-2<x <2}∩{-1,0,1,2,3}={-1,0,1}.]7.C [∵A ={y |y >0},B ={x |-1<x <1},∴A ∪B =(-1,+∞),故选C.]8.D [由A ={x |x 2-4x +3<0}={x |1<x <3},B ={x |2x -3>0}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32,得A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x <3=⎝ ⎛⎭⎪⎫32,3,故选D.]9.C [A ∩B ={x |2<x <4}∩{x |x <3或x >5}={x |2<x <3}.]10.C [由(x +1)(x -2)<0解得集合B ={x |-1<x <2},又因为x ∈Z ,所以B ={0,1},因为A ={1,2,3},所以A ∪B ={0,1,2,3},故选C.]11.C [由题可知,A ∩Z ={-2,-1,0,1,2},则A ∩Z 中的元素的个数为5.选C.]12.B [由已知得Q ={x |x ≥2或x ≤-2}.∴∁R Q =(-2,2).又P =[1,3],∴P ∪∁R Q=[1,3]∪(-2,2)=(-2,3].]13.{-1,2}[由于B={x|-2<x<3}.对集合A中的4个元素逐一验证,-1∈B,2∈B,3∉B,6∉B.故A∩B={-1,2}.][两年经典高考真题]1.D[A={…,5,8,11,14,17…},B={6,8,10,12,14},A∩B={8,14},集合A∩B中有两个元素.]2.D[由于2∈A,2∈B,3∈A,3∈B,1∈A,1∉B,故A,B,C均错,D是正确的,选D.]3.C[由题意知∁U A={2,4,7},选C.]4.C[“存在集合C使得A⊆C,B⊆∁U C”⇔“A∩B=∅”,选C.]5.B6.C[∵A={x|x2-4x+3<0}={x|(x-1)(x-3)}={x|1<x<3},B={x|2<x<4},∴A∩B={x|2<x<3}=(2,3).]7.A[由题意得M={0,1},N=(0,1],故M∪N=[0,1],故选A.]8.A[由题意知,∁U B={2,5,8},则A∩∁U B={2,5},选A.]9.A[由A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0}={x|-2<x<1},得A∩B={-1,0},故选A.]10.A[∵A={x|-1<x<2},B={x|1<x<3},∴A∪B={x|-1<x<3}.]11.C[∵P={x|x≥2或x≤0},∁R P={x|0<x<2},∴(∁R P)∩Q={x|1<x<2},故选C.12.A[因为M={x|(x+4)(x+1)=0}={-4,-1},N={x|(x-4)·(x-1)=0}={1,4},所以M∩N=∅,故选A.]13.C[M∪N表示属于M或属于N的元素构成的集合,故M∪N={-1,0,1,2},选C.]14.C[由已知直接得,A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3},选C.]15.C[因为A={x|-3<x<3},∁R B={x|x≤-1或x>5},所以A∩(∁R B)={x|-3<x<3}∩{x|x≤-1或x>5}={x|-3<x≤-1}.]16.A[A={x|x≤-1,或x≥3},故A∩B=[-2,-1],选A.]17.D[N={x|x2-3x+2≤0}={x|1≤x≤2},又M={0,1,2},所以M∩N={1,2}.]18.D[A∪B={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.]19.C[由题意,得A={x||x-1|<2}={x|-1<x<3},B={y|y=2x,x∈[0,2]}={y|1≤y≤4},所以A∩B=[1,3).]20.B[∵x2<1,∴-1<x<1,∴M∩N={x|0≤x<1},故选B.]21.A[因为A={x|-1≤x≤2},B=Z,故A∩B={-1,0,1,2}.]22.{7,9}[依题意得U={1,2,3,4,5,6,7,8,9,10},∁U A={4,6,7,9,10},(∁U A)∩B={7,9}.]23.A[命题①成立,若A≠B,则card(A∪B)>card(A∩B),所以d(A,B)=card(A∪B)-card(A∩B)>0.反之可以把上述过程逆推,故“A≠B”是“d(A,B)>0”的充分必要条件;命题②成立,由Venn图,知card(A∪B)=card(A)+card(B)-card(A∩B),d(A,C)=card(A)+card(C)-2card(A∩C),d(B,C)=card(B)+card(C)-2card(B∩C),∴d(A,B)+d(B,C)-d(A,C)=card(A)+card(B)-2card(A∩B)+card(B)+card(C)-2card(B∩C)-[card(A)+card(C)-2card(A∩C)]=2card(B)-2card(A∩B)-2card(B∩C)+2card(A∩C)=2card(B)+2card(A∩C)-2[card(A∩B)+card(B∩C)]≥2card(B)+2card(A∩C)-2[card(A∪C)∩B]+card(A∩B∩C)=[2card(B)-2card(A∪C)∩B]+[2card(A∩C)-2card(A∩B∩C)]≥0,∴d(A,C)≤d(A,B)+d(B,C)得证.]24.C[如图,集合A表示如图所示的所有圆点“”,集合B表示如图所示的所有圆点“”+所有圆点“”,集合A⊕B显然是集合{(x,y)||x|≤3,|y|≤3,x,y∈Z}中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A⊕B表示如图所示的所有圆点“”+所有圆点“”+所有圆点“”,共45个.故A⊕B中元素的个数为45.故选C.]25.6[根据题意可分四种情况:(1)若①正确,则a=1,b=1,c≠2,d=4,其中a=1与b=1矛盾,条件的有序数组有0个;(2)若②正确,则a≠1,b≠1,c≠2,d=4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4);(3)若③正确,则a ≠1,b =1,c =2,d =4,则a =3符合条件的有序数组为(3,1,2,4);(4)若④正确,则a ≠1,b =1,c ≠2,d ≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个.故答案为6.]26.201 [可分下列三种情形:(1)若只有①正确,则a ≠2,b ≠2,c =0,所以a =b =1或b =c =0或a =c =0与集合元素的互异性相矛盾,所以只有①正确是不可能的;(2)若只有②正确,则b =2,a =2,c =0,这与集合元素的互异性相矛盾,所以只有②正确是不可能的;(3)若只有③正确,则c ≠0,a =2,b ≠2,所以b =0,c =1,所以100a +10b +c =100×2+10×0+1=201.]【两年模拟试题精练】1.A [由|x |≤1得-1≤x ≤1,∴A ={x |-1≤x ≤1};由y =x 得x ≥0,∴B ={x |x ≥0}.∴A ∩B ={x |0≤x ≤1}.故选A.]2.B [A ={1,2,3},B ={2,3,4},∴A ∩B ={2,3},又∵U ={1,2,3,4,5},∴∁U (A ∩B )={1,4,5}.]3.C [∵A ={1,-1},B ={0,-1},∴A ∩B ={-1},选C.]4.D [集合A ={x |x <-3或x >1},所以∁R A ={x |-3≤x ≤1},所以(∁R A )∩Z ={-3,-2,-1,0,1},故选D.]5.{x |1<x ≤2} [由M 中不等式解得:x <-2或x >2,即M ={x |x <-2或x >2},∴∁R M ={x |-2≤x ≤2},由N 中不等式变形得:x -3x -1≤0,解得:1<x ≤3,即N ={x |1<x ≤3},则(∁R M )∩N ={x |1<x ≤2}.故答案为:{x |1<x ≤2}.]6.D [集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32≤x ≤3,若(∁R A )∩B =B ,则m >3,故选D.]7.B [A =R ,B =(0,1).∴A ∩B =(0,1),故选B.]8.A [M ={x |x 2+3x +2<0}={x |-2<x <-1},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎝ ⎛⎭⎪⎫12x ≤4 ={x |x ≥-2},则M ∪N ={x |x ≥-2},故选A.]9.B [A ={x |x 2-3x +2=0}={1,2},B ={x |log x 4=2}={2},则A ∪B ={1,2},故选B.]10.C [B ={x |x =2a ,a ∈A }={0,2,4,6} ,则A ∩B ={0,2},故选C.]11.C [A ={x |x 2-16<0}={x |-4<x <4},所以A ∩B ={0,1}故选C.]12.B [A ={x ∈N |x ≤6}={0,1,2,3,4,5,6},B ={x ∈R |x 2-3x >0}={x |x >3或x <0},则A ∩B ={4,5,6},故选B.]13.C [A ={x ∈R ||x -1|<2}={x |-1<x <3},B ={y |y ≥0},则A ∩B =[0,3),故选C.]14.D [A ={x |x >-2},B ={x |x <3},则A ∩B ={x |-2<x <3},故选D.]15.A [因为A ={x |x =x 2-2,x ∈R }={2}且A ⊆B ,故m =2,故选A.]16.C [B ={x |x =n ,n ∈A }={0,1,2,3,2},则A ∩B ={0,1,2}故其真子集的个数为7个,故选C.]17.C [由题意得,A ={1,2,3,4,5},B ={1,2,3},C ={z |z =xy ,x ∈A 且y ∈B },当x =1时,z =1或2或3;当x =2时,z =2或4或6;当x =3时,z =3或6或9;当x =4时,z =4或8或12;当x =5时,z =5或10或15;所以C ={1,2,3,4,6,9,8,12,5,10,15}中的元素个数为11,故选C.]18.A [A ={x ∈R |-1<x <3},∵x ∈A 是x ∈B 的充分不必要条件,∴A B ,∴m >3,故选A.]19.C [由题意知{1,2,3}的子集中去掉∅,{2},则集合A 的个数为6个,故选C.]20.A [因为M ={x |1<x <2},又N ={x |x <a },M ⊆N ,所以a ≥2,故选A.]21.B [因为M ={y |y =2x ,x >0}={y |y >1}=(1,+∞),N ={x |y =lg x }={x |x >0}=(0,+∞),所以M ∩N =(1,+∞),故选B.]22.C23.D [因为A ={x |-4<x <4},B ={x |x >4},所以∁U B ={x |x ≤4},所以A ∩(∁U B )=A ,故选D.]24.D [A ={x |x ≤-4或x ≥4},∵A ∪B =A ,∴B ⊆A ,∴m ≤-4或m ≥4,故选D.]25.C [∵A ∩B =B ,∴B ⊆A ,∴m =0或m =2.]26.A [B ={x |x 2-x >0}={x |x >1或x <0},而A ∪B =R ,A ∩B ={x |1<x <2}阴影部分表示的集合为∁R (A ∩B )=(-∞,1]∪(2,+∞),故选A.]27.D [集合A ={x |x >0},从而A 、C 错,∁R A ={x |x ≤0},则(∁R A )∩B ={-1},故选D.]28.B [依题意得∁U A ={x |1≤x ≤2},(∁U A )∩B ={x |1≤x <2}=[1,2),选B.]29.B [由题意,得M ={y |y ≥-1}=[-1,+∞),N ={x |3-x 2≥0,x ∈R }={x |-3≤x ≤3}=[-3,3],则M ∩N =[-1,+∞)∩[-3,3]=[-1,3],故选B.]30.a =2 [根据已知得⎩⎪⎨⎪⎧a 2+2a -3=5,|2a -1|=3,解得a =2.] 31.A [由log 2x >1⇒log 2x >log 22⇒x >2,得A ={x |x >2};由3x +1<1⇒2-x x +1<0⇒(x +1)(x -2)>0⇒x <-1或x >2,得B ={x |x <-1或x >2} ,∴A B ,∴x ∈A 是x ∈B 的充分不必要条件,故选A.]32.B[由已知,得∁U A∩B={3,5},故选B.]33.-11[∵|x+2|<3⇒-3<x+2<3⇒-5<x<1,∴A=(-5,1).结合A∩B=(-1,n),得B={x∈R|(x-m)(x-2)<0}={x∈R|m<x<2},∴m=-1,n=1.]34.①4②(5,1,3)35.D[由定义设非空集合S={x|m≤x≤n}满足:当x∈S时,有x2∈S,当x=n时,n2≤S即n2≤n,解得0≤n≤1,当x=m时,m2∈S即m2≥m,解得m≤0,或m≥1.若m=1,由1=m≤n≤1,可得m=n=1,即S={1},故①正确;对于②m=-12,m2=14∈S,即14≤n,故14≤n≤1,故②正确;对于③若n=12,由m2∈S,可得⎩⎪⎨⎪⎧m≤0,或m≥1,m2≤12,m≤12,解得-22≤m≤0,故③正确;故选D.]36.A[∵f(x)=x2-2x+2,∴|f(x1)-f(x2)|=|x21-2x1+2-(x22-2x2+2)|=|(x1-x2)(x1+x2-2)|≤4|x1-x2|,∴|x1+x2-2|≤4.又x1,x2∈[-1,1],所以f(x)∈M,而g′(x)=e x,当x1,x2∈[-1,1]时,|g′(x)|=|g(x1)-g(x2)x1-x2|≤e≤4恒成立,故选A.]2.常用逻辑用语【三年高考真题演练】[2016年高考真题]1.D[原命题是全称命题,条件为∀x∈R,结论为∃n∈N*,使得n≥x2,其否定形式为特称命题,条件中改量词,并否定结论,只有D选项符合.]2.A[]3.A [若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交,故选A.]4.A [如图,(x -1)2+(y -1)2≤2①表示圆心为(1,1),半径为2的圆内区域所有点(包括边界);⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1②表示△ABC 内部区域所有点(包括边界).实数x ,y 满足②则必然满足①,反之不成立.则p 是q 的必要不充分条件.故选A.][两年经典高考真题]1.D2.C [由题易知命题p 为真,命题q 为假,则綈p 为假,綈q 为真.故p ∧q 为假,p ∨q 为真,p ∧(綈q )为真,(綈p )∨q 为假.故选C.]3.A4.A [命题p 为真命题,命题q 为假命题,所以命题綈q 为真命题,所以p ∧綈q 为真命题,选A.]5.D [依题意,命题p 是真命题.由x >2⇒x >1,而x >1D⇒x >2,因此“x >1”是“x >2”的必要不充分条件,故命题q 是假命题,则綈q 是真命题,p ∧綈q 是真命题,选D.]6.A [从原命题的真假入手,由于a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列,即原命题和逆命题均为真命题,又原命题与逆否命题同真同假,逆命题与否命题同真同假,则逆命题、否命题和逆否命题均为真命题,选A.]7.B [因为原命题为真,所以它的逆否命题为真;若|z 1|=|z 2|,当z 1=1,z 2=-1时,这两个复数不是共轭复数,所以原命题的逆命题是假的,故否命题也是假的.故选B.]8.B[由x>1⇒x+2>3⇒log12(x+2)<0,log12(x+2)<0⇒x+2>1⇒x>-1,故“x>1”是“log12(x+2)<0”成立的充分不必要条件.因此选B. ]9.B[m⊂α,m∥β⇒/α∥β,但m⊂α,α∥β⇒m∥β,∴m∥β是α∥β的必要而不充分条件.]10.A[当1<x<2时,2<2x<4,∴p⇒q;但由2x>1,得x>0,∴q⇒/p,故选A.]11.A[柯西不等式“(a21+a22+…+a2n-1)(a22+a23+…+a2n)≥(a1a2+a2a3+…+a n-1a n)2”等号成立的条件是“a1a2=a2a3=…=a n-1a n(即a1,a2,…,a n,成等比数列)”或“a2=a3=…=a n=0”,故p是q的充分条件,但不是q的必要条件.故选A.] 12.B[ln(x+1)<0⇔0<x+1<1⇔-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不充分条件.]13.D[可采用特殊值法进行判断,令a=1,b=-1,满足a>b,但不满足a2>b2,即条件“a>b”不能推出结论“a2>b2”;再令a=-1,b=0,满足a2>b2,但不满足a>b,即结论“a2>b2”不能推出条件“a>b”.故选D.]14.C[设f(x)=x3,f′(0)=0,但是f(x)是单调增函数,在x=0处不存在极值,故若p则q是一个假命题,由极值的定义可得若q则p是一个真命题.故选C.] 15.A[若“四边形ABCD为菱形”,则对角线“AC⊥BD”成立;而若对角线“AC⊥BD”成立,则“四边形ABCD有可能为空间正四面体”,所以“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件.]16.A[当a=b=1时,(a+b i)2=(1+i)2=2i,反之,若(a+b i)2=2i,则有a=b =-1或a=b=1,因此选A.]17.C [由A ∩B =A 可知,A ⊆B ;反过来A ⊆B ,则A ∩B =A ,故选C.]18.A [∵sin α=cos α⇒cos 2α=cos 2α-sin 2α=0;cos 2α=0⇔cos α=±sin α⇒/ sin α=cos α,故选A.]19.A [由正弦定理,得a sin A =b sin B ,故a ≤b ⇔sin A ≤sin B ,选A.]20.D [由b 2-4ac ≤0推不出ax 2+bx +c ≥0,这是因为a 的符号不确定,所以A 不正确;当b 2=0时,由a >c 推不出ab 2>cb 2,所以B 不正确;“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2<0”,所以C 不正确.选D.]21.A22.C [令f (x )=x |x |,则f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,画出f (x )的图象(如图),易知f (x )在R 上为单调递增函数,因此a >b ⇔f (a )>f (b ),故“a >b ”是“a |a |>b |b |”的充要条件,故选C.]23.C [将命题p 的量词“∃”改为“∀”,“n 2>2n ”改为“n 2≤2n ”.]24.C [全称命题的否定是特称命题,否定结论,所以选C.]25.B [由全称命题∀x ∈M ,p (x )的否定为∃x 0∈M ,綈p (x 0),可得綈p :∃x 0>0,使得(x 0+1)e x 0≤1.故选B.]26.C [把全称量词“∀”改为存在量词“∃”,并把结论加以否定,故选C.]27.D [全称命题“∀x ∈M ,p (x )”的否定为特称命题“∃x ∈M ,綈p (x )”, 故选D.]【两年模拟试题精练】1.D[特称命题的否定是全称命题故选D.]2.C[原命题为若綈p则綈q的形式,则否命题为若綈p则綈q的形式,故选C.]3.B[由不等式的性质知,当a>b>0时,a2>b2成立;反之,例如取a=-3,b=1,显然a2>b2,而a>b>0不成立.故选B.]4.C[命题p,q均为假命题,则綈p为真命题,所以(綈p)∨q为真命题,故选C.]5.B[a·b<0得到a,b夹角为钝角或π,反之成立,故选B.]6.A[特称命题的否定为全称命题,并否定结论,选A.]7.A[由3x2+x-2>0得x>23或x<-1,故由“x>23”能推出“3x2+x-2>0”,反之则不能,故选A.]8.D[mn>1时X>1不一定成立,反之也不一定成立,故选D.]9.C[当b=0时,函数f(x)为奇函数,反之也成立,故选C.]10.A[函数y=x2+bx+c(x∈[0,+∞))是单调函数需满足-b2≤0,则b≥0,故选A.]11.C[命题p为真命题,命题q为假命题,则p∧(綈q)是真命题,故选C.]12.C[根据原命题与其逆否命题等价,具有共同的真假性,故选C.]13.A[因为A B,则集合A中的元素是集合B中的元素,而集合B中的元素不一定是集合A中的元素,则“x∈A”是“x∈B”的充分不必要条件.]14.D[a≠5,b≠-5推不出a+b≠0,例如a=2,b=-2时,a+b=0,a+b≠0也推不出a≠5且b≠-5,所以“a≠5且b≠-5”是“a+b≠0”既不充分条件也不必要条件,所以选D.]15.A[若命题p:“∀x∈[0,1],a≥e x”为真命题,则a≥e;若命题q:“∃x∈R,x 2+4x +a =0”为真命题,则Δ=16-4a >0,即a ≤4,所以若命题“p ∧q ”是真命题,则实数a 的取值范围是[e ,4].]16.C [在C 中y =sin(2x +φ)为偶函数的充要条件是φ=π2+2k π,k ∈Z ,故选C.]17.D [A 中的e x 0恒大于0;B 当中sin x >0时,sin 2 x +2sin x ≥3(x ≠k π,k ∈Z )成立,在C 中x =2时,2x =x 2故不成立,故选D.]18.A [条件p :-3≤x ≤1,又p 是q 的充分不必要条件,则a 的取值范围是a ≥1,故选A.]19.C [②中a =2,b =2时,lg(a +b )=lg a +lg b 成立,正确;③正确,④是充要条件;故选C.]20.B [当a ⊥b 时,平面α,β可以相交但不垂直,反之,当α∥β时,a ⊥β ,则a ⊥b ,故选B.]21.A [当λ<0时,a n =n 2-2λn 的对称轴为n =λ<0,则a n +1>a n ;反之不一定成立,故选A.]22.D [A 中,函数y =f (x )为R 上的可导函数,则f ′(x 0)=0是x 0为函数f (x )极值点的充要条件,错误,导数为零的点不一定为极值点.B 中命题“存在x ∈R ,x 2+x -1<0”的否定是“任意x ∈R ,x 2+x -1≥0”;C 中命题“在△ABC 中,若A >B ,则sin A >sin B ”的逆命题为真命题;D 中“b =0”是“函数f (x )=ax 2+bx +c 是偶函数”的充要条件,正确;故选D.]23.C [(1)∵命题“若x =1,则x 2+2x -3=0”是真命题,所以其逆否命题亦为真命题,因此(1)不正确;(2)根据含量词的命题否定方式,可知命题(2)正确.(3)当φ=π2+k π(k ∈Z )时,则函数y =sin(2x +φ)=sin ⎝ ⎛⎭⎪⎫2x +π2+k π=±cos 2x 为偶函数;反之也成立,故“φ=π2+k π(k ∈Z )”是“函数y =sin(2x +φ)为偶函数”的充要条件;综上可知:真命题的个数2.]24.B [①特称命题否定为全称命题,正确.②错误.③f ⎝ ⎛⎭⎪⎫13=⎝ ⎛⎭⎪⎫1313-⎝ ⎛⎭⎪⎫1213<0.f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫1213-⎝ ⎛⎭⎪⎫1212>0,故③正确,选B.] 25.C [当x ∈A ,且x ∉(A ∩B ),满足x ∈(A ∪B ),即充分性不成立,若x ∉(A ∪B ),则x ∉(A ∩B )成立,即必要性成立,故p 是q 的必要不充分条件,故选C.]26.C [①cos α≠0,则α≠k π+π2,故是α≠2k π+π2(k ∈Z )的充分不必要条件,故错误;②f (x )=|sin x |+|cos x |,则f (x )最小正周期是π2,故错误,③若将一组样本数据中的每个数据都加上同一个常数后,则每个数与平均数的差的平方不变,故样本的方差不变,故正确;④设随机变量ξ服从正态分布N (0,1),若P (ξ>1)=p ,由图象的对称性可得,若P (ξ>1)=p ,则P (ξ<-1)=p ,∴P (-1<ξ<1)=1-2p ,则P (-1<ξ<0)=12-p ,故正确,故选C.]27.B [因为对∀x ∈R ,都有x 2+x +1=⎝ ⎛⎭⎪⎫x +122+14>0,所以选项B 中的“命题q :∃x ∈R ,x 2+x +1<0”为假,则p ∧q 为假,故选B.]28.D [对A ,当a ≤0时错误;对B ,当b =0时,充分性不成立;对C ,命题“对任意x ∈R ,有x 2≥0”的否定应是“存在x ∈R ,有x 2<0”,故选D.]29.C [∵当c =0时有ac 2=bc 2,∴命题p 假,则綈p 真;∵当x 0=1时有x 0-1-ln x 0=0,∴命题q 真,则綈q 假.∴(綈p )∧q 为真,故选C.]30.B [∵|x -1|+|x -3|≥|(x -1)-(x -3)|=2,∴条件p :m >2;若f (x )=(7-3m )x为减函数,则0<7-3m <1,解得2<m <73,∴条件q :2<m <73,∴p ⇒/ q ,但q ⇒p ,即p 成立是q 成立的必要不充分条件,故选B.]31.[-2,0] [∵f (x )是奇函数,且当x ≥0时,f (x )=log 3(x +1)为增函数,∴f (x )在[-8,8]上也为增函数,且f (8)=log 3(8+1)=log 3 9=2,即函数f (x )在[-8,8]上的值域为B =[-2,2],由f [x 2+a (a +2)]≤f (2ax +2x )得x 2+a (a +2)≤2ax +2x ,即x 2-2(a +1)x +a (a +2)≤0,则(x -a )[x -(a +2)]≤0,即a ≤x ≤a +2,即A =[a ,a +2],∵“x ∈A ”是“x ∈B ”的充分不必要条件,∴A B ,即⎩⎪⎨⎪⎧a ≥-2,a +2≤2,解得-2≤a ≤0,故答案为:[-2,0].] 32.①② [③“A >30°”是“sin A >12”的既不充分也不必要条件,不正确;④φ=kπ(k ∈Z )是函数f (x )=tan(x +φ)为奇函数的充分不必要条件,不正确.]33.D [设h (x )=x +ax +1.当a =-12时,函数h (x )为增函数,且h ⎝ ⎛⎭⎪⎫12=16>0,则函数f (x )在⎣⎢⎡⎦⎥⎤12,3上必单调递增,即p 是真命题;∵g ⎝ ⎛⎭⎪⎫12=-12<0,g (1)=1>0,∴g (x )在⎝ ⎛⎭⎪⎫12,+∞上有零点,即q 是假命题,故选D.] 第二章 函数导数及其应用3.函数的概念及其表示【三年高考真题演练】[2016年高考真题]1.D [函数y =10lg x 的定义域为{x |x >0},值域为{y |y >0},所以与其定义域和值域分别相同的函数为y =1x,故选D.]2.[-3,1] [要使原函数有意义,需且仅需3-2x -x 2≥0.解得-3≤x ≤1.故函数定义域为[-3,1].]3.解 (1)由于a ≥3,故当x ≤1时,(x 2-2ax +4a -2)-2|x -1|=x 2+2(a -1)(2-x )>0,当x >1时,(x 2-2ax +4a -2)-2|x -1|=(x -2)(x -2a ).所以,使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围是[2,2a ].(2)(ⅰ)设函数f (x )=2|x -1|,g (x )=x 2-2ax +4a -2,则f (x )min =f (1)=0,g (x )min =g (a )=-a 2+4a -2,所以,由F (x )的定义知m (a )=min {}f (1),g (a ),即m (a )=⎩⎨⎧0,3≤a ≤2+2,-a 2+4a -2,a >2+ 2.(ⅱ)当0≤x ≤2时,F (x )≤f (x )≤max {}f (0),f (2)=2=F (2).当2≤x ≤6时,F (x )≤g (x )≤max {}g (2),g (6)=max {}2,34-8a =max {}F (2),F (6).所以M (a )=⎩⎨⎧34-8a ,3≤a <4,2,a ≥4. [两年经典高考真题]1.C [依题意,有4-|x |≥0,解得-4≤x ≤4①;且x 2-5x +6x -3>0,解得x >2且x ≠3②;由①②求交集得函数的定义域为(2,3)∪(3,4].故选C.]2.C [由题意可得x 2-x >0,解得x >1或x <0,所以所求函数的定义域为(-∞,0)∪(1,+∞).]3.C [(log 2x )2-1>0,即log 2x >1或log 2x <-1,解得x >2或0<x <12,故所求的定义域是⎝ ⎛⎭⎪⎫0,12∪(2,+∞).] 4.(1,2] [由题意f (x )的图象如下图,则⎩⎪⎨⎪⎧a >1,3+log a 2≥4,∴1<a ≤2.]5.-32 [当a >1时,f (x )=a x +b 在定义域上为增函数,∴⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,方程组无解;当0<a <1时,f (x )=a x +b 在定义域上为减函数,∴⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎨⎧a =12,b =-2.∴a +b =-32.]6.-14 [依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝ ⎛⎭⎪⎫log 2x +122-14≥-14,当且仅当log 2x =-12,即x =12时等号成立,因此函数f (x )的最小值为-14.]7.C [因为-2<1,log 212>log 28=3>1,所以f (-2)=1+log 2[2-(-2)]=1+log 24=3,f (log 212)=2log 212-1=2log 212×2-1=12×12=6,故f (-2)+f (log 212)=3+6=9,故选C.]8.B [不妨令f (x )=x +1,a =2,则g (x )=f (x )-f (2x )=-x .则sgn[g (x )]=sgn(-x ),排除答案A ;sgn[f (x )]=sgn(x +1)是以x +1与0比较来作为分类标准,排除答案C ,D.故选B.]9.A [因为-1<0,所以f (-1)=2-(-1)=2,又2>0,所以f [f (-1)]=f (2)=a ·22=1,解得a =14.]10.A11.D [由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B 、C.②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x .故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立.当x <0时,不等式等价于x -2≤a .∵x -2<-2,∴a ≥-2.综上可知:a ∈[-2,0].]12.D [令x +1=0得x 1=-1;令2x +a =0得x 2=-a 2.①当-1>-a 2,即a >2时,f (x )=⎩⎪⎨⎪⎧-3x -a -1,x <-a 2,x +a -1,-a 2≤x ≤-1,3x +a +1,x >-1,其图象如图所示,则f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=|-a 2+1|+|-a +a |=a 2-1=3,解得a =8. ②当-1<-a 2,即a <2时,f (x )=⎩⎪⎨⎪⎧-3x -a -1,x <-1,-x +1-a ,-1≤x ≤-a 2,3x +a +1,x >-a 2,其图象如图所示,则f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=|-a 2+1|+|-a +a |=1-a 2=3,解得a =-4. ③当-1=-a 2,即a =2时,f (x )=3|x +1|≥0,不符合题意.综上所述,a =-4或8.]13.0 22-3 [f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时,取等号;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,∴f (x )的最小值为22-3.]14.(-∞,2] [由题意得⎩⎪⎨⎪⎧f (a )<0f 2(a )+f (a )≤2或⎩⎪⎨⎪⎧f (a )≥0,-f 2(a )≤2,解得 f (a )≥-2.由⎩⎪⎨⎪⎧a <0,a 2+a ≥-4,或⎩⎪⎨⎪⎧a ≥0,-a 2≥-2,解得a ≤ 2.] 15.1 [f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-12=f ⎝ ⎛⎭⎪⎫-12=-4×⎝ ⎛⎭⎪⎫-122+2=1.] 16.516 [由于函数f (x )是周期为4的奇函数,所以f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=f ⎝ ⎛⎭⎪⎫2×4-34+f ⎝ ⎛⎭⎪⎫2×4-76=f ⎝ ⎛⎭⎪⎫-34+f ⎝ ⎛⎭⎪⎫-76=-f ⎝ ⎛⎭⎪⎫34-f ⎝ ⎛⎭⎪⎫76=-316+sin π6=516.] 17.(-∞,8]18.A [由图象可知函数在x =±5处切线平行于x 轴,即f ′(5)=0,f ′(-5)=0,只有A 选项f ′(x )=35⎝ ⎛⎭⎪⎫x 225-1符合.] 19.A [法一 由题意可知,该三次函数满足以下条件:过点(0,0),(2,0),在(0,0)处的切线方程为y =-x ,在(2,0)处的切线方程为y =3x -6,以此对选项进行检验.A 选项,y =12x 3-12x 2-x ,显然过两个定点,又y ′=32x 2-x -1,则y ′|x =0=-1,y ′|x =2=3,故条件都满足,由选择题的特点知应选A.法二 设该三次函数为f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c ,由题设有⎩⎪⎨⎪⎧f (0)=0⇒d =0f (2)=0⇒8a +4b +2c +d =0f ′(0)=-1⇒c =-1f ′(2)=3⇒12a +4b +c =3,解得a =12,b =-12, c =-1,d =0.故该函数的解析式为y =12x 3-12x 2-x ,选A.]【两年模拟试题精练】1.A [P ={x |1<2x<2}={x |0<x <1},Q ={x |log 12x >1}={x |0<x <12},∴P ∩Q ={x |0<x <12},即P ∩Q =⎝ ⎛⎭⎪⎫0,12, 故选A.]2.C [f (f (e))=f (1)=2,故选C.]3.C [f ⎝ ⎛⎭⎪⎫19=log 319=-2,f (-2)=⎝ ⎛⎭⎪⎫13-2=9, ∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=9,故选C.] 4.A [因为a =413>1,0<b =log 1413=log 43<1,c =log 314<0,所以a >b >c ,故选A.] 5.A [f (1)=-f (-1)=-(2+1)=-3,故选A.]6.D [A 为奇函数,B ,C ,D 为偶函数,B 在(0,+∞)上增, C 在(0,+∞)上不具有单调性,故选D.]7.C [由f (x +1)=f (1-x ),得f (x +2)=f [(x +1)+1]=f (-x )=-f (x ),∴f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ),即f (x )是以周期为4的函数,∴f (31)=f (3)=f (-1)=-f (1),又x ∈[0,1]时,f (x )=log 2(x +1),∴f (31)=-log 2(1+1)=-1,故选C.]8.D[由题意知:⎩⎪⎨⎪⎧a >0,log 13a >12,或⎩⎨⎧a ≤0,2a >12.所以a 的取值范围是⎝ ⎛⎭⎪⎫-1,33,故选D.] 9.C [函数f (x )=⎩⎪⎨⎪⎧x 2,x ∈[0,+∞),x 3+a 2-3a +2,x ∈(-∞,0),在区间(-∞,+∞)上是增函数,需满足a 2-3a +2≤0,即a 的取值范围是[1,2],故选C.]10.C [因为f (x )为奇函数,所以f (f (-16))=-f (f (16))=-f (4)=-cos 2π3=12,故选C.]11.D [因为f (0)=a 2,则x >0时,f (x )=x +1x ≥2,x ≤0时,f (x )=(x -a )2,利用图象可以得到a 的取值范围是[0,2],故选D.]12.D [∵2<log 25<3,∴3<1+log 25<4,则4<2+log 25<5,则f (1+log 25)=f (1+1+log 25)=f (2+log 25)=⎝ ⎛⎭⎪⎫122+log 25=14×⎝ ⎛⎭⎪⎫12log 25=14×15=120,故选D.]13.(-3,1) [如图,画出f (x )的图象,由图象易得f (x )在R 上单调递减,∵f (3-a 2)<f (2a ),∴3-a 2>2a ,解得-3<a <1.]14.C [对A ,点(1,0)在函数的图象上,但02≥12不成立,排除A ;对B ,点⎝ ⎛⎭⎪⎫-1,1e -1在函数的图象上,但⎝ ⎛⎭⎪⎫1e -12≥(-1)2不成立,排除B ;对D ,点(π,0)在函数的图象上,但02≥π2不成立,排除D ,故选C.]15.2 [a +⎠⎛0x(1-cos t )d t =a +x -sin x ,所以f (x )=⎩⎪⎨⎪⎧ln x ,x >0,a +x -sin x ,x ≤0,因为f (f (1))=2,代入计算得a =2.]16.0<a ≤4且a ≠1 [因为函数f (x )=log a (x +ax -4)(a >0且a ≠1)的值域为R ,所以g (x )=x +ax -4,能取遍所有的正实数,所以g (x )的最小值小于等于0,即g (x )≥2a -4,所以2a -4≤0,所以0<a ≤4且a ≠1.]17.C [当a =0时,f (x )=|x |在区间(0,+∞)上单调递增;当a <0时,f (x )=(-ax +1)x =-a ⎝ ⎛⎭⎪⎫x -1a x ,结合二次函数的图象可知f (x )=|(ax -1)x |在区间(0,+∞)上单调递增;当a >0时,函数f (x )=|(ax -1)x |的图象大致如图:函数f (x )在区间(0,+∞)上有增有减,从而a ≤0是函数f (x )=|(ax -1)x |在区间(0,+∞)上单调递增的充要条件,故选C.]18.D [f ⎝ ⎛⎭⎪⎫56=52-b .①当52-b <1即b >32时,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=3⎝ ⎛⎭⎪⎫52-b -b =4,解得b =78<32,②当52-b ≥1即b ≤32时,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=252-b =4,解得b =12<32,∴b =12,故选D.]19.C [令F (x )=f (x )-x ,由题知,F (x )在(-∞,0),(0,+∞)是减函数,且是奇函数,且F (2)=0,F (-2)=0,由函数图象可得,F (x )>0的解集为(-∞,-2)∪(0,2),选C.]20.⎝ ⎛⎭⎪⎫1-316,0 [由所给的新定义的含义可得f (x )=⎩⎪⎨⎪⎧2x 2-x ,x ≤0,-x 2+x ,x >0,在同一直角坐标系中作出函数y =f (x )和y =m 的图象(如图),要使方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,需满足m ∈⎝ ⎛⎭⎪⎫0,14.当x >0时,x 2,x 3是方程f (x )=m 即x 2-x +m =0的两个根,所以x 2x 3=m ; 当x <0时,x 1是方程f (x )=m 即2x 2-x -m =0的根,所以x 1=1-1+8m4, 所以x 1x 2x 3=1-1+8m 4×m ,m ∈⎝ ⎛⎭⎪⎫0,14. 设1+8m =t ∈(1,3)⇒m =t 2-18(t ∈(1,3)),代入上式,并令h (t )=1-t 4×t 2-18=132(-t 3+t 2+t -1),t ∈(1,3), 则h ′(t )=132(-3t 2+2t +1),令h ′(t )>0,解得-13<t <1, 因为t ∈(1,3),所以h (t )在t ∈(1,3)上单调递减, 所以h (3)<h (t )<h (1),h (3)=1-34×3-18=1-316, h (1)=0,所以1-316<h (t )<0, 所以x 1x 2x 3的取值范围为⎝ ⎛⎭⎪⎫1-316,0.] 21.B [依题意,在同一坐标系上画出函数y =f (x )与y =g (x )在区间[-4,4]上的图象(注:当x ∈[-1,1]时,f (x )=1-x 2的图象是以原点为圆心、1为半径的半圆C 1;将半圆C 1向右平移2个单位,再将每个点的纵坐标伸长为原来的2倍得到曲线C 2,曲线C 2即为函数y =f (x )在区间[1,3]上的图象;将曲线C 2向右平移2个单位,再将每个点的纵坐标伸长为原来的2倍得到曲线C 3,曲线C 3即为函数y=f (x )在区间[3,5]上的图象;将半圆C 1向左平移2个单位,再将每个点的纵坐标缩短为原来的12得到曲线C -1,曲线C -1即为函数y =f (x )在区间[-3,-1]上的图象;将曲线C -1向左平移2个单位,再将每个点的纵坐标缩短为原来的12得到曲线C -2,曲线C -2即为函数y =f (x )在区间[-5,-3]上的图象).注意到e -4<14,ln 4<4,结合图象可知,它们在[-4,4]上的公共点的个数为8,即函数y =f (x )-g (x )在区间[-4,4]上的零点个数是8,选B.]22.A [由题意知f (x )min ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,1≥g (x )min (x ∈[2,3]),因为f (x )min =5,g (x )min =4+a ,所以5≥4+a ,即a ≤1,故选A.]23.⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎦⎥⎤-1+52,1 [如图,当直线y =ax +1过点B (2,2)时,a =12,满足方程有两个解;当直线y =ax +1与f (x )=2x -1(x ≥2)的图象相切时,a =-1+52,满足方程有两个解;当直线y =ax +1过点A (1,2)时,a =1,满足方程恰有一个解.故实数a 的取值范围为⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎦⎥⎤-1+52,1.]24.②④ [对于①,方程1x +1=1x +1,显然无实数解;对于②,由方程2x +1=2x+2,解得x =1;对于③,方程lg[(x +1)2+2]=lg(x 2+2)+lg 3,也无实数解;对于④,方程cos[π(x +1)]=cos πx +cos π,即cos πx =12,显然存在x 使等式成立,故填②④.]25.D [对①,∵对任意的实数x 1,x 2都有f (x 1)f (x 2)+g (x 1)g (x 2)=g (x 1-x 2)且f (-1)=-1,f (0)=0,f (1)=1,令x 1=x 2=1,得[f (1)]2+[g (1)]2=g (0), ∴1+[g (1)]2=g (0),∴g (0)-1=[g (1)]2; 令x 1=1,x 2=0,得f (1)f (0)+g (1)g (0)=g (1), ∴g (1)g (0)=g (1),g (1)[g (0)-1]=0,解方程组⎩⎪⎨⎪⎧g (1)[g (0)-1]=0,g (0)-1=[g (1)]2得⎩⎪⎨⎪⎧g (0)=1,g (1)=0即①正确.对②,令x 1=0,x 2=-1,得f (0)f (-1)+g (0)g (-1)=g (1), ∴g (-1)=0;令x 1=1,x 2=-1,得f (1)f (-1)+g (1)g (-1)=g (2),∴g (2)=-1≠1,即②不正确. 对③,令x 1=x 2=x ,得[f (x )]2+[g (x )]2=g (0)=1,即③正确.对④,由③可知,f 2(x )≤1,g 2(x )≤1,∴|f (x )|≤1,|g (x )|≤1,∴当n >2,n ∈N *时,[f (x )]n +[g (x )]n ≤[f (x )]2+[g (x )]2=1,即④正确.综上,①③④是正确的,故选D.] 26.解 (1)当x =0时,t =0 , 当0<x ≤24时:t =x x 2+1=1x +1x ≤12x ·1x=12,当且仅当x =1x ,即x =±1,又0<x ≤24,即x =1时取等号. 而显然t >0,综上所述,t 的取值范围是⎣⎢⎡⎦⎥⎤0,12; (2)记g (t )=a |t -a |+a +169,t ∈⎣⎢⎡⎦⎥⎤0,12,则g (t )=⎩⎪⎨⎪⎧-at +a 2+a +169,0≤t <a ,at -a 2+a +169,a ≤t ≤12,显然g (t )在[0,a )上单调递减,在⎣⎢⎡⎦⎥⎤a ,12上单调递增,∴g (t )的最大值可能在t =0或t =12时取到,而g (0)-g ⎝ ⎛⎭⎪⎫12=a 2+a +169-⎝ ⎛⎭⎪⎫-a 2+32a +169=2a ⎝ ⎛⎭⎪⎫a -14,∵a ∈⎝ ⎛⎦⎥⎤0,14,∴2a ⎝ ⎛⎭⎪⎫a -14≤0, ∴g (0)≤g ⎝ ⎛⎭⎪⎫12,∴M (a )=g ⎝ ⎛⎭⎪⎫12=-a 2+32a +169,由-a 2+32a +169≤2及0<a ≤14得0<a ≤16,故当a ∈⎝ ⎛⎦⎥⎤0,16时,污染指数不超标;当a ∈⎝ ⎛⎦⎥⎤16,14时,染污指数超标.4.函数的基本性质【三年高考真题演练】 [2016年高考真题] 1.D [y =11-x与y =ln(x +1)在区间(-1,1)上为增函数; y =cos x在区间(-1,1)上不是单调函数;y =2-x =⎝⎛⎭⎪⎫12x在(-1,1)上单调递减.] 2.D [当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,即f (x )=f (x +1),∴T =1,∴f (6)=f (1).当x <0时,f (x )=x 3-1且-1≤x ≤1, f (-x )=-f (x ),∴f (2)=f (1)=-f (-1)=2,故选D.]3.B [由题f (x )=f (2-x )关于x =1对称,函数y =|x 2-2x -3|的图象也关于x =1对称,因此根据图象的特征可得∑i =1mx i =m ,故选B.]4.2 [f (x )=x x -1=1+1x -1,所以f (x )在[2,+∞)上单调递减,则f (x )最大值为f (2)=22-1=2.]5.-2 [首先,f (x )是周期为2的函数,所以f (x )=f (x +2); 而f (x )是奇函数,所以f (x )=-f (-x ),所以:f (1)=f (-1),f (1)=-f (-1),即f (1)=0, 又f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12=412=2,故f ⎝ ⎛⎭⎪⎫-52=-2,从而f ⎝ ⎛⎭⎪⎫-52+f (1)=-2.]6.-25 [由已知f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2=f ⎝ ⎛⎭⎪⎫-12=-12+a ,f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫92-4=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110. 又∵f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则-12+a =110,a =35,∴f (5a )=f (3)=f (3-4)=f (-1)=-1+35=-25.] [两年经典高考真题]1.A [易知函数定义域为(-1,1),f (-x )=ln(1-x )-ln(1+x )=-f (x ),故函数f (x )为奇函数,又f (x )=ln 1+x 1-x =ln ⎝⎛⎭⎪⎫-1-2x -1,由复合函数单调性判断方法知,f (x )在(0,1)上是增函数,故选A.] 2.A [显然y =x +1是(0,+∞)上的增函数;y =(x -1)2在(0,1)上是减函数,在(1,+∞)上是增函数;y =2-x =⎝ ⎛⎭⎪⎫12x在x ∈R 上是减函数;y =log 0.5(x +1)在(-1,+∞)上是减函数.故选A.]3.D [根据各选项知,选项C 、D 中的指数函数满足f (x +y )=f (x )·f (y ).又f (x )=3x 是增函数,所以D 正确.]4.D [因为f (x )=kx -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x 在区间(1,+∞)上恒成立.因为x >1,所以0<1x <1,所以k ≥1.故选D.]5.⎝ ⎛⎭⎪⎫-22,0 [由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f (m )=2m 2-1<0,f (m +1)=2m 2+3m <0,解得-22<m <0.]6.(-1,3) [由题可知,当-2<x <2时,f (x )>0.f (x -1)的图象是由f (x )的图象向右平移1个单位长度得到的,若f (x -1)>0,则-1<x <3.]7.A [由于y =sin x 是奇函数;y =ln x 是非奇非偶函数;y =x 2+1是偶函数但没有零点;只有y =cos x 是偶函数又有零点.]8.A [令f (x )=x +e x ,则f (1)=1+e ,f (-1)=-1+e -1,即f (-1)≠f (1),f (-1)≠-f (1),所以y =x +e x 既不是奇函数也不是偶函数,而B 、C 、D 依次是奇函数、偶函数、偶函数,故选A.]9.D [由奇函数定义易知y =e x -e -x 为奇函数,故选D.] 10.C [∵f (x )为奇函数,∴f (-x )=-f (x ), 即2-x +12-x -a =-2x +12x -a,整理得(1-a )(2x +1)=0, ∴a =1,∴f (x )>3即为2x +12x -1>3,化简得(2x -2)(2x -1)<0,∴1<2x <2,∴0<x <1.]11.D [函数f (x )=x -1和f (x )=x 2+x 既不是偶函数也不是奇函数,排除选项A 和选项B ;选项C 中f (x )=2x -2-x ,则f (-x )=2-x -2x =-(2x -2-x )=-f (x ),所以f (x )=2x -2-x 为奇函数,排除选项C ;选项D 中f (x )=2x +2-x ,则f (-x )=2-x +2x =f (x ),所以f (x )=2x +2-x 为偶函数,故选D.] 12.C 13.A 14.D15.C [用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1,故选C.] 16.B [由题意得,若a =0,f (x )=x ,显然成立;若a ≠0,当x ≥0时,f (x )=⎩⎪⎨⎪⎧x -3a 2,x >2a 2,-a 2,a 2<x ≤2a 2,-x ,0≤x ≤a 2,作出x ≥0的图象,利用f (x )是奇函数作出整个定义域上的图象如图:而f (x -1)的图象是由f (x )的图象向右平移1个单位得到的,要满足对任意实数x ,都有f (x -1)≤f (x ),至少应向右平移6a 2个单位,所以6a 2≤1,解得-66≤a ≤66,且a ≠0.综上,实数a 的取值范围是⎣⎢⎡⎦⎥⎤-66,66.]17.-32 [由题意得f (-x )=ln(e -3x +1)-ax =ln 1+e 3xe 3x -ax =ln(1+e 3x )-ln e 3x -ax=ln(e 3x +1)-(3+a )x ,而f (x )为偶函数,因此f (-x )=f (x ),即ax =-(3+a )x ,所以a =-32.]18.D [排除法,A 中,当x 1=π2,x 2=-π2时,f (sin 2x 1)=f (sin 2x 2)=f (0),而sin x 1≠sin x 2,∴A 不对;B 同上;C 中,当x 1=-1,x 2=1时,f (x 21+1)=f (x 22+1)=f (2),而|x 1+1|≠|x 2+1|, ∴C 不对,故选D.]19.A [由f (x )=ln(1+|x |)-11+x 2,知f (x )为R 上的偶函数,于是f (x )>f (2x -1)即为f (|x |)>f (|2x -1|).当x >0时,f (x )=ln(1+x )-11+x 2,得f ′(x )=11+x +2x(1+x 2)2>0,所以f (x )为[0,+∞)上的增函数,则由f (|x |)>f (|2x -1|)得|x |>|2x -1|,平方得3x 2-4x +1<0,解得13<x <1,故选A.]20.A [由偶函数的定义知,A ,B 为偶函数.A 选项,f ′(x )=-2x 3在(-∞,0)恒大于0;B 选项,f ′(x )=2x 在(-∞,0)恒小于0.故选A.]21.A [f (-x )=ln(1-x )-ln(1+x )=-f (x ),故①正确;因为f (x )=ln(1+x )-ln(1-x )=ln 1+x 1-x ,又当x ∈(-1,1)时,2x1+x 2∈(-1,1),所以f ⎝ ⎛⎭⎪⎫2x 1+x 2=ln 1+2x1+x 21-2x 1+x 2=ln ⎝ ⎛⎭⎪⎪⎫1+x 1-x 2=2ln 1+x 1-x =2f (x ),故②正确;当x ∈[0,1)时,|f (x )|≥2|x |⇔f (x )-2x ≥0,令g (x )=f (x )-2x =ln(1+x )-ln(1-x )-2x (x ∈[0,1)),因为g ′(x )=11+x +11-x-2=2x 21-x2>0,所以g (x )在区间[0,1)上单调递增,g (x )=f (x )-2x ≥g (0)=0,即f (x )≥2x ,又f (x )与y =2x 都为奇函数,所以|f (x )|≥2|x |成立,故③正确,故选A.]22.B [由题意可得,当x >0时,y =f (-x )与y =g (x )的图象有交点,即g (x )=f (-x )有正解,即x 2+ln(x +a )=(-x )2+e -x -12有正解,即e -x -ln(x +a )-12=0有正解,令F (x )=e -x -ln(x +a )-12,则F ′(x )=-e -x -1x +a<0,故函数F (x )=e -x -ln(x+a)-12在(0,+∞)上是单调递减的,要使方程g(x)=f(-x)有正解,则存在正数x使得F(x)≥0,即e-x-ln(x+a)-12≥0,所以a≤ee-x-12-x,又y=ee-x-12-x在(0,+∞)上单调递减,所以a<ee0-12-0=e12,选B.]23.3[因为f(x)的图象关于直线x=2对称,所以f(x)=f(4-x),f(-x)=f(4+x),又f(-x)=f(x),所以f(x)=f(4+x),则f(-1)=f(4-1)=f(3)=3.]【两年模拟试题精练】1.C[首先y=cos x是偶函数,且在(0,π)上单减,而(0,1)⊆(0,π),故y=cos x 满足条件.故选C.]2.D[y=sin x与y=ln(x2+1-x)都是奇函数,y=e x为非奇非偶函数,y=ln x2+1为偶函数,故选D.]3.B[由f(x)是定义在R上的奇函数得f(0)=1+m=0⇒m=-1,f(-log3 5)=-f(log3 5)=-(3log3 5-1)=-4,选B.]4.132[f(3)=f(5)=⎝⎛⎭⎪⎫125=132.]5.C[A虽为增函数却是非奇非偶函数,B、D是偶函数,对于选项C,由奇偶函数的定义可知是奇函数,由复合函数单调性可知在共定义域内是增函数(或y′=2x ln 2+2-x ln 2>0),故选C.]6.1[∵f(f(1))=f(0)=a3=1,∴a=1.]7.-1[因为f(x)是R上的奇函数,所以f(0)=0.在f(x+6)=f(x)+f(3)中,令x=-3得f(-3+6)=f(-3)+f(3)⇒f(3)=-f(3)+f(3)=0,知对任意x∈R都有f(x+6)=f(x)成立,所以奇函数f(x)是以6为周期的周期函数,所以f(2 015)+f(2 016)=f(6×336-1)+f(6×336)=f(-1)+f(0)=-f(1)=-1.]8.B [f (x )为周期为6的周期函数,且f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)+f (5)+f (6)=1,则f (1)+f (2)+…+f (2 012)=f (1)+f (2)+f (3)+…+f (2 012)=f (1)+f (2)+335=338,故选B.]9.D [依题意,对于选项A ,注意到当x =-1时,y =2;当x =1时,y =4,因此函数y =x 3+3x 2不是奇函数.对于选项B ,注意到当x =0时,y =1≠0,因此函数y =e x +e -x 2不是奇函数.对于选项C ,注意到当x =-π2时,y =π2;当x =π2时,y =π2,因此函数y =x sin x 不是奇函数.对于选项D ,由3-x 3+x>0得-3<x <3, 即函数y =log 23-x 3+x的定义域是(-3,3),该数集是关于原点对称的集合, 且log 23-(-x )3+(-x )+log 23-x 3+x =log 21=0,即有log 23-(-x )3+(-x )=-log 23-x 3+x,因此函数y =log 23-x 3+x 是奇函数.综上所述,选D.] 10.B [因为函数y =⎩⎨⎧e x,x ≥0,⎝ ⎛⎭⎪⎫1e x ,x <0为偶函数,且在(-∞,0)上为减函数,故选B.] 11.D [∵f (x +8)为偶函数,∴f (x +8)=f (-x +8),即y =f (x )关于直线x =8对称.又∵f (x )在(8,+∞)上为减函数,∴f (x )在(-∞,8)上为增函数.由f (2+8)=f (-2+8),即f (10)=f (6),又由6<7<8,则有f (6)<f (7),即f (7)>f (10),故选D.] 12.⎣⎢⎡⎦⎥⎤12,2 [∵f (x )为偶函数,∴f (log 12a )=f (-log 2a )=f (log 2a ),代入f (log 2a )+f (log 12。
2023年河南省平顶山市叶县高级中学等高考数学模拟试卷(理科)(2月份)(一)1. 若复数z 满足,则( )A.B.C. 或4D.或2. 已知集合,,则( )A. B.C.D.3. 已知函数,若,则( )A.B. 0C. 1D.4. 已知双曲线,则C 的离心率为( )A. B.C.D. 25. 2018年月某市星级酒店经营数据统计分析如图“同比”指与去年同期相比:下列说法错误的是( )A. 整体来看,2018年月该市星级酒店平均房价相对上一年有所提高B. 2018年月该市星级酒店平均房价的平均数据超过700元C. 2018年月这10个月中,该市星级酒店在10月份的平均房价创下10个月来的最高纪录D. 2017年5月该市星级酒店平均房价约为元6.已知,均为等差数列,且,,,则数列的前5项和为( )A. 35B. 40C. 45D. 507. 若,,则( )A. B. C. D.8. 已知某长方体的上底面周长为16,与该长方体等体积的一个圆柱的轴截面是面积为16的正方形,则该长方体高的取值范围是( )A. B. C. D.9. 在的展开式中,的系数为( )A. 60B. 15C. 120D. 3010. 的最小值为( )A. B. C. D.11. 已知,,,则( )A. B. C. D.12. 若不是等比数列,但中存在不相同的三项可以构成等比数列,则称是局部等比数列.在,,,这4个数列中,局部等比数列的个数是( )A. 1B. 2C. 3D. 413. 若,,且,则______ .14. 写出一个最小正周期不小于,且其图象关于直线对称的函数:______ .15. 已知函数在区间上单调递增,则a的取值范围为______ .16. 如图,在四面体ABCD中,,,,则四面体ABCD外接球的表面积为______ .17. 甲、乙两人进行围棋比赛,两人共比赛两局,每局比赛甲赢的概率为,两人平局的概率为,设每局的胜方得3分,负方得分,若该局为平局,则两人各得2分.求甲、乙各赢一局的概率;记两局结束后甲的最后得分为X,求X的数学期望.18. 如图,P为半圆为直径上一动点,,,记当时,求OP的长;当面积最大时,求19. 如图,在四棱锥中,底面ABCD为梯形,平面ABCD,,,,,E,F分别为PC,BP的中点,且求AP;求平面PCD和平面ACF所成锐二面角的余弦值.20. 已知椭圆的左焦点为设M是C上任意一点,M到直线l:的距离为d,证明:为定值;过点且斜率为k的直线与C自左向右交于A,B两点,点Q在线段AB上,且,,O为坐标原点,证明:21. 已知函数若直线与曲线相切,求k的值;若,,求a的取值范围.22. 在平面直角坐标系xOy中,曲线C的参数方程为为参数,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程是求曲线C的普通方程和直线l的直角坐标方程;若直线l与曲线C交于A,B两点,点,求的值.23. 已知函数若,且,求m的值;若,,证明:答案和解析1.【答案】D【解析】解:,解得或,当时,,当时,故选:先求出z,即可求出本题主要考查复数的运算,属于基础题.2.【答案】D【解析】解:集合或,,故故选:先求出集合A,B,再结合并集的定义,即可求解.本题主要考查并集及其运算,属于基础题.3.【答案】A【解析】解:因为函数,所以,所以,又,所以,解得故选:计算,结合已知条件即可求解c的值.本题主要考查函数的性质,考查运算求解能力,属于基础题.4.【答案】B【解析】解:双曲线的方程可化为:,,,,,双曲线C的离心率为,故选:先将双曲线的方程化为标准方程,从而可得a,b,c,从而得解.本题考查双曲线的几何性质,属基础题.5.【答案】D【解析】解:对于A选项,由图可知,仅有7月同比增速为,其余9个月同比增速均为正数,故A正确;对于B选项,由图可知10个数据的平均数为,故B正确;对于C选项,由图可知这10个月的数据中,第10个月的最大,故C正确;对于D选项,由,得2017年5月该市星级酒店平均房价大于元,故D错误.故选:根据折线统计图和条形统计图逐项判断可得出合适的选项.本题考查条形统计图和频率分布折线图的实际应用,属于基础题.6.【答案】B【解析】解:,均为等差数列,且,,,的前5项和为:,的前5项和为:,则数列的前5项和为故选:利用等差数列的前n项和公式直接求解.本题考查等差数列的性质等基础知识,考查运算求解能力,是基础题.7.【答案】D【解析】解:由,知,因为,所以,所以,而,所以故选:先确定的取值范围,由同角三角函数的平方关系,可得的值,再利用两角差的正弦公式,求得的值,并结合二倍角公式求出的值,代入运算,得解.本题考查三角函数的求值,熟练掌握二倍角公式,两角差的正弦公式,同角三角函数的关系式是解题的关键,考查逻辑推理能力和运算能力,属于中档题.8.【答案】C【解析】解:不妨设该长方体底面的长和宽分别为a,b,高为h,则,轴截面是面积为16的正方形的圆柱,其底面圆的半径为2,高为4,体积为,则,又因为,所以,故故选:运用长方体、圆柱体积公式及基本不等式求解即可.本题主要考查长方体的体积公式,基本不等式的应用,考查运算求解能力,属于中档题.9.【答案】A【解析】解:在的展开式中,含的项为,故含的系数为,故选:由题意,利用二项式定理展开式,即可解出结果.本题考查了二项式定理,学生的数学运算能力,属于基础题.10.【答案】B【解析】解:动点的轨迹方程为C:,抛物线的焦点坐标为,设P到准线的距离为d,,则原式,故选:求出动点P的轨迹方程,根据抛物线的定义和性质转化求解即可.本题考查抛物线的方程和性质,考查学生转化思想和计算能力,属于中档题.11.【答案】C【解析】解:设函数,则,所以在上单调递减,因为,又,,,所以,所以,故选:设函数,求导分析的单调性,又,即可得出答案.本题考查导数的综合应用,解题中需要理清思路,属于中档题.12.【答案】C【解析】解:根据题意,依次分析所给的4个数列:对于数列,不是常数,该数列不是等比数列,其中,,,三项成等比数列,则于数列是局部等比数列;对于数列,不是常数,该数列不是等比数列,其中,,由,可知,,成等比数列,则数列是局部等比数列;对于,有,该数列为等比数列,则该数列不是局部等比数列;对于数列,不是常数,易得该数列不是等比数列,其中,,,此三项是等比数列,故数列是局部等比数列.故选:根据题意,依次分析所给的4个数列是不是局部等比数列,即可得答案.本题考查等比数列的判断,注意等比数列的定义,属于基础题.13.【答案】【解析】解:因为,所以,因为,,所以,所以故答案为:由已知结合向量数量积的性质即可求解.本题主要考查了向量数量积的性质的应用,属于基础题.14.【答案】答案不唯一【解析】解:根据正余弦函数性质可知满足题意的函数不唯一,如答案不唯一故答案为:答案不唯一根据正余弦函数性质可直接得到结果.本题主要考查了三角函数的周期性和对称性,属于基础题.15.【答案】【解析】解:令,则在上为减函数,所以由复合函数的单调性可知在区间上单调递增,则,解得,即a的取值范围为故答案为:令,可判断在上为减函数,再根据复合函数的单调性求解即可.本题主要考查了复合函数的单调性,属于基础题.16.【答案】【解析】解:如图1,取BD的中点E,由,,可得,又,所以为等边三角形.由,,可得,,,AE,平面ACE,则平面ACE,如图2,延长AE至Q,使得,延长CE至P,使得,的外接圆的直径,即,故易知P为的外心,Q为的外心,过点P作平面BCD的垂线,过点Q作平面ABD的垂线,两垂线的交点O就是四面体ABCD外接球的球心,由,,可得,在中,,故四面体ABCD外接球的表面积为故答案为:根据题意分析可知平面ACE,根据外接球的性质以及四面体ABCD的结构特征确定四面体ABCD的外接球的球心所在位置,进而可求半径和面积.本题主要考查几何体的表面积,考查计算能力,属于中档题.17.【答案】解:每局比赛甲赢的概率为,两人平局的概率为,每局比赛乙赢的概率为,甲、乙各赢一局的概率为;的可能取值为6,5,4,2,1,,则,,,,,,【解析】利用相互独立事件的概率公式求解即可;先求出随机变量X的可能取值,然后求出其对应的概率,由数学期望的计算公式求解即可.本题考查了离散型随机变量期望的求解,考查了逻辑推理能力与运算能力,属于中档题.18.【答案】解:由题意在中,,,,是等腰直角三角形,,在以AB为直径的圆上,取AB的中点C,连接CO,,,在中,,,由正弦定理得,解得由题意及知,,在中,,,由余弦定理,,,当且仅当时,等号成立,,当且仅当时,的面积最大,此时,【解析】求出的值,由正弦定理能求出OP的长;由余弦定理及基本不等式求出PA与PO的乘积关系,写出面积表达式,即可得出的值.本题考查正弦定理、余弦定理及基本不等式求等基础知识,考查运算求解能力,是中档题.19.【答案】解:如图,取AD的中点M,连接CM,底面ABCD为梯形,,,,,,且,,,平面ABCD,平面ABCD,,,平面APC,,又,,平面PCD,,是PC的中点,;以A为坐标原点,建立如图所示的空间直角坐标系,则,,由可知,平面PCD,可得是平面PCD的一个法向量,设平面ACF的法向量为,由,得,即,取,得,设平面PCD和平面ACF所成的锐二面角为,则【解析】取AD的中点M,连接CM,由底面ABCD为梯形得出,则,利用线面垂直的判定得到平面ABCD,进而得到平面PCD,所以,进而求解;建立空间直角坐标系,求出相应点的坐标,分别求出平面PCD和平面ACF的法向量,利用向量的夹角公式即可求解.本题考查了空间中两点间的距离和二面角的计算,属于中档题.20.【答案】解:证明:由椭圆的方程可得,再由左焦点的坐标,可得,所以,所以椭圆的方程为:;设,则,,所以为定值,可证得为定值2;证明:设直线AB的方程为,设,,联立,整理可得:,,可得,且,,因为Q在线段AB上,设,可得,所以,又因为,,所以,所以,,整理可得,即,,代入可得,,整理可得:,所以,而,可证得:【解析】设M的坐标,由题意可得M的横纵坐标的关系,求出的表达式,整理可得其值为定值;设直线AB的方程,与椭圆的方程联立,由判别式大于0可得k的范围,由题意设Q点的坐标,由向量的关系,可得Q的横坐标,求出数量积的值,可证得结论.本题考查直线与椭圆的综合应用及向量的性质的应用,属于中档题.21.【答案】解:由题意,设切点坐标为,则切线方程为,因为直线l过点,所以把点的坐标代入切线方程,得,整理得,令,则,所以在,上,,单调递增,在上,,单调递减,又,,所以有唯一实数解,则,所以任意,等价于任意,,令,则,令,则在上恒成立,所以在上单调递增,因为,,所以在上存在唯一,使得,即,则,所以,令,,,在上恒成立,所以在上单调递增,又由,,得,即,所以在时,,,单调递减,在时,,,单调递增,所以,所以,即,所以a的取值范围为【解析】由题意,设切点坐标为,写出切线方程,把点,代入切线方程,解得,即可得出答案.任意,等价于任意,,令,只需,即可得出答案.本题考查了利用导数研究函数的单调性与极值及最值、等价转化方法、分类讨论方法、含参数恒成立问题,考查了推理能力与计算能力,属于中档题.22.【答案】解:,①②得,根据极坐标方程与直角坐标方程关系可知直线l的直角坐标方程为:;由可知点过直线l,故直线l的参数方程可写为为参数,代入曲线C的普通方程得,由韦达定理可知:,,所以【解析】曲线C的参数方程通过平方消元得到普通方程;通过极坐标方程与直角坐标方程关系得到直线l的直角坐标方程;由题可知点P过直线l,利用直线的参数方程中参数与定点位置关系即可列式计算.本题主要考查简单曲线的极坐标方程,考查转化能力,属于中档题.23.【答案】解:因为,所以,由,得,则,解得,因为,所以,即,故证明:由,,得,,则,,所以,当且仅当,时等号成立,故【解析】由题意直接法解不等式,与已知解集相等,可求m的值;已知可得,,利用绝对值三角不等式证明结论.本题考查不等式的证明,属于中档题.。
2024年高考数学模拟试题考试时间:120分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题:本题共8小题,每小题5分,共40分。
在每个小题给出的选项中,只有一项是符合题目要求的。
1.偶函数()y f x =在区间()0,4上单调递减,则有()A .()()13f f f ππ⎛⎫->>- ⎪⎝⎭B .()()13f f f ππ⎛⎫>->- ⎪⎝⎭C .()()13f f f ππ⎛⎫->-> ⎪⎝⎭D .()()13f f f ππ⎛⎫->> ⎪⎝⎭2.已知函数()(0)f x kx b k =+≠,则“(0)0f =”是“函数()f x 为奇函数”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.已知抛物线2:4E y x =的焦点为F ,M 是抛物线E 上一点,N 是圆()()22:624C x y -+-=上一点,则MN MF +的最小值为()A .4B .5C .6D .74.设M ,N ,U 均为非空集合,且满足M ⫋N ⫋U ,则M )∩(N )()A .MB .NC .MD .N5.若,x y ∈R ()()22e 1x x y x y -+-+的最小值为()A .22B 2C .12D .2e6.已知三棱柱的各个侧面均垂直于底面,底面为正三角形,侧棱长与底面边长之比为3:2,顶点都在一个球面上,若三棱柱的侧面积为162,则该球的表面积为()A .120πB 129πC .129πD .180π7.如图,ABC 是边长为6的等边三角形,点P 在ABC 所在平面外,平面PAC ⊥平面ABC ,点D 是棱BC 的中点,点,E F 分别在棱,AC PA 上,且2,3AF PF AE CE ==,PE CE =.现给出下列四个结论:①DE ⊥平面PAC ;②BF 是定值;③三棱锥B CEF -体积的最大值是334;④若三棱锥-P ABC 的体积是932,则该三棱锥外接球的表面积是57π.其中正确结论的个数是()A .1B .2C .3D .48.如图所示,正方形ABCD 的边长为2,切去阴影部分围成一个正四棱锥,则正四棱锥的侧面积取值范围为()A .()1,2B .[1,2]C .[0,2]D .()0,2二、多选题:本题共3小题,每小题6分,共18分。
三年高考两年模拟答案数学高一
1、f(x)=3x-5,则f(1)=() [单选题] *
A.6x-3
B.6x-5
C.5x-6
D.-2(正确答案)
2、设f(x)= -ax+a,且f(2)=7,则常数a=() [单选题] *
A.-3
B.3
C.-7(正确答案)
D.9
3、函数f(x)=kx+b,若f(1)=-2,f(-1)=0,则() [单选题] *
A.k=1,b=-1
B.k=-1, b=-1(正确答案)
C.k=-1,b=1
D.k=1,b=1
4、函数f(x)=x,f(-1)=() [单选题] *
A.1
B.0
C.-1(正确答案)
D.3
5、f(x)= 3x-5,则f(0)=() [单选题] *
A.3x-3
B.3x-5
C.-5(正确答案)
D.-2
6、f(x)=3x+9的定义域为() [单选题] *
A.R(正确答案)
B.[-3,3]
C. (0,1)
D.(0,2)
7、下列各函数中,为非奇非偶函数的是() [单选题] *
A.y=5x
B.y=3x
C.y=x+1(正确答案)
D.y=3
8、下列说法中,正确的是() [单选题] *
A.第一象限的角一定是锐角
B、锐角一定是第一象限角(正确答案)
C.小于90度的角一定是锐角
D、第一象限的角一定是正角
9、-50度角的终边在() [单选题] *
A、第一象限
B、第二象限
C、第三象限
D、第四象限(正确答案)
10、分针每分钟转过()度。
[单选题] *
A、-720
B、6
C、-6(正确答案)
D、-30
11、时针每小时转过()度。
[单选题] *
A、-720
B、6
C、-6
D、-30(正确答案)
12、时针一昼夜转过()度。
[单选题] *
A、-720(正确答案)
B、6
C、-6
D、-30
13、150角终边落在()。
[单选题] *
A、第一象限(正确答案)
B、第二象限
C、第三象限
D、第四象限
14、设f(x)=2x-7,f(-1)=( ) [单选题] *
A、-9(正确答案)
B、43
C、2a-7
D、-30
15、设f(x)=2x-7,f(5)=( ) [单选题] *
A、-5
B、3(正确答案)
C、2a-7
D、-30
16、设f(x)=2x-7,f(a)=( ) [单选题] *
A、-5
B、43
C、2a-7(正确答案)
D、-30
17、设f(x)=5x-4,f(2)=( ) [单选题] *
A、6(正确答案)
B、5x+1
C、2x-7
D、-30
18、设f(x)=5x-4,f(x+1)=( ) [单选题] *
A、6
B、5x+1(正确答案)
C、2x-7
D、-30
19、设f(x)=5x-4,f(0)=( ) [单选题] *
A、6
B、-4(正确答案)
C、2x-7
D、30
20、下列哪个角是象限角() [单选题] *
A、-720度
B、90度
C、1800度
D、-300度(正确答案)。