2020版【5年高考3年模拟】高考新课标版理数6.4 数列求和、数列的综合应用
- 格式:docx
- 大小:68.89 KB
- 文档页数:15
6.4 数列求和、数列的综合应用五年高考考点1 数列求和1.(2012大纲全国.5,5分)已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1{1+n n a a 的前100项和为 ( )101100.A 10199.B 10099.C 100101.D 2.(2011天津,4,5分)已知}{n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n s 为}{n a 的前n 项和,*,N n ∈则10S 的值为( )110.-A 90.-B 90.C 110.D3.(2013辽宁.14,5分)已知等比数列}{n a 是递增数列,n S 是}{n a 的前n 项和,若31,a a 是方程0452=+-x x 的两个根,则=6S4.(2013重庆.12,5分)已知}{n a 是等差数列,,11=a 公差=/d n s ,0为其前n 项和,若521,,a a a 成等比数列,则8s =5.(2013湖南,15,5分)设n s 为数列}{n a 的前n 项和,=n s ,,21)1(⋅∈--N n a nn n则 =3)1(a=+++10021)2(S S S6.(2010上海,10)在n 行n 列矩阵中,记位于第i 行第J 列的数为).,,2,1(n j i a ij =、当n=9时,+++332211a a u =+99a7.(2013四川,16,12分)在等差数列}{n a 中,,831=+a a 且4a 92a a 和为的等比中项,求数列}{n a 的首项、公差及前n 项和.8.(2013浙江,1814分)在公差为d 的等差数列}{n a 中,已知,101=a 且3215,22,a a a +成等比数列. (1)求;,n a d(2)若d<0,求.||||||||321n a a a a ++++智力背景蝴蝶效应(二) 这一天,Lorenz 想更避.步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果当时,电脑处理数据资料的速度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵.回来后,结果出来了,不过令他目瞪口呆,结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯而问题并不出在电脑,问题是他输入的数据差了0:1000127,而这细微的差异却造成天壤之别,所以长期地准确预测天气是不可能的.9.(2012江西.16,12分)已知数列}{n a 的前n 项和221n s n -=kn +(其中*),N k ∈且n s 的最大值为8. (1)确定常数k ,并求,n a (2)求数列}229{nna -的前n 项和⋅n T 10.(2012湖北.18,12分)已知等差数列}{n a 前三项的和为-3,前三项的积为8.(1)求等差数列}{n a 的通项公式;(2)若132,,a a a 成等比数列,求数列|}{|n a 的前n 项和.11.(2011山东.20,12分)等比数列}{n a 中,321,,a a a 分别是下表第一、二、三行中的某一个数,且321,,a a a 中的任何两个数不在下表的同一列.(1)求数列}{n a 的通项公式;(2)若数列}{n b 满足:,ln )1(n n n n a a b -+=求数列}{n b 的前n 项和⋅n s考点2 数列的综合应用1.(2013课标全国112.5分)设n n n C B A ∆的三边长分别为,n a n n n n n C B A c b ∆,,的面积为.,3,2,1, =n s n 若1111,c b c b +>==+11,2n a a ,2,1n n n n a c b a +=+,21nn n a b c +=+则 ( ) }.{n s A 为递减数列 }.{n s B 为递增数列}{1~2n s C ⋅为递增数列,}{2n s 为递减数列}.{12-n s D 为递减数列,}{2n s 为递增数列2.(2012华约联盟自主招生.9)已知数列}{n a 的通项公式为n a ),321lg(2nn ++=n S n ,.2.1 =是数列 }{n a 的前n 项和,则=n S ( )0.A 3lg 31lg+++⋅n n B 2lg 2lg ++⋅n n C 3lg 11lg ++-⋅n n D 3.(2012卓越联盟自主招生.6)设}{n a 是等差数列,}{n b 是等比数列,记}{},{n n b a 的前n 项和分别为⋅n n T S ,若==433,a b a ,4b 且,52435=--T T S s 则=++3535b b a a 4.(2012课标全国.16.5分)数列}{n a 满足=-++n n n a a )1(1,12-n 则}{n a 的前60项和为 5.(2011陕西.14,5分)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为 (米).6.(2013江西,17,12分)正项数列}{n a 的前n 项和n s 满足:2n S )1(2-+-n n .0)(2=+-n n s n(1)求数列}{n a 的通项公式,n a (2)令,)2(122nn a n n b ++=数列}{n b 的前n 项和为⋅n T 证明:对于任意的*,N n ∈都有⋅<645n T 7.(2013广东,19,14分)设数列}{n a 的前n 项和为⋅n s 已知1a 12,1+==n n a n s ,32312---n n .⋅∈N n(1)求2a 的值;(2)求数列}{n a 的通项公式; (3)证明:对一切正整数n ,有⋅<+++471.111n a a a 8.(2013湖北.22,14分)设n 是正整数,r 为正有理数. (1)求函数)1(1)1()1()(1->-+-+=+x x r x x f r 的最小值;(2)证明:;1)1(1)1(1111+-+<<+--++++r n n n r n n r r r r r 智力背景运筹学(一) 在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马的故事,这个故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效 果.可见,筹划、安排是十分重要的,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决,前者提供模型,后者提供理论和方法.(3)设,R x ∈记[x]为不小于x 的最小整数,例如][,2]2[π=⋅-=-=.1]23[,4 令,1258382813333++++= s 求[S]的值.(参考数据:≈≈≈≈34343434126,3.618124,5.35081,7.34480)7.6319.(2012大纲全国.22,12分)函数.32)(2--=x x x f 定义数列}{n x 如下:11,2+=n x x 是过两点))(,()5,4(n n n x f x Q p 、的直线n PQ 与x 轴交点的横坐标.(1)证明:;321<<≤+n n x x (2)求数列}{n x 的通项公式.10.(2012广东,19,14分)设数列}{n a 的前n 项和为,n s 满足*,,12211N n a S n n n ∈+-=++且321,5,a a a + 成等差数列. (1)求1a 的值;(2)求数列}{n a 的通项公式; (3)证明:对一切正整数n ,有⋅<+++2311121n a a a 11.(2012天津.18,13分)已知}{n a 是等差数列,其前n 项和为}{,n n b S 是等比数列,且,211==b a.10,274444=-=+b S b a(1)求数列}{}{1n n b a 与的通项公式;(2)记*,,1211N n b a b a b a T n n n n ∈+++=- 证明=+12n T ⋅⋅∈+-)(102N n b a n n12.(2012陕西.17,12分)设}{n a 是公比不为1的等比数列,其前n 项和为,n S 且435,,a a a 成等差数列. (1)求数列}{n a 的公比;(2)证明:对任意12,,,++⋅∈k k k S S S N k 成等差数列.13.(2012四川.20,12分)已知数列}{n a 的前n 项和为,n S 且n n s s a a +=22对一切正整数n 都成立.(1)求21,a a 的值;(2)设,01>a 数列}10{lg 1na a的前n 项和为⋅n T 当n 为何值时,n T 最大?并求出n T 的最大值.14.(2010上海,20,13分)已知数列}{n a 的前n 项和为,n S 且n S .*,855N n a n n ∈--=(1)证明:}1{-n a 是等比数列;(2)求数列}{n s 的通项公式.请指出n 为何值时,n S 取得最小值,并说明理由.智力背景运筹学(二) 运筹学的思想在古代就已经产生了,但作为一门数学学科,用纯数学的方法来解决最 优方法的选择安排,却晚多了,可以说,运筹学是在20世纪40年代才开始兴起的一门分支.运筹学主要 研究经济和军事活动中能用数量来表达的有关策划等方面的问题,当然,随着客观实际的发展,运筹学 的内容已经深入到日常生活中去了.运筹学可根据问题,通过数学上的分析、运算,得出各种各样的结 果,最后提出综合性的合理安排,以达到最好的效果.解读探究知识清单1.当已知数列}{n a 满足),(1n f a a n n =-+且++)2()1(f f )(n f + 可求,则可用① 求数列的通项⋅n a2.当已知数列}{n a 满足),(1n f a ann =+且.).2()1( f f ⋅)(n f 可求,则可用② 求数列的通项⋅n a3.等差数列前n 项和③=n s ④= ,推导方法:⑤等比数列前n 项和⎩⎨⎧≠===,1______,)8(_______)7(,1_______6q q S n )(推导方法:错位相减法. 4.常见数列的前n 项和:=++++n 321)1(⑨⑩=++++n 2642)2(=-++++)12(531)3(n=++++2222321)4(n=++++3333321)5(n5.(1)分组求和:把一个数列分成几个可以直接求和的数列;(2)拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩有限项再求和;(3)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和; (4)倒序相加:例如,等差数列前n 项和公式的推导方法. 6.常见的拆项公式:;111)1(1)1(+-=+n n n n);121121(21)12)(12(1)2(+--=+-n n n n.111)3(n n n n -+=++【知识拓展】数列应用题的求解策略(1)构造等差、等比数列的模型(有时也会是其他较特殊的数列). (2)运用相关概念、性质及求和公式进行运算.(3)通过“归纳一猜想一证明”的思路探索规律,并尝试应用规律解题,等价转化和分类讨论的思想方法在求解中起重要作用,复杂的数列问题总是要通过转化为等差、等比数列或常见的特殊数列问题来解决.·知识清单答案智力背景运筹学(三) 运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以 下几个步骤:确定目标、制订方案、建立模型、制定解法.虽然不大可能存在能处理极其广泛对象的运筹 学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题,随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用,运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了.突破方法万法1错位相减求和例1 (2012吉林延边二模.17,12分)已知数列}{n a 的前n 项和为,3n n S =数列}{n b 满足)12(,111-+=-=+n b b b n n n ().⋅∈N(1)求数列}{n a 的通项公式,n a (2)求数列}{n b 的通项公式;n b (3)若,n b a c nn n ⋅=求数列}{n c 的前n 项和⋅n T解题思路解析 ,3)1(n n s =),2(311≥=∴--n S n n⋅≥⨯=-=-=∴---)2(3233111n s s a n n n n n n (2分)当n=1时, ,32321111===/=⨯-a S⎩⎨⎧≥⨯==∴-.2,32,1,31n n a n n (4分) ),12()2(1-+=+n b b n n.32,,5,3,11342312-=-=-=-=-∴-n b b b b b b b b n n以上各式相加得=-+-=-++++=-2)321)(1()32(5311n n n b b n .)1(2-n.2,121n n b b n -=∴-= (8分)(3)由题意得 ⎩⎨⎧≥⨯-=-=-.2,3)2(2,1,31n n n c n n当n≥2时, +⨯⨯+⨯⨯+⨯⨯+-=3213223123023n T ,3)2(21-⨯-+n n (10分)-++⨯⨯+⨯⨯+⨯⨯+-=∴n T n (232231230293432 ,3)2n ⨯相减得)2(232323262132--⨯++⨯+⨯+=--n T n n .3n⨯)3333(3)2(132-++++-⨯-=∴n n n n T⋅+-=--⨯-=233)52(2333)2(n n nn n⎪⎩⎪⎨⎧≥+-=-=∴.2,233)52(,1,3n n n T n n *).(233)52(N n n T n n ∈+-=∴ (12分)【方法点拨】1.用错位相减法求和时;应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出””与““n n qs s 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出”“n n qs S -的表达式. 2.利用错位相减法求和时,转化为等比数列求和.若公比是个参数(字母),则应先对参数加以讨论,一般情况下分等于1和不等于1两种情况分别求和, 方法2裂项相消求和例 2 (2012陕西西安八校二模,侣.12分)已知等差数列}{n a 的公差为2,其前n 项和*).(22N n n pn s n ∈+=(1)求p 的值及,n a (2)若,)12(2nn a n b -=记数列}{n b 的前n 项和为,n T 求使109>n T 成立的最小正整数n的值.解题思路解析 (1)解法一:}{n a 是公差为2的等差数列,.)1(2221211n a n na d na S n -+=⨯+=+=∴ (2分) 又由已知,3,21,1,2112=∴=-=∴+=a a p n pn S n,12)1(1+=-+=∴n d n a a n .12,1+==∴n a p n (4分)解法二:由已知,44,2211+=+==p S p s a 即.23,44221+=∴+=+p a p a a (2分)又此等差数列的公差为,1,22,2,..212=∴=∴=-p p a a,321=+=∴p a,12)1(1+=-+=∴n d n a a n .12,1+==∴n a p n (4分)解法三:由已知,211+==p S a∴ 当n≥2时,-+--+=-=-n n p n pn s s a n n n (2)1([2221,22)]1+-=p pn,232+=∴p a (2分)由已知 ,1,22,212=∴=∴=-p p a a,12)1(,3211+=-+=∴=+=∴n d n a a p a n .12,1+==∴n a p n (4分)(2)由(1)知,121121)12)(12(2+--=+-=n n n n b n (6分)n n b b b b T ++++=∴ 321++-+-+-= )7151()5131()3111()121121(+--n n (8分) ⋅+=+-=1221211n nn (9分),91820,109122,109+>∴>+∴>n n n n T n (10分)智力背景逻辑学的用处 有个学生请教爱因斯坦逻辑学有什么用.爱因斯坦问他:“两个人从烟囱里爬出去,一个满脸烟灰,一个干干净净,你认为哪一个该去洗澡?” “当然是脏的那个,”学生说.“不对,脏的那个看见对方干干净净,以为自己也不会脏,哪里会去洗澡?”即,,29⋅∈>N n n 又 ∴ 使109>n T 成立的最小正整数n 的值为5. (12分)【方法点拨】 1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,将通项裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.2.-般情况如下,若}{n a 是等差数列,则=+11n n a a ),11(11+-n n a a d ⋅-=++)11(21122n n n n a a d a a 此外,根式在分母上时可考虑利用分母有理化相消求和.3.常见的拆项公式:);11(1)(1)1(kn n k k n n +-=+);21121(21)12)(12(1)2(+--=+-n n n n];)2)(1(1)1(1[21)2)(1(1)3(++-+=++n n n n n n n⋅-+=++)(11)4(n k n kkn n 三年模拟A 组 2011-2013年模拟探究专项基础测试时间:50分钟 分值:60分 一、选择题(每题5分,共10分)1.(2013山东日照一模.10)已知数列}{n a 的前n 项和-=2n s n ,6n 则|}{|n a 的前n 项和=n T ( )26.n n A - 186.2+-n n B ⎩⎨⎧>+-≤≤-)3(186)31(6.22n n n n n n C ⎩⎨⎧>-≤≤-)3(6)31(6.22n n n n n n D2.(2012河南焦作4月模拟.4)已知数列}{n a 满足+=+211n a ,n n a a -且,211=a 则该数列的前2012项的和等于( )23015.A 3015.B 1509.C 2010.D 二、填空越(每题5分,共10分)3.(2013河南商丘二模.13)在等差数列}{n a 中,满足,7374a a =且n S a ,01>是数列}{n a 前n 项的和,若n s 取得最大值,则n=4.(2012江西盟校二联,13)下面给出一个“直角三角形数阵” 41 41,21 163,83,43 ……满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为j i j i a ij ,,≥(*),N ∈则83a 等于三、解答题(共40分)5.(2013北京东城高三上学期期末)已知}{n a 为等比数列,其前n 项和为,n s 且*).(2N n a S n n ∈+=(1)求a 的值及数列}{n a 的通项公式;(2)若,)12(n n a n b -=求数列}{n b 的前n 项和⋅n T6.(2013安徽风阳二模,21)已知数列}{n a 的前n 项和为1,a s n -==n n a n S 2,21.,2,1),1( =-n n n (1)证明:数列}1{n s nn +⋅是等差数列,并求,n s (2)设,323n n s b n n +=求证:⋅<+++12521n b b b 7.(2013浙江嘉兴5月.19)已知数列}{n a 的前n 项和为,n S 且*).()12(2N n a n s n n ∈+-= (1)求证:数列}{n an ⋅是等比数列; (2)设数列}2{n n a 的前n 项和为++++= 321111,T T T A T n n ,1n T 试比较n A 与nna 2的大小. 智力背景数学老师收到的短信 忧愁是可微的,快乐是可积的,从现在起到正无穷的日子里,幸福是连续的, 且我对你们祝福的导数是严格大于零的,随着时间的前进趋向于正无穷.B 组 2011-2013年模拟探究专项提升测试时间:40分钟 分值:45分一、选择题(每题5分,共10分)1.(2013江西南昌一模.7)已知等比数列}{n a 的各项均为不等于1的正数,数列}{n b 满足,12,18,lg 63===b b a b n n 则数列}{n b 的前n 项和的最大值等于( )2.(2013青海玉树3月,11)已知数列}{},{n n b a 满足21,1a a =,2,21==b 且对任意的正整数,,,,l k j i 当l k j i +=+时,都有,l k j i b a b a +=+则)(2013120131i i i b a +∑=(注: ++=∑=211a a a i n i )n a +的值为( )2012.A 2013.B 2014.C 2015.D二、填空题(每题5分,共10分)3.(2013北京海淀一模,14)设关于x 的不等式∈<-n nx x x (22*)N 的解集中整数的个数为,n a 数列}{n a 的前n 项和为,n s 则100S 的值为4.(2011四川成都五校联考.14)正项数列}{n a 中,,32=a 且n s *),(422N n p a a n n ∈++=则实数p= 三、解答题(共25分)5.(2013四川攀枝花二模.20)已知数列}{n a 为等比数列,其前n 项和为,n S 已知,16741-=+a a 且对于任意的+∈N n 有,n s 12,++n n s S 成等差数列.(1)求数列}{n a 的通项公式;(2)已知),(+∈=N n n b n 记++++= ||||||332211a b a b a b T n |,|nn a b 若)1()1(2--≤-n T m n n 对于n≥2恒成立,求实数m 的范围.6.(2013山东聊城二模.20)已知函数k x x f k (log )(=为常数,k>0且k≠1),且数列)}({n a f 是首项为4,公差为2的等差数列.(1)求证:数列}{n a 是等比数列;(2)若),(n n n a f a b ⋅=当2=k 时,求数列}{n b 的前n 项和,n s(3)若,lg n n n a a c =问是否存在实数k ,使得}{n c 中的每一项恒小于它后面的项?若存在,求出k 的范围;若不存在,说明理由.智力背景似是而非的数学 父:上次你考了20分,我打了你20下.看这次你考多少分,子:那这次您就别打我了.父:为什么?子:因为我考了0分,父:……——这真是个聪明的儿子,他发现了考试分数与被打数量之间的正比例函数关系.。
第四讲数列求和、数列的综合应用题组1等差、等比数列的综合应用1.[2014新课标全国Ⅱ,5,5分][文]等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n-1)C.D.-2.[2015湖南,14,5分]设S n为等比数列{a n}的前n项和.若a1=1,且3S1,2S2,S3成等差数列,则a n=.3.[2014安徽,12,5分]数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=.4.[2017全国卷Ⅱ,17,12分][文]已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=-1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.5.[2017北京,15,13分][文]已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5. (Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n-1.6.[2016天津,18,13分]已知{a n}是各项均为正数的等差数列,公差为d.对任意的n∈N*,b n是a n 和a n+1的等比中项.(Ⅰ)设c n=-,n∈N*,求证:数列{c n}是等差数列;(Ⅱ)设a1=d,T n=(-1)k,n∈N*,求证:<.题组2数列的实际应用7.[2017全国卷Ⅰ,12,5分]几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1108.[2013江西,12,5分][文]某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于.题组3数列与其他知识的综合9.[2016浙江,8,5分][文]如图6-4-1,点列{A n},{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+2,n∈N*,|B n B n+1|=|B n+1B n+2|,B n≠B n+2,n∈N*(P≠Q表示点P与Q不重合).若d n=|A n B n|,S n为△A n B n B n+1的面积,则()图6-4-1A.{S n}是等差数列B.{}是等差数列C.{d n}是等差数列D.{}是等差数列10.[2015福建,16,4分][文]若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于. 11.[2016四川,19,12分][文]已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n+1=qS n+1,其中q>0,n∈N*.(Ⅰ)若a2,a3,a2+a3成等差数列,求数列{a n}的通项公式;(Ⅱ)设双曲线x2-=1的离心率为e n,且e2=2,求++…+.12.[2015安徽,18,12分]设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标. (Ⅰ)求数列{x n}的通项公式;,证明:T n≥.(Ⅱ)记T n=…-A组基础题1.[2018武汉市部分学校调研,3]已知等比数列{a n}中,3a2,2a3,a4成等差数列,设S n为数列{a n}的前n项和,则等于()A. B.3或 C.3 D.2.[2017东北三省四市一模,5]已知数列{a n}为等差数列,数列{b n}为等比数列,且满足a2 016+a2 017=π,b20b21=4,则tan =()A. B. C.1 D.-13.[2017石家庄市一模,8]已知函数f(x)在(-1,+∞)上单调,且函数y=f(x-2)的图象关于直线x=1对称,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则数列{a n}的前100项的和为()A.-200B.-100C.0D.-504.[2018长春市高三第一次质量监测,17]已知数列{a n}的前n项和S n=2n+1+n-2.(1)求数列{a n}的通项公式;(2)设b n=log2(a n-1),求证:+++…+<1.5.[2017南昌市三模,17]已知数列{a n}满足+++…+=n2+n.(1)求数列{a n}的通项公式;(2)若b n=-,求数列{b n}的前n项和S n.B组提升题6.[2018洛阳市尖子生高三第一次联考,16]已知数列{a n}满足na n+2-(n+2)a n=λ(n2+2n),其中a1=1,a2=2,若a n<a n+1对任意的n∈N*恒成立,则实数λ的取值范围是.7.[2017宁夏银川市高中教学质量检测,16]我们把满足x n+1=x n-的数列{x n}叫作牛顿数列.已知函数f(x)=x2-1,数列{x n}为牛顿数列,设a n=ln -,已知a1=2,则a3=.8.[2017陕西省六校第三次适应性训练,16]已知数列{a n}满足a1=,a n+1-1=a n(a n-1)(n∈N*),且S n=++…+,则S n的整数部分的所有可能值构成的集合的真子集个数为.9.[2017长沙市五月模拟,17]设数列{a n}的前n项和是S n,若点A n(n,)在函数f(x)=-x+c的图象上运动,其中c是与x无关的常数,且a1=3.(1)求数列{a n}的通项公式;(2)记b n=,求数列{b n}的前n项和T n的最小值.10.[2017桂林、百色、梧州、崇左、北海五市联考,17]已知各项均为正数的等差数列{a n}满足a4=2a2,且a1,4,a4成等比数列,设{a n}的前n项和为S n.(1)求数列{a n}的通项公式;(2)设数列{}的前n项和为T n,求证:T n<3.答案1.A因为a2,a4,a8成等比数列,所以=a2·a8,所以(a1+6)2=(a1+2)·(a1+14),解得a1=2.所以S n=na1+-d=n(n+1).故选A.2.3n-1由3S1,2S2,S3成等差数列,得4S2=3S1+S3,即3S2-3S1=S3-S2,则3a2=a3,所以公比q=3,所以a n=a1q n-1=3n-1.3.1解法一因为数列{a n}是等差数列,所以a1+1,a3+3,a5+5也成等差数列,又a1+1,a3+3,a5+5构成公比为q的等比数列,所以a1+1,a3+3,a5+5是常数列,故q=1.解法二因为数列{a n}是等差数列,所以可设a1=t-d,a3=t,a5=t+d,故由已知得(t+3)2=(t-d+1)(t+d+5),化简得d2+4d+4=0,解得d=-2,所以a3+3=a1+1,即q=1. 4.设{a n}的公差为d,{b n}的公比为q,则a n=-1+(n-1)d,b n=q n-1.由a2+b2=2得d+q=3①.(1)由a3+b3=5得2d+q2=6②.联立①和②解得(舍去)或因此{b n}的通项公式b n=2n-1.(2)由b1=1,T3=21得q2+q-20=0,解得q=-5或q=4.当q=-5时,由①得d=8,则S3=21;当q=4时,由①得d=-1,则S3=-6.5.(Ⅰ)设等差数列{a n}的公差为d.因为a2+a4=10,所以2a1+4d=10,解得d=2,所以a n=2n-1.(Ⅱ)设等比数列{b n}的公比为q.因为b2b4=a5=9,所以b1qb1q3=9,解得q2=3,所以b2n-1=b1q2n-2=3n-1.从而b 1+b 3 +b 5+…+b 2n-1=1+3+32+…+3n-1=-.6.(Ⅰ)由题意得 =a n a n+1,则c n = -=a n+1a n+2-a n a n+1=2da n+1,因此c n+1-c n =2d (a n+2-a n+1)=2d 2,所以{c n }是等差数列.(Ⅱ)T n =(- + )+(- + )+…+(- -+ ) =2d (a 2+a 4+…+a 2n ) =2d ·=2d 2n (n+1).所以∑=nk kT 11=∑=+nk k k d 12)1(121=∑=+-n k k k d 1211121)(= ·(1- )<. 7.A 设第一项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为.由题意可知,N>100,令>100,∴n ≥14,n ∈N *,即N出现在第13组之后.易得第n 组的所有项的和为=2n -1,前n 组的所有项的和为-n=2n+1-n-2.设满足条件的N 在第k+1(k ∈N *,k ≥13 组,且第N 项为第k+1组的第t (t ∈N *)个数,第k+1组的前t 项的和 2t -1应与-k-2互为相反数,即2t -1=k+2,∴2t =k+3,∴t=log 2(k+3),∴当t=4,k=13时,N=+4=95<100,不满足题意;当t=5,k=29时,N=+5=440>100;当t>5时,N>440,故选A .8.6 设每天植树的棵数组成的数列为{a n },由题意可知它是等比数列,且首项为2,公比为2,所以由题意可令第n 天后的植树总数≥100,即2n ≥51,而25=32,26=64,又n ∈N *,所以n ≥6.9.A 如图D 6-4-1,记h n 为△A n B n B n+1的边B n B n+1上的高(n ∈N *),设锐角的大小为θ,根据图象可知,h n+1=h n +|A n A n+1|sin θ,又|B n B n+1|=|B n+1B n+2|,∴S n+1-S n =|B n+1B n+2|·h n+1-|B n B n+1|·h n =|B n B n+1|·(h n+1-h n)=|B n B n+1|·|A n A n+1|·sin θ.根据题意,|B n B n+1|=|B n+1B n+2|,|A n A n+1|=|A n+1A n+2|,∴|B n B n+1|·|A n A n+1|sin θ为常数,∴{S n}为等差数列,故选A.图D 6-4-110.9因为a,b为函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,所以-又p>0,q>0,所以a>0,b>0,所以当-2在中间时,a,b,-2这三个数不可能成等差数列,且只有当-2在中间时,a,b,-2这三个数才能成等比数列.经分析知,a,b,-2或b,a,-2或-2,a,b或-2,b,a成等差数列,a,-2,b或b,-2,a成等比数列.不妨取a>b,则只需研究数列a,b,-2成等差数列,数列a,-2,b成等比数列,则有-解得或(舍去),所以所以p+q=9.11.(Ⅰ)由已知S n+1=qS n+1,得S n+2=qS n+1+1,两式相减,得a n+2=qa n+1,n≥1.又由S2=qS1+1得a2=qa1,故a n+1=qa n对所有n≥1都成立.所以数列{a n}是首项为1,公比为q的等比数列,从而a n=q n-1.由a2,a3,a2+a3成等差数列,可得2a3=a2+a2+a3,所以a3=2a2,故q=2,所以a n=2n-1(n∈N*).(Ⅱ)由(Ⅰ)可知,a n=q n-1.所以双曲线x2-=1的离心率e n==-.由e2==2得q=.所以++…+=(1+1)+(1+q2)+…+[1+q2(n-1)]=n+[1+q2+…+q2(n-1)]=n+--=n+(3n-1).12.(Ⅰ)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y-2=(2n+2)(x-1).令y=0,得切线与x轴交点的横坐标x n=1-=.(Ⅱ)由题设和(Ⅰ)中的计算结果知=()2()2… -)2.T n=…-当n=1时,T1=.=(-)2=->--=-=-,当n≥2时,因为-所以T n>()2×××…×-=.综上可得对任意的n∈N*,均有T n≥.A组基础题1.B设等比数列{a n}的公比为q,由3a2,2a3,a4成等差数列,得3a2+a4=4a3⇒3a2+a2q2=4a2q⇒a2(q2-4q+3)=0⇒a2=0(舍去)或q2-4q+3=0,∴q=3或q=1.当q=3时,S 3=- -,= -- = - - = -- =; 当q=1时,数列{a n }是常数列,a 1=a 2=a 3,此时==3.综上,故选B .2.A 依题意得a 1+a 4 032=a 2 016+a 2 017=π,b 19b 22=b 20b 21=4,所以tan=tan =,选A .3.B 因为函数y=f (x-2)的图象关于直线x=1对称,则函数f (x )的图象关于直线x=-1对称.又函数f (x )在(-1,+∞)上单调,数列{a n }是公差不为0的等差数列,且f (a 50)=f (a 51),所以a 50+a 51=-2,所以S 100==50(a 50+a 51)=-100,故选B .4.(1)由 - , -- - ,得a n =S n -S n-1=2n +1(n ≥2 . 当n=1时,a 1=S 1=3,也适合a n =2n +1.综上,a n =2n +1. (2)由(1)知,b n =log 2(a n -1)=log 22n =n. 所+++…+= + + +…+ =(1- )+( - )+( - )+…+( - )=1-<1.5.(1) +++…+=n 2+n ①,∴当n ≥2时, + ++…+- -=(n-1)2+n-1 ②,①-②得,=2n (n ≥2 ,∴a n =n ·2n+1(n ≥2 .又当n=1时,=1+1,a 1=4也适合a n =n ·2n+1,∴a n =n ·2n+1.(2)由(1)得,b n =-=n (-2)n ,∴S n =1×(-2)1+2×(-2)2+3×(-2)3+…+n×(-2)n ③,-2S n =1×(-2)2+2×(-2)3+3×(-2)4+…+(n-1)×(-2)n +n×(-2)n+1 ④,③-④得,3S n =(-2)+(-2)2+(-2)3+…+(-2)n -n×(-2)n+1=- - --n×(-2)n+1,∴S n =--.B组提升题6.[0,+∞)由na n+2-(n+2)a n=λ(n2+2n)=λn(n+2)得-=λ,所以数列{}的奇数项与偶数项均是以λ为公差的等差数列,因为a1=1,a2=2,所以当n为奇数时,=1+λ(-1)=-λ+1,所以a n=-λ+n;当n为偶数时,=1+λ(-1)=-λ+1,所以a n=-λ+n.当n为奇数时,由a n<a n+1得-λ+n<-λ+n+1,即λ(n-1)>-2,若n=1,则λ∈R,若n>1,则λ>--,所以λ≥0;当n为偶数时,由a n<a n+1得-λ+n<-λ+n+1,即3λn>-2,所以λ>-,即λ≥0.综上,实数λ的取值范围为[0,+∞).7.8由f(x)=x2-1,得f'(x)=2x,则x n+1=x n--=,所以x n+1-1=-,x n+1+1=,所以-=-,所以ln-=ln-=2ln-,即an+1=2a n,所以数列{a n}是首项为2、公比为2的等比数列,则a3=2×22=8.8.7因为数列{a n}满足a1=,a n+1-1=a n(a n-1)(n∈N*),所以a n+1-a n=->0,a n+1>a n,因此数列{a n}单调递增.由a1=,a n+1-1=a n(a n-1),得a2-1=×(-1),a2=,同理a3=,a4=,-=>1,-=<1,所以当n≥4时,0<-<1.另一方面由a n+1-1=a n(a n-1),得=---,所以S n=++…+=(---)+(---)+…+(---)=3--.所以当n=1时,S1==,其整数部分为0;当n=2时,S2=+=1+,其整数部分为1;当n≥3时,S n=3--∈(2,3),其整数部分为2.综上,S n的整数部分的所有可能值构成的集合为{0,1,2},其真子集的个数为23-1=7.9.(1)因为点A n(n,)在函数f(x)=-x+c的图象上运动,所以=-n+c,所以S n=-n2+cn.因为a1=3,所以c=4,所以S n=-n2+4n,所以a n=S n-S n-1=-2n+5(n≥2 .又a1=3满足a n=-2n+5,所以数列{a n}的通项公式a n=-2n+5(n≥1 .(2)由(1)知,b n==-2a n+5=-2(-2n+5)+5=4n-5,所以数列{b n}为等差数列,所以T n==2n2-3n.则当n=1时,T n取最小值,最小值为T1=-1,所以数列{b n}的前n项和T n的最小值为-1.10.(1)根据题意,设等差数列{a n}的公差为d,∵a4=2a2,且a1,4,a4成等比数列,a1>0,∴,,解得a1=2,d=2,∴数列{a n}的通项公式为a n=a1+(n-1)d=2+2(n-1)=2n.(2)由(1)知a1=d=2,则S n=2n+-×2=n2+n,设b n=,则b n==.∴T n=++…+-+①,T n=++…++②,①-②得,T n=+++…+-,∴T n=2+++…+--=2+----=3---<3.∴T n<3.。
2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n +1n <12×132+⎪⎭⎫ ⎝⎛n =13n⎪⎭⎫ ⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n =1a 21+1a 22+…+1a 2n <12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n . (2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即b n +1b n=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1), 所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n 所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2, 当n =1时,上式也成立,所以A n =2n +2-4-2n , 又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1, 假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t 2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求; 当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列.。
6.4 数列的综合应用挖命题【考情探究】分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等.破考点【考点集训】考点一数列求和1.(2018辽宁沈阳二中期中,8)数列{a n}的前n项和为S n,若a n=,则S5等于( )A.1B.C.D.答案B2.(2018湖南长沙模拟,17)设S n是数列{a n}的前n项和,已知a1=1,S n=2-2a n+1.(1)求数列{a n}的通项公式;(2)设b n=(-1)n lo a n,求数列{b n}的前n项和T n.解析(1)∵S n=2-2a n+1,a1=1,∴当n=1时,S1=2-2a2,得a2=1-=1-=;当n≥2时,S n-1=2-2a n,∴当n≥2时,a n=2a n-2a n+1,即a n+1=a n,又a2=a1,∴{a n}是以1为首项,为公比的等比数列..∴数列{a n}的通项公式为a n=-(2)由(1)知b n=(-1)n(n-1),∴T n=0+1-2+3-…+(-1)n(n-1),当n为偶数时,T n=(-0+1)+(-2+3)+…+[-(n-2)+n-1]=;当n为奇数时,T n=T n+1-b n+1=-n=-,-为奇数∴T n=为偶数考点二数列的综合应用1.(2018河北唐山二模,8)设{a n}是任意等差数列,它的前n项和、前2n项和与前4n项和分别为X,Y,Z,则下列等式中恒成立的是( )A.2X+Z=3YB.4X+Z=4YC.2X+3Z=7YD.8X+Z=6Y答案D2.中国古代数学著作《算法统宗》中有这样一个问题:三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.其意思为:有一个人要走378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,那么第二天走了( )A.192里B.96里C.48里D.24里答案B3.(2018安徽安庆二模,17)已知公差不为0的等差数列{a n}的首项a1=2,且a1+1,a2+1,a4+1成等比数列.(1)求数列{a n}的通项公式;(2)设b n=,n∈N*,S n是数列{b n}的前n项和,求使S n<成立的最大的正整数n.解析(1)设{a n}的公差为d.由a1+1,a2+1,a4+1成等比数列,可得(a2+1)2=(a1+1)(a4+1),又a1=2,∴(3+d)2=3(3+3d),解得d=3(d=0舍去),则a n=a1+(n-1)d=2+3(n-1)=3n-1.(2)b n==-=--,S n=--…--=-=,则S n<即<,解得n<12,则所求最大的正整数n为11.炼技法【方法集训】方法1 错位相减法求和1.(2018广东汕头金山中学期中考试,17)已知数列{a n}是等比数列,a2=4,a3+2是a2和a4的等差中项.(1)求数列{a n}的通项公式;(2)设b n=2log2a n-1,求数列{a n b n}的前n项和T n.解析(1)设数列{a n}的公比为q(q≠0),因为a2=4,所以a3=4q,a4=4q2.因为a3+2是a2和a4的等差中项,所以2(a3+2)=a2+a4,即2(4q+2)=4+4q2,化简得q2-2q=0.因为公比q≠0,所以q=2.所以a n=a2q n-2=4×2n-2=2n(n∈N*).(2)因为a n=2n,所以b n=2log2a n-1=2n-1,所以a n b n=(2n-1)2n,则T n=1×2+3×22+5×23+…+(2n-3)2n-1+(2n-1)2n①,2T n=1×22+3×23+5×24+…+(2n-3)2n+(2n-1)2n+1②.由①-②得,-T n=2+2×22+2×23+…+2×2n-(2n-1)2n+1=2+2×----(2n-1)2n+1=-6-(2n-3)2n+1,所以T n=6+(2n-3)2n+1.2.(2018湖北武汉模拟,17)已知正数等比数列{a n}的前n项和S n满足:S n+2=S n+.(1)求数列{a n}的首项a1和公比q;(2)若b n=na n,求数列{b n}的前n项和T n.解析(1)∵S n+2=S n+,∴S3=S1+,S4=S2+,两式相减得:a4=a2,∴q2=,又q>0,则q=.又由S3=S1+,可知:a1+a2+a3=a1+,∴a1=a1+,∴a1=1.(2)由(1)知a n=-,∴b n=-,∴T n=1+++…+-,T n=++…+--+,两式相减得T n=1++…+--=2---,∴T n=4--.方法2 裂项相消法求和1.(2018江西南昌二中模拟,4)已知等差数列{a n}的前n项和为S n,a3=3,S4=10,则数列的前100项的和为( )A. B. C. D.答案A2.(2017陕西渭南二模,9)设S n为等差数列{a n}的前n项和,a2=3,S5=25,若的前n项和为,则n的值为( )A.504B.1 008C.1 009D.2 017答案B3.(2018福建六校联考,17)若数列{a n}的前n项和S n满足S n=2a n+1.(1)求{a n}的通项公式;(2)设b n=log2(-a n+1),求数列的前n项和T n.解析(1)当n=1时,a1=S1=2a1+1,得a1=-1;当n≥2时,根据题意得S n-1=2a n-1+1,∴a n=S n-S n-1=(2a n+1)-(2a n-1+1)=2a n-2a n-1(n≥2),即=2(n≥2).-∴数列{a n}是首项为-1,公比为2的等比数列.∴a n=(-1)·2n-1=-2n-1.(2)由(1)得b n=log2(-a n+1)=log22n=n.∴==-,∴T n=-+-+…+-=1-=.过专题【五年高考】A组山东省卷、课标卷题组考点一数列求和1.(2017课标Ⅱ,15,5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则= .答案2.(2015课标Ⅱ,16,5分,0.154)设S n是数列{a n}的前n项和,且a1=-1,a n+1=S n S n+1,则S n= . 答案-3.(2018课标Ⅱ,17,12分)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解析(1)设{a n}的公差为d,由题意得3a1+3d=-15.由a1=-7得d=2.所以{a n}的通项公式为a n=2n-9.(2)由(1)得S n=n2-8n=(n-4)2-16.所以当n=4时,S n取得最小值,最小值为-16.方法总结求等差数列前n项和S n的最值的两种方法:(1)函数法:利用等差数列前n项和的函数表达式S n=an2+bn,通过配方或借助图象求二次函数的最值.(2)邻项变号法:①当a1>0,d<0时,满足的项数m,可使得S n取得最大值,最大值为S m;②当a1<0,d>0时,满足的项数m,可使得S n取得最小值,最小值为S m.4.(2017山东,19,12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.(1)求数列{x n}的通项公式;(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,P n+1(x n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成的区域的面积T n.解析本题考查等比数列基本量的计算,错位相减法求和.(1)设数列{x n}的公比为q,由已知知q>0.由题意得所以3q2-5q-2=0.-因为q>0,所以q=2,x1=1.因此数列{x n}的通项公式为x n=2n-1.(2)过P1,P2,…,P n+1向x轴作垂线,垂足分别为Q1,Q2,…,Q n+1. 由(1)得x n+1-x n=2n-2n-1=2n-1,记梯形P n P n+1Q n+1Q n的面积为b n,由题意b n=×2n-1=(2n+1)×2n-2,所以T n=b1+b2+…+b n=3×2-1+5×20+7×21+…+(2n-1)×2n-3+(2n+1)×2n-2,①2T n=3×20+5×21+7×22+…+(2n-1)×2n-2+(2n+1)×2n-1.②①-②得-T n=3×2-1+(2+22+…+2n-1)-(2n+1)×2n-1=+----(2n+1)×2n-1.所以T n=-.解题关键记梯形P n P n+1Q n+1Q n的面积为b n,以几何图形为背景确定{b n}的通项公式是关键.方法总结一般地,如果{a n}是等差数列,{b n}是等比数列,求数列{a n·b n}的前n项和时,可采用错位相减法.在写“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n-qS n”的表达式.5.(2016课标Ⅱ,17,12分)S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.(1)求b1,b11,b101;(2)求数列{b n}的前1 000项和.解析(1)设{a n}的公差为d,据已知有7+21d=28,解得d=1.所以{a n}的通项公式为a n=n.b1=[lg 1]=0,b11=[lg 11]=1,b101=[lg 101]=2.(2)因为b n=所以数列{b n}的前1 000项和为1×90+2×900+3×1=1 893.思路分析(1)先求公差,从而得通项a n,再根据已知条件求b1,b11,b101.(2)分析出{b n}中项的规律,进而求出数列{b n}的前1 000项和.6.(2016山东,18,12分)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(1)求数列{b n}的通项公式;(2)令c n=,求数列{c n}的前n项和T n.解析(1)由题意知,当n≥2时,a n=S n-S n-1=6n+5.当n=1时,a1=S1=11,所以a n=6n+5.设数列{b n}的公差为d.由即可解得b1=4,d=3.所以b n=3n+1.(2)由(1)知c n==3(n+1)·2n+1.又T n=c1+c2+…+c n,得T n=3×[2×22+3×23+…+(n+1)×2n+1],2T n=3×[2×23+3×24+…+(n+1)×2n+2],两式作差,得-T n=3×[2×22+23+24+…+2n+1-(n+1)×2n+2]-=-3n·2n+2.=3×--所以T n=3n·2n+2.考点二数列的综合应用(2017课标Ⅰ,12,5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110答案AB组其他自主命题省(区、市)卷题组考点一数列求和1.(2016北京,12,5分)已知{a n}为等差数列,S n为其前n项和.若a1=6,a3+a5=0,则S6= .答案 62.(2018天津,18,13分)设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(1)求{a n}和{b n}的通项公式;(2)设数列{S n}的前n项和为T n(n∈N*).(i)求T n;(ii)证明=-2(n∈N*).解析本小题主要考查等差数列的通项公式,等比数列的通项公式及其前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.(1)设等比数列{a n}的公比为q.由a1=1,a3=a2+2,可得q2-q-2=0.因为q>0,可得q=2,故a n=2n-1.设等差数列{b n}的公差为d.由a4=b3+b5,可得b1+3d=4.由a5=b4+2b6,可得3b1+13d=16,从而b1=1,d=1,故b n=n.所以,数列{a n}的通项公式为a n=2n-1,数列{b n}的通项公式为b n=n.=2n-1,(2)(i)由(1),有S n=---n=2n+1-n-2.故T n=--=--(ii)证明:因为=--=·=-,所以,=-+-+…+-=-2.方法总结解决数列求和问题的两种思路:(1)利用转化的思想将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.(2)不能转化为等差或等比数列的,往往通过裂项相消法、倒序相加法等来求和.3.(2017天津,18,13分)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b2n-1}的前n项和(n∈N*).解析本小题主要考查等差数列、等比数列及其前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0,解得q=2或q=-3,又因为q>0,所以q=2.所以,b n=2n.由b3=a4-2a1,可得3d-a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n-2.所以,数列{a n}的通项公式为a n=3n-2,数列{b n}的通项公式为b n=2n.(2)设数列{a2n b2n-1}的前n项和为T n,由a2n=6n-2,b2n-1=2×4n-1,有a2n b2n-1=(3n-1)×4n,故T n=2×4+5×42+8×43+…+(3n-1)×4n,4T n=2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,上述两式相减,得-3T n=2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=---4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得T n=-×4n+1+.所以,数列{a2n b2n-1}的前n项和为-×4n+1+.方法总结(1)等差数列与等比数列中有五个量a1,n,d(或q),a n,S n,一般可以“知三求二”,通过列方程(组)求关键量a1和d(或q),问题可迎刃而解.(2)数列{a n}是公差为d的等差数列,{b n}是公比q≠1的等比数列,求数列{a n b n}的前n项和适用错位相减法.4.(2015湖北,18,12分)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q.已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式;(2)当d>1时,记c n=,求数列{c n}的前n项和T n.解析(1)由题意有,即解得或故--或·-(2)由d>1,知a n=2n-1,b n=2n-1,故c n=-,-,①于是T n=1+++++…+--T n=+++++…+-.②①-②可得--=3-,T n=2+++…+-.故T n=6--考点二数列的综合应用1.(2015福建,8,5分)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( )A.6B.7C.8D.9答案D2.(2018江苏,14,5分)已知集合A={x|x=2n-1,n∈N*},B={x|x=2n,n∈N*}.将A∪B的所有元素从小到大依次排列构成一个数列{a n}.记S n为数列{a n}的前n项和,则使得S n>12a n+1成立的n的最小值为.答案273.(2018浙江,20,15分)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1-b n)a n}的前n项和为2n2+n.(1)求q的值;(2)求数列{b n}的通项公式.解析本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1)由a4+2是a3,a5的等差中项得a3+a5=2a4+4,所以a3+a4+a5=3a4+4=28,解得a4=8.由a3+a5=20得8=20,解得q=2或q=,因为q>1,所以q=2.(2)设c n=(b n+1-b n)a n,数列{c n}的前n项和为S n.由c n=--解得c n=4n-1.由(1)可知a n=2n-1,所以b n+1-b n=(4n-1)·-,故b n-b n-1=(4n-5)·-,n≥2,b n-b1=(b n-b n-1)+(b n-1-b n-2)+…+(b3-b2)+(b2-b1)=(4n-5)·-+(4n-9)·-+…+7·+3.设T n=3+7·+11·+…+(4n-5)·-,n≥2,T n=3·+7·+…+(4n-9)·-+(4n-5)·-,所以T n=3+4·+4·+…+4·--(4n-5)·-,因此T n=14-(4n+3)·-,n≥2,又b1=1,所以b n=15-(4n+3)·-.易错警示利用错位相减法求和时,要注意以下几点:(1)错位相减法求和,只适合于数列{a n b n},其中{a n}为等差数列,{b n}为等比数列.(2)在等式两边所乘的数是等比数列{b n}的公比.(3)两式相减时,一定要错开一位.(4)特别要注意相减后等比数列的次数.(5)进行检验.4.(2015安徽,18,12分)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{x n}的通项公式;(2)记T n=…-,证明:T n≥.解析(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2.从而切线方程为y-2=(2n+2)(x-1).令y=0,解得切线与x轴交点的横坐标x n=1-=.(2)证明:由题设和(1)中的计算结果知=…-.T n=…-当n=1时,T1=.当n≥2时,因为=-=->---=-=-.所以T n>×××…×-=.综上可得对任意的n∈N*,均有T n≥.C组教师专用题组考点一数列求和1.(2013辽宁,14,5分)已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6= .答案632.(2013重庆,12,5分)已知{a n}是等差数列,a1=1,公差d≠0,S n为其前n项和,若a1,a2,a5成等比数列,则S8= .答案643.(2013湖南,15,5分)设S n为数列{a n}的前n项和,S n=(-1)n a n-,n∈N*,则(1)a3= ;(2)S1+S2+…+S100= .答案(1)-(2)-4.(2012课标,16,5分)数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为.答案 1 8305.(2014江西,17,12分)已知首项都是1的两个数列{a n},{b n}(b n≠0,n∈N*)满足a n b n+1-a n+1b n+2b n+1b n=0.(1)令c n=,求数列{c n}的通项公式;(2)若b n=3n-1,求数列{a n}的前n项和S n.解析(1)因为a n b n+1-a n+1b n+2b n+1b n=0,b n≠0(n∈N*),所以-=2,即c n+1-c n=2.所以数列{c n}是以1为首项,2为公差的等差数列,故c n=2n-1.(2)由b n=3n-1知a n=c n b n=(2n-1)3n-1,于是数列{a n}的前n项和S n=1·30+3·31+5·32+…+(2n-1)·3n-1,3S n=1·31+3·32+…+(2n-3)·3n-1+(2n-1)·3n,相减得-2S n=1+2·(31+32+…+3n-1)-(2n-1)·3n=-2-(2n-2)3n,所以S n=(n-1)3n+1.6.(2014山东,19,12分)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-1,求数列{b n}的前n项和T n.解析(1)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,所以由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(2)b n=(-1)n-1=(-1)n-1-=(-1)n-1-.当n为偶数时,T n=-+…+----=1-=. 当n为奇数时,T n=-+…--+-+-+=1+=.所以T n=为奇数为偶数或--7.(2013浙江,18,14分)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,a n;(2)若d<0,求|a1|+|a2|+|a3|+…+|a n|.解析(1)由题意得5a3·a1=(2a2+2)2,即d2-3d-4=0.故d=-1或d=4.所以a n=-n+11,n∈N*或a n=4n+6,n∈N*.(2)设数列{a n}的前n项和为S n.因为d<0,由(1)得d=-1,a n=-n+11,则当n≤11时,|a1|+|a2|+|a3|+…+|a n|=S n=-n2+n.当n≥12时,|a1|+|a2|+|a3|+…+|a n|=-S n+2S11=n2-n+110.综上所述,|a1|+|a2|+|a3|+…+|a n|=--8.(2013四川,16,12分)在等差数列{a n}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{a n}的首项、公差及前n项和.解析设该数列公差为d,前n项和为S n.由已知,可得2a1+2d=8,(a1+3d)2=(a1+d)(a1+8d).所以a1+d=4,d(d-3a1)=0,解得a1=4,d=0或a1=1,d=3,即数列{a n}的首项为4,公差为0或首项为1,公差为3.所以数列的前n项和S n=4n或S n=-.9.(2011课标Ⅰ,17,12分)等比数列{a n}的各项均为正数,且2a1+3a2=1,=9a2a6.(1)求数列{a n}的通项公式;(2)设b n=log3a1+log3a2+…+log3a n,求数列的前n项和.解析(1)设数列{a n}的公比为q.由=9a2a6得=9,所以q2=.由条件可知q>0,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.所以数列{a n}的通项公式为a n=.(2)由(1)及题意可得b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-.故=-=-2-.++…+=-2--…-=-.所以数列的前n项和为-.失分警示本题在由a n求b n时易忽略负号,错误计算得b n=,或者将裂项时误写成=2-或-·-,导致求和错误.评析本题主要考查等比数列的通项公式以及裂项求和的基本方法,属容易题.考点二数列的综合应用1.(2018江苏,20,16分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n-b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n-b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).解析本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.(1)由条件知a n=(n-1)d,b n=2n-1.因为|a n-b n|≤b1对n=1,2,3,4均成立,即1≤1,1≤d≤3,3≤2d≤5,7≤3d≤9,得≤d≤.因此,d的取值范围为.(2)由条件知:a n=b1+(n-1)d,b n=b1q n-1.若存在d∈R,使得|a n-b n|≤b1(n=2,3,…,m+1)均成立,即|b1+(n-1)d-b1q n-1|≤b1(n=2,3,…,m+1).即当n=2,3,…,m+1时,d满足---b1≤d≤--b1.因为q∈(1,],所以1<q n-1≤q m≤2,从而---b1≤0,--b1>0,对n=2,3,…,m+1均成立.因此,取d=0时,|a n-b n|≤b1对n=2,3,…,m+1均成立.下面讨论数列---的最大值和数列--的最小值(n=2,3,…,m+1).①当2≤n≤m时,-----=----=----,当1<q≤时,有q n≤q m≤2,从而n(q n-q n-1)-q n+2>0.因此,当2≤n≤m+1时, 数列---单调递增,故数列---的最大值为-.②设f(x)=2x(1-x),当x>0时, f '(x)=(ln 2-1-xln 2)2x<0. 所以f(x)单调递减,从而f(x)<f(0)=1.当2≤n≤m时,--=-≤-=f<1.因此,当2≤n≤m+1时,数列--单调递减,故数列--的最小值为.因此,d的取值范围为-.疑难突破本题是数列的综合题,考查等差数列、等比数列的概念和相关性质,第(1)问主要考查绝对值不等式.第(2)问要求d的范围,使得|a n-b n|≤b1对n=2,3,…,m+1都成立,首先把d分离出来,变成---b1≤d≤--b1,难点在于讨论---b1的最大值和--b1的最小值.对于数列---,可以通过作差讨论其单调性,而对于数列--,要作商讨论单调性,∵--=-=q-,当2≤n≤m时,1<q n≤2.∴q-≤-,可以构造函数f(x)=2x(1-x),通过讨论f(x)在(0,+∞)上的单调性去证明f<1,得到数列--的单调性,解出最小值.两个数列,一个作差得到单调性,一个作商得到单调性,都是根据数列本身结构而得,方法自然合理,最后构造函数判断-与1的大小是难点,平时多积累,多思考,也是可以得到的.2.(2015天津,18,13分)已知数列{a n}满足a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列.(1)求q的值和{a n}的通项公式;(2)设b n=-,n∈N*,求数列{b n}的前n项和.解析(1)由已知,有(a3+a4)-(a2+a3)=(a4+a5)-(a3+a4),即a4-a2=a5-a3,所以a2(q-1)=a3(q-1).又因为q≠1,故a3=a2=2,由a3=a1·q,得q=2.当n=2k-1(k∈N*)时,a n=a2k-1=2k-1=-;当n=2k(k∈N*)时,a n=a2k=2k=.所以,{a n}的通项公式为a n=-为奇数为偶数(2)由(1)得b n=-=-.设{b n}的前n项和为S n,则S n=1×+2×+3×+…+(n-1)×-+n×-,S n=1×+2×+3×+…+(n-1)×-+n×, 上述两式相减,得S n=1+++…+--=---=2--,整理得,S n=4--.所以,数列{b n}的前n项和为4--,n∈N*.3.(2015陕西,21,12分)设f n(x)是等比数列1,x,x2,…,x n的各项和,其中x>0,n∈N,n≥2.(1)证明:函数F n(x)=f n(x)-2在内有且仅有一个零点(记为x n),且x n=+;(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n(x),比较f n(x)和g n(x)的大小,并加以证明.解析(1)证明:F n(x)=f n(x)-2=1+x+x2+…+x n-2,则F n(1)=n-1>0,F n=1+++…+-2=---2=-<0,所以F n(x)在内至少存在一个零点.又F'n(x)=1+2x+…+nx n-1>0,故F n(x)在内单调递增,所以F n(x)在内有且仅有一个零点x n. 因为x n是F n(x)的零点,所以F n(x n)=0,即---2=0,故x n=+.(2)解法一:由题设得,g n(x)=.设h(x)=f n(x)-g n(x)=1+x+x2+…+x n-,x>0. 当x=1时, f n(x)=g n(x).当x≠1时,h'(x)=1+2x+…+nx n-1--.若0<x<1,h'(x)>x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.若x>1,h'(x)<x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.所以h(x)在(0,1)上递增,在(1,+∞)上递减,所以h(x)<h(1)=0,即f n(x)<g n(x).综上所述,当x=1时, f n(x)=g n(x);当x≠1时, f n(x)<g n(x).解法二:由题设, f n(x)=1+x+x2+…+x n,g n(x)=,x>0. 当x=1时, f n(x)=g n(x).当x≠1时,用数学归纳法可以证明f n(x)<g n(x).①当n=2时, f2(x)-g2(x)=-(1-x)2<0,所以f2(x)<g2(x)成立.②假设n=k(k≥2)时,不等式成立,即f k(x)<g k(x).那么,当n=k+1时,f k+1(x)=f k(x)+x k+1<g k(x)+x k+1=+x k+1=.又g k+1(x)-=-,令h k(x)=kx k+1-(k+1)x k+1(x>0),则h'k(x)=k(k+1)x k-k(k+1)x k-1=k(k+1)x k-1(x-1).所以当0<x<1时,h'k(x)<0,h k(x)在(0,1)上递减;当x>1时,h'k(x)>0,h k(x)在(1,+∞)上递增.所以h k(x)>h k(1)=0,从而g k+1(x)>.故f k+1(x)<g k+1(x),即n=k+1时不等式也成立.由①和②知,对一切n≥2的整数,都有f n(x)<g n(x).解法三:由已知,记等差数列为{a k},等比数列为{b k},k=1,2,…,n+1. 则a1=b1=1,a n+1=b n+1=x n,所以a k=1+(k-1)·-(2≤k≤n),b k=x k-1(2≤k≤n),令m k(x)=a k-b k=1+---x k-1,x>0(2≤k≤n),当x=1时,a k=b k,所以f n(x)=g n(x).当x≠1时,m'k(x)=-·nx n-1-(k-1)x k-2=(k-1)x k-2(x n-k+1-1).而2≤k≤n,所以k-1>0,n-k+1≥1.若0<x<1,x n-k+1<1,m'k(x)<0;若x>1,x n-k+1>1,m'k(x)>0,从而m k(x)在(0,1)上递减,在(1,+∞)上递增,所以m k(x)>m k(1)=0,所以当x>0且x≠1时,a k>b k(2≤k≤n),又a1=b1,a n+1=b n+1,故f n(x)<g n(x).综上所述,当x=1时, f n(x)=g n(x);当x≠1时, f n(x)<g n(x).4.(2015重庆,22,12分)在数列{a n}中,a1=3,a n+1a n+λa n+1+μ=0(n∈N+).(1)若λ=0,μ=-2,求数列{a n}的通项公式;(2)若λ=(k0∈N+,k0≥2),μ=-1,证明:2+<<2+.解析(1)由λ=0,μ=-2,有a n+1a n=2(n∈N+).若存在某个n0∈N+,使得=0,则由上述递推公式易得-=0.重复上述过程可得a1=0,此与a1=3矛盾,所以对任意n∈N+,a n≠0.从而a n+1=2a n(n∈N+),即{a n}是一个公比q=2的等比数列.故a n=a1q n-1=3·2n-1.(2)由λ=,μ=-1,数列{a n}的递推关系式变为a n+1a n+a n+1-=0,变形为a n+1=(n∈N+).由上式及a1=3>0,归纳可得3=a1>a2>...>a n>a n+1> 0因为a n+1==-=a n-+·,所以对n=1,2,…,k0求和得=a1+(a2-a1)+…+(-) =a1-k0·+·…>2+·…个=2+.另一方面,由上已证的不等式知a1>a2>…>>>2,得=a1-k0·+·…<2+·…个=2+.综上,2+<<2+.5.(2015湖北,22,14分)已知数列{a n}的各项均为正数,b n=a n(n∈N+),e为自然对数的底数.(1)求函数f(x)=1+x-e x的单调区间,并比较与e的大小;(2)计算,,,由此推测计算……的公式,并给出证明;(3)令c n=(a1a2…a n,数列{a n},{c n}的前n项和分别记为S n,T n,证明:T n<eS n.解析(1)f(x)的定义域为(-∞,+∞), f '(x)=1-e x.当f '(x)>0,即x<0时, f(x)单调递增;当f '(x)<0,即x>0时, f(x)单调递减.故f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞).当x>0时, f(x)<f(0)=0,即1+x<e x.令x=,得1+<,即<e. ①(2)=1×=1+1=2;=·=2×2×=(2+1)2=32;=·=32×3×=(3+1)3=43.由此推测:……=(n+1)n.②下面用数学归纳法证明②.(i)当n=1时,左边=右边=2,②成立.(ii)假设当n=k时,②成立,即……=(k+1)k.当n=k+1时,b k+1=(k+1)a k+1,由归纳假设可得……=……·=(k+1)k(k+1)=(k+2)k+1.所以当n=k+1时,②也成立.根据(i)(ii),可知②对一切正整数n都成立.(3)证明:由c n的定义,②,算术-几何平均不等式,b n的定义及①得T n=c1+c2+c3+…+c n=(a1+(a1a2+(a1a2a3+…+(a1a2…a n=+++…+…≤+++…+…=b1…+b2…+…+b n·=b1-+b2-+…+b n-<++…+=a1+a2+…+a n<ea1+ea2+…+ea n=eS n.即T n<eS n.6.(2014湖南,20,13分)已知数列{a n}满足a1=1,|a n+1-a n|=p n,n∈N*.(1)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(2)若p=,且{a2n-1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.解析(1)因为{a n}是递增数列,所以|a n+1-a n|=a n+1-a n=p n.而a1=1,因此a2=p+1,a3=p2+p+1. 又a1,2a2,3a3成等差数列,所以4a2=a1+3a3,因而3p2-p=0,解得p=或p=0.当p=0时,a n+1=a n,这与{a n}是递增数列矛盾.故p=.(2)由于{a2n-1}是递增数列,因而a2n+1-a2n-1>0,于是(a2n+1-a2n)+(a2n-a2n-1)>0.①,所以|a2n+1-a2n|<|a2n-a2n-1|.②但<-由①,②知,a2n-a2n-1>0,因此a2n-a2n-1=-=--.③因为{a2n}是递减数列,同理可得,a2n+1-a2n<0,故a2n+1-a2n=-=-.④由③,④知,a n+1-a n=-.于是a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=1+-+…+--=1+·---=+·--,故数列{a n}的通项公式为a n=+·--.7.(2014四川,19,12分)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*).(1)若a1=-2,点(a8,4b7)在函数f(x)的图象上,求数列{a n}的前n项和S n;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2-,求数列的前n项和T n. 解析(1)由已知得,b7=,b8==4b7,有=4×=.解得d=a8-a7=2.所以,S n=na1+-d=-2n+n(n-1)=n2-3n.(2)函数f(x)=2x在(a2,b2)处的切线方程为y-=(ln 2)(x-a2),它在x轴上的截距为a2-.由题意得,a2-=2-,解得a2=2.所以d=a2-a1=1.从而a n=n,b n=2n.所以T n=+++…+--+,2T n=+++…+-.因此,2T n-T n=1+++…+--=2---=--.所以,T n=--.评析本题考查等差数列与等比数列的概念、等差数列与等比数列通项公式与前n项和、导数的几何意义等基础知识,考查运算求解能力.8.(2014浙江,19,14分)已知数列{a n}和{b n}满足a1a2a3…a n=((n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(1)求a n与b n;(2)设c n=-(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.解析(1)由a1a2a3…a n=(,b3-b2=6,知a3=(-=8.又由a1=2,得公比q=2(q=-2舍去),所以数列{a n}的通项为a n=2n(n∈N*),所以,a1a2a3…a n==()n(n+1).故数列{b n}的通项为b n=n(n+1)(n∈N*).(2)(i)由(1)知c n=-=--(n∈N*),所以S n=-(n∈N*).(ii)c1=0,c2>0,c3>0,c4>0,当n≥5时,c n=-,而-=->0,得≤·<1,所以,当n≥5时,c n<0.综上,对任意n∈N*,恒有S4≥S n,故k=4.【三年模拟】一、选择题(每小题5分,共20分)1.(2018天津实验中学上学期期中,7)已知S n是等差数列{a n}的前n项和,a1=1,S5=25,设T n为数列{(-1)n+1a n}的前n项和,则T2 015=( )A.2 014B.-2 014C.2 015D.-2 015答案C则S2 018等于( ) 2.(2018四川南充模拟,11)设数列{a n}的前n项和为S n,已知a1=,a n+1=-A. B. C. D.答案B3.(2017河南洛阳3月模拟,4)已知等差数列{a n}的公差和首项都不等于0,且a2,a4,a8成等比数列,则=( )A.2B.3C.5D.7答案B4.(2017山西孝义模考,9)已知数列{a n},{b n},其中{a n}是首项为3,公差为整数的等差数列,且a3>a1+3,a4<a2+5,a n=log2b n,则{b n}的前n项和S n为( )A.8(2n-1)B.4(3n-1)C.(4n-1)D.(3n-1)答案C二、填空题(每小题5分,共15分),数列{b n} 5.(2018山东实验中学诊断测试,16)已知数列{a n}:,+,++,…,+++…+,…,若b n=·的前n项和记为S n,则S2 018= .答案6.(2018山西太原一模,15)在数列{a n}中,a1=0,a n-a n-1-1=2(n-1)(n∈N*,n≥2),若数列{b n}满足b n=n×,则数列{b n}的最大项为第项.答案 67.(2017河北冀州第二次阶段考试,15)若数列{a n}是正项数列,且++…+=n2+3n,则++…+= .答案2n2+6n三、解答题(共20分)8.(2019届山东淄博淄川中学高三上开学考试)S n为数列{a n}的前n项和,已知a n>0,+2a n=4S n+3.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和.解析(1)由+2a n=4S n+3,可知+2a n+1=4S n+1+3,两式相减可得-+2(a n+1-a n)=4a n+1,即2(a n+1+a n)=-=(a n+1+a n)(a n+1-a n).由于a n>0,所以a n+1-a n=2.又+2a1=4a1+3,解得a1=-1(舍去)或a1=3,所以{a n}是首项为3,公差为2的等差数列,通项公式为a n=2n+1(n∈N*).(2)由a n=2n+1知,b n===-.设数列{b n}的前n项和为T n,则T n=b1+b2+…+b n=--…-=.导师点睛本题主要考查等差数列的通项公式,裂项相消法求数列的和,属于中档题.裂项相消法是根据式子的结构特点进行裂项,使计算简便.常见的裂项技巧:(1)=-;(2)=(-);(3)-=--;(4)=-.9.(2019届山东曲阜第一中学高三11月阶段性测试)已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠-2),且3a1,4a2,a3+13成等差数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足a n b n=log4a n+1,数列{b n}的前n项和为T n,证明:T n<.解析(1)因为a n+1=(λ+1)S n+1,①所以当n≥2时,a n=(λ+1)S n-1+1,②由①-②得a n+1-a n=(λ+1)a n,即a n+1=(λ+2)a n(n≥2),又因为λ≠-2,所以λ+2≠0,因为a1=1,所以a2=(λ+1)a1+1=(λ+2)a1,故数列{a n}是以1为首项,λ+2为公比的等比数列,所以a2=λ+2,a3=(λ+2)2,由题意知8a2=3a1+a3+13,所以8(λ+2)=3+(λ+2)2+13, 解得λ=2,所以a n=4n-1(n∈N*).(2)证明:因为a n b n=log4a n+1, 即4n-1·b n=log44n,所以b n=-,则T n=1+++…+--+-,③T n=+++…+--+,④③-④得T n=1+++…+--=--,故T n=--,又n∈N*,所以T n<.。
§6.4数列的综合应用挖命题【考情探究】分析解读综合运用数列,特别是等差数列、等比数列的有关知识,解答数列综合问题和实际问题,培养学生的理解能力、数学建模能力和运算能力.数列是特殊的函数,是高考的常考点.历年高考考题中低、中、高档试题均有出现,需引起充分的重视.本节内容在高考中分值为12分左右,属于中档题.破考点【考点集训】考点一数列求和1.(2017湖南湘潭三模,9)已知T n为数列的前n项和,若m>T10+1013恒成立,则整数m的最小值为()A.1026B.1025C.1024D.1023答案C2.(2017福建福州八中第六次质检,17)在等比数列{a n}中,公比q≠1,等差数列{b n}满足b1=a1=3,b4=a2,b13=a3.(1)求数列{a n}与{b n}的通项公式;(2)记c n=(-1)n b n+a n,求数列{c n}的前2n项和S2n.解析(1)设等差数列{b n}的公差为d.则有解得或(舍去),所以a n=3n,b n=2n+1.(2)由(1)知c n=(-1)n(2n+1)+3n,则S2n=(3+32+33+…+32n)+{(-3)+5+(-7)+9+…+[-(4n-1)]+(4n+1)}=-+[(5-3)+(9-7)+…+(4n+1-4n+1)]=-+2n.-3.(2017湖南郴州二模,17)已知等差数列{a n}满足:a n+1>a n(n∈N*),a1=1,该数列的前三项分别加上1,1,3后成等比数列,a n+2log2b n=-1.(1)分别求数列{a n},{b n}的通项公式;(2)求数列{a n·b n}的前n项和T n.解析(1)设d为等差数列{a n}的公差,则d>0.由a1=1,a2=1+d,a3=1+2d分别加上1,1,3后成等比数列,得(2+d)2=2(4+2d),解得d=2(舍负),所以a n=1+(n-1)×2=2n-1(n∈N*),又因为a n+2log2b n=-1,所以log2b n=-n,则b n=(n∈N*).(2)由(1)知a n·b n=(2n-1)·,则T n=+++…+-①,T n=+++…+-②,①-②,得T n=+2×…--.∴T n=+2×-----,∴T n=1+2----=3--=3-.考点二数列的综合应用1.(2018福建漳州期末调研测试,5)等差数列{a n}和等比数列{b n}的首项均为1,公差与公比均为3,则++=()A.64B.32C.38D.33答案D2.(2018河南商丘第二次模拟,6)已知数列{a n}满足a1=1,a n+1-a n≥2(n∈N*),且S n为{a n}的前n项和,则()A.a n≥2n+1B.S n≥n2C.a n≥2n-1D.S n≥2n-1答案B3.(2018福建福州八校联考,17)已知公差不为0的等差数列{a n}的前三项和为6,且a2,a4,a8成等比数列.(1)求数列{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为S n,求使S n<的n的最大值.解析(1)设等差数列{a n}的首项为a1,公差为d(d≠0),依题意可得即-∵d≠0,∴a1=1,d=1,∴a n=n.(2)由(1)可得b n==-.∴S n=-+-+…+-=1-.令1-<,得n<14,∴n的最大值为13.4.(2018广东佛山一中期中考试,17)在等差数列{a n}中,a1=3,其前n项和为S n,等比数列{b n}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=.(1)求a n与b n;(2)证明:≤++…+<.解析(1)设数列{a n}的公差为d.因为所以解得q=3或q=-4(舍),d=3.故a n=3+3(n-1)=3n,b n=3n-1.(2)证明:因为S n=,所以==-.故++…+=---…-=-.因为n≥1,所以0<≤,所以≤1-<1,所以≤-<,即≤++…+<.炼技法【方法集训】方法数列求和的方法1.(2018河南中原名校11月联考,10)设函数f(x)满足f(n+1)=(n∈N*),且f(1)=2,则f(40)=()A.95B.97C.105D.392答案D2.(2019届吉林长春模拟,7)已知数列{a n}的前n项和S n=n2+2n,则数列·的前6项和为() A. B. C. D.答案A3.(2018广东珠海二中期中,18)已知数列{a n}与{b n}满足a n+1-a n=2(b n+1-b n),n∈N*,b n=2n-1,且a1=2.(1)求数列{a n}的通项公式;(2)设c n=-,T n为数列{c n}的前n项和,求T n.解析(1)因为a n+1-a n=2(b n+1-b n),b n=2n-1,所以a n+1-a n=2(b n+1-b n)=2(2n+1-2n+1)=4,所以{a n}是等差数列,首项a1=2,公差为4,所以a n=4n-2.(2)c n=-=---=(2n-1)·2n.∴T n=c1+c2+c3+…+c n=1×2+3×22+5×23+…+(2n-1)·2n①, 2T n=1×22+3×23+5×24+…+(2n-1)·2n+1②,①-②得-T n=1×2+2×22+2×23+…+2×2n-(2n-1)·2n+1=2+2×----(2n-1)·2n+1=-6-(2n-3)·2n+1,∴T n=6+(2n-3)·2n+1.4.(2018河南安阳第二次模拟,17)设等差数列{a n}的前n项和为S n,点(n,S n)在函数f(x)=x2+Bx+C-1(B,C∈R)的图象上,且a1=C.(1)求数列{a n}的通项公式;(2)记b n=a n(-+1),求数列{b n}的前n项和T n.解析(1)设数列{a n}的公差为d,则S n=na1+-d=n2+-n,又S n=n2+Bn+C-1,两式对照得-解得又因为a1=C,所以a1=1,所以数列{a n}的通项公式为a n=2n-1. (2)由(1)知b n=(2n-1)(2·2n-1-1+1)=(2n-1)2n,则T n=1×2+3×22+…+(2n-1)·2n,2T n=1×22+3×23+…+(2n-3)·2n+(2n-1)·2n+1,两式相减得T n=(2n-1)·2n+1-2(22+23+…+2n)-2=(2n-1)·2n+1-2×----2=(2n-3)·2n+1+6.过专题【五年高考】A组统一命题·课标卷题组考点一数列求和1.(2017课标全国Ⅲ,17,12分)设数列{a n}满足a1+3a2+…+(2n-1)a n=2n.(1)求{a n}的通项公式;(2)求数列的前n项和.解析(1)因为a1+3a2+…+(2n-1)a n=2n,故当n≥2时,a1+3a2+…+(2n-3)a n-1=2(n-1).两式相减得(2n-1)a n=2.所以a n=-(n≥2).又由题设可得a1=2,从而{a n}的通项公式为a n=-(n∈N*).(2)记的前n项和为S n.由(1)知=-=--.则S n=-+-+…+--=.2.(2014课标Ⅰ,17,12分)已知{a n}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.(1)求{a n}的通项公式;(2)求数列的前n项和.解析(1)方程x2-5x+6=0的两根为2,3,由题意得a2=2,a4=3.设数列{a n}的公差为d,则a4-a2=2d,故d=,从而a1=.所以{a n}的通项公式为a n=n+1.(2)设的前n项和为S n,由(1)知=,则S n=++…++,S n=++…++.两式相减得S n=+…-=+---.所以S n=2-.考点二数列的综合应用(2016课标全国Ⅰ,17,12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(1)求{a n}的通项公式;(2)求{b n}的前n项和.解析(1)由已知,a1b2+b2=b1,b1=1,b2=,得a1=2,(3分)所以数列{a n}是首项为2,公差为3的等差数列,通项公式为a n=3n-1.(5分)(2)由(1)和a n b n+1+b n+1=nb n得b n+1=,(7分)因此{b n}是首项为1,公比为的等比数列.(9分)记{b n}的前n项和为S n,则S n=--=--.(12分)B组自主命题·省(区、市)卷题组考点一数列求和1.(2018浙江,20,15分)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1-b n)a n}的前n项和为2n2+n.(1)求q的值;(2)求数列{b n}的通项公式.解析(1)由a4+2是a3,a5的等差中项得a3+a5=2a4+4,所以a3+a4+a5=3a4+4=28,解得a4=8.由a3+a5=20得8=20,解得q=2或q=,因为q>1,所以q=2.(2)设c n=(b n+1-b n)a n,数列{c n}的前n项和为S n.由c n=--解得c n=4n-1.由(1)可知a n=2n-1,所以b n+1-b n=(4n-1)·-,故b n-b n-1=(4n-5)·-,n≥2,b n-b1=(b n-b n-1)+(b n-1-b n-2)+…+(b3-b2)+(b2-b1)=(4n-5)·-+(4n-9)·-+…+7·+3.设T n=3+7·+11·+…+(4n-5)·-,n≥2,T n=3·+7·+…+(4n-9)·-+(4n-5)·-(n≥2),所以T n=3+4·+4·+…+4·--(4n-5)·-(n≥2),因此T n=14-(4n+3)·-,n≥2,又b1=1,所以b n=15-(4n+3)·-.2.(2017山东,19,12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和为S n.已知S2n+1=b n b n+1,求数列的前n项和T n.解析(1)设{a n}的公比为q,由题意知:a1(1+q)=6,q=a1q2,又a n>0,解得a1=2,q=2,所以a n=2n.(2)由题意知:S2n+1==(2n+1)b n+1,又S2n+1=b n b n+1,b n+1≠0,所以b n=2n+1.令c n=,则c n=.因此T n=c1+c2+…+c n=+++…+--+,又T n=+++…+-+,两式相减得T n=+…--,所以T n=5-.3.(2017北京,15,13分)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(1)求{a n}的通项公式;(2)求和:b1+b3+b5+…+b2n-1.解析(1)设等差数列{a n}的公差为d.因为a2+a4=10,所以2a1+4d=10.解得d=2.所以a n=2n-1.(2)设等比数列{b n}的公比为q.因为b2b4=a5,所以b1qb1q3=9.解得q2=3.所以b2n-1=b1q2n-2=3n-1.从而b1+b3+b5+…+b2n-1=1+3+32+…+3n-1=-.4.(2016天津,18,13分)已知{a n}是等比数列,前n项和为S n(n∈N*),且-=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(-1)n}的前2n项和.解析(1)设数列{a n}的公比为q.由已知,有-=,解得q=2,或q=-1.又由S6=a1·--=63,知q≠-1,所以a1·--=63,得a1=1.所以a n=2n-1.(2)由题意,得b n=(log2a n+log2a n+1)=(log22n-1+log22n)=n-,即{b n}是首项为,公差为1的等差数列.设数列{(-1)n}的前n项和为T n,则T2n=(-+)+(-+)+…+(--+)=b1+b2+b3+b4+…+b2n-1+b2n==2n2.考点二数列的综合应用1.(2018江苏,14,5分)已知集合A={x|x=2n-1,n∈N*},B={x|x=2n,n∈N*}.将A∪B的所有元素从小到大依次排列构成一个数列{a n}.记S n 为数列{a n}的前n项和,则使得S n>12a n+1成立的n的最小值为.答案272.(2018北京,15,13分)设{a n}是等差数列,且a1=ln2,a2+a3=5ln2.(1)求{a n}的通项公式;(2)求++…+.解析(1)设{a n}的公差为d.因为a2+a3=5ln2,所以2a1+3d=5ln2.又a1=ln2,所以d=ln2.所以a n=a1+(n-1)d=nln2.(2)因为=e ln2=2,-=--=e ln2=2,所以{}是首项为2,公比为2的等比数列.所以++…+=2×--=2(2n-1).3.(2017天津,18,13分)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b n}的前n项和(n∈N*).解析(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4-2a1,可得3d-a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n-2.所以,{a n}的通项公式为a n=3n-2,{b n}的通项公式为b n=2n.(2)设数列{a2n b n}的前n项和为T n,由a2n=6n-2,有T n=4×2+10×22+16×23+…+(6n-2)×2n,2T n=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1,上述两式相减,得-T n=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=---4-(6n-2)×2n+1=-(3n-4)2n+2-16.得T n=(3n-4)2n+2+16.所以,数列{a2n b n}的前n项和为(3n-4)2n+2+16.4.(2016浙江,17,15分)设数列{a n}的前n项和为S n.已知S2=4,a n+1=2S n+1,n∈N*.(1)求通项公式a n;(2)求数列{|a n-n-2|}的前n项和.解析(1)由题意得则又当n≥2时,由a n+1-a n=(2S n+1)-(2S n-1+1)=2a n,得a n+1=3a n.又因为a2=3=3a1,所以数列{a n}是首项为1,公比为3的等比数列.所以,数列{a n}的通项公式为a n=3n-1,n∈N*.(2)设b n=|3n-1-n-2|,n∈N*,则b1=2,b2=1.当n≥3时,由于3n-1>n+2,故b n=3n-1-n-2,n≥3.设数列{b n}的前n项和为T n,则T1=2,T2=3.当n≥3时,T n=3+-----=--,经检验,n=2时也符合.所以T n=--∈C组教师专用题组考点一数列求和1.(2015湖北,19,12分)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q.已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式;(2)当d>1时,记c n=,求数列{c n}的前n项和T n.解析(1)由题意有,即解得或故--或·-(2)由d>1,知a n=2n-1,b n=2n-1,故c n=--,于是T n=1+++++…+-,①-T n=+++++…+-.②①-②可得--=3-,T n=2+++…+-.故T n=6--2.(2015安徽,18,12分)已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.解析(1)由题设知a1·a4=a2·a3=8,又a1+a4=9,可解得或(舍去).由a4=a1q3得公比为q=2,故a n=a1q n-1=2n-1.=2n-1,又b n==-=-,(2)S n=--所以T n=b1+b2+…+b n=-+-+…+-=-.=1--的前n项和为.3.(2015山东,19,12分)已知数列{a n}是首项为正数的等差数列,数列·(1)求数列{a n}的通项公式;(2)设b n=(a n+1)·,求数列{b n}的前n项和T n.解析(1)设数列{a n}的公差为d.令n=1,得=,所以a1a2=3.令n=2,得+=,所以a2a3=15.解得a1=1,d=2,所以a n=2n-1.(2)由(1)知b n=2n·22n-1=n·4n,所以T n=1·41+2·42+…+n·4n,所以4T n=1·42+2·43+…+n·4n+1,两式相减,得-3T n=41+42+…+4n-n·4n+1-n·4n+1=--=-×4n+1-.所以T n=-×4n+1+=-.4.(2014湖北,19,12分)已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{a n}的通项公式;(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.解析(1)设数列{a n}的公差为d,依题意,得2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,a n=2;当d=4时,a n=2+(n-1)·4=4n-2,从而得数列{a n}的通项公式为a n=2或a n=4n-2.(2)当a n=2时,S n=2n.显然2n<60n+800,此时不存在正整数n,使得S n>60n+800成立.当a n=4n-2时,S n=-=2n2.令2n2>60n+800,即n2-30n-400>0,解得n>40或n<-10(舍去),此时存在正整数n,使得S n>60n+800成立,n的最小值为41.综上,当a n=2时,不存在满足题意的n;当a n=4n-2时,存在满足题意的n,其最小值为41.5.(2014安徽,18,12分)数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),n∈N*.(1)证明:数列是等差数列;(2)设b n=3n·,求数列{b n}的前n项和S n.解析(1)证明:由已知可得=+1,即-=1.所以是以=1为首项,1为公差的等差数列.(2)由(1)得=1+(n-1)·1=n,所以a n=n2.从而b n=n·3n.∴S n=1·31+2·32+3·33+…+n·3n,①3S n=1·32+2·33+…+(n-1)·3n+n·3n+1.②①-②得-2S n=31+32+…+3n-n·3n+1-n·3n+1=-·-.=·--所以S n=-·.6.(2014山东,19,12分)在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(1)求数列{a n}的通项公式;(2)设b n=,记T n=-b1+b2-b3+b4-…+(-1)n b n,求T n.解析(1)由题意知(a1+d)2=a1(a1+3d),即(a1+2)2=a1(a1+6),解得a1=2,所以数列{a n}的通项公式为a n=2n.(2)由题意知b n==n(n+1).所以b n+1-b n=2(n+1),所以当n为偶数时,T n=(-b1+b2)+(-b3+b4)+…+(-b n-1+b n)=4+8+12+ (2)==,当n为奇数时,若n=1,则T1=-b1=-2,若n>1,则T n=T n-1+(-b n)=--n(n+1)=-,n=1时,满足上式.所以T n=-为奇数为偶数7.(2013重庆,16,13分)设数列{a n}满足:a1=1,a n+1=3a n,n∈N+.(1)求{a n}的通项公式及前n项和S n;(2)已知{b n}是等差数列,T n为其前n项和,且b1=a2,b3=a1+a2+a3,求T20.解析(1)由题设知{a n}是首项为1,公比为3的等比数列,所以a n=3n-1,S n=--=(3n-1).(2)b1=a2=3,b3=1+3+9=13,b3-b1=10=2d,所以公差d=5,故T20=20×3+×5=1010.8.(2013安徽,19,13分)设数列{a n}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(a n-a n+1+a n+2)x+a n+1cos x-a n+2sin x满足f'=0.(1)求数列{a n}的通项公式;(2)若b n=2,求数列{b n}的前n项和S n.解析(1)由题设可得,f'(x)=a n-a n+1+a n+2-a n+1sin x-a n+2·cos x.对任意n∈N*,f'=a n-a n+1+a n+2-a n+1=0,即a n+1-a n=a n+2-a n+1,故{a n}为等差数列.由a1=2,a2+a4=8,解得{a n}的公差d=1,所以a n=2+1·(n-1)=n+1.(2)由b n=2=2=2n++2知,S n=b1+b2+…+b n=2n+2·+--=n2+3n+1-.9.(2013湖南,19,13分)设S n为数列{a n}的前n项和,已知a1≠0,2a n-a1=S1·S n,n∈N*.(1)求a1,a2,并求数列{a n}的通项公式;(2)求数列{na n}的前n项和.解析(1)令n=1,得2a1-a1=,即a1=.因为a1≠0,所以a1=1.令n=2,得2a2-1=S2=1+a2.解得a2=2.当n≥2时,2a n-1=S n,2a n-1-1=S n-1,两式相减得2a n-2a n-1=a n.即a n=2a n-1.于是数列{a n}是首项为1,公比为2的等比数列.因此,a n=2n-1.所以数列{a n}的通项公式为a n=2n-1.(2)由(1)知na n=n·2n-1.记数列{n·2n-1}的前n项和为B n,于是B n=1+2×2+3×22+…+n×2n-1,①2B n=1×2+2×22+3×23+…+n×2n.②①-②得-B n=1+2+22+…+2n-1-n·2n=2n-1-n·2n.从而B n=1+(n-1)·2n.考点二数列的综合应用1.(2018江苏,20,16分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n-b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,证明:存在d∈R,使得|a n-b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).解析本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.(1)由条件知a n=(n-1)d,b n=2n-1.因为|a n-b n|≤b1对n=1,2,3,4均成立,即|(n-1)d-2n-1|≤1对n=1,2,3,4均成立.即1≤1,1≤d≤3,3≤2d≤5,7≤3d≤9,得≤d≤.因此,d的取值范围为.(2)由条件知:a n=b1+(n-1)d,b n=b1q n-1.若存在d∈R,使得|a n-b n|≤b1(n=2,3,…,m+1)均成立,即|b1+(n-1)d-b1q n-1|≤b1(n=2,3,…,m+1).即当n=2,3,…,m+1时,d满足---b1≤d≤--b1.因为q∈(1,],所以1<q n-1≤q m≤2,从而---b1≤0,--b1>0,对n=2,3,…,m+1均成立.因此,取d=0时,|a n-b n|≤b1对n=2,3,…,m+1均成立.下面讨论数列---的最大值和数列--的最小值(n=2,3,…,m+1).①当2≤n≤m时,-----=----=----,当1<q≤时,有q n≤q m≤2,从而n(q n-q n-1)-q n+2>0.因此,当2≤n≤m+1时,数列---单调递增,故数列---的最大值为-.②设f(x)=2x(1-x),当x>0时,f'(x)=(ln2-1-xln2)2x<0.所以f(x)单调递减,从而f(x)<f(0)=1.当2≤n≤m时,--=-≤-=f<1.因此,当2≤n≤m+1时,数列--单调递减,故数列--的最小值为.因此,d的取值范围为-.2.(2017江苏,19,16分)对于给定的正整数k,若数列{a n}满足:a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.证明(1)证明:因为{a n}是等差数列,设其公差为d,则a n=a1+(n-1)d,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3,所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列{a n}是“P(3)数列”.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d'.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d',在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d',所以数列{a n}是等差数列.3.(2016四川,19,12分)已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n+1=qS n+1,其中q>0,n∈N*.(1)若a2,a3,a2+a3成等差数列,求数列{a n}的通项公式;(2)设双曲线x2-=1的离心率为e n,且e2=2,求++…+.解析(1)由已知,S n+1=qS n+1,S n+2=qS n+1+1,两式相减得到a n+2=qa n+1,n≥1.又由S2=qS1+1得到a2=qa1,故a n+1=qa n对所有n≥1都成立.所以,数列{a n}是首项为1,公比为q的等比数列.从而a n=q n-1.由a2,a3,a2+a3成等差数列,可得2a3=a2+a2+a3,所以a3=2a2,故q=2.所以a n=2n-1(n∈N*).(2)由(1)可知,a n=q n-1.所以双曲线x2-=1的离心率e n==-.由e2==2解得q=所以,++…+=(1+1)+(1+q2)+…+[1+q2(n-1)]=n+[1+q2+…+q2(n-1)]=n+--=n+(3n-1).4.(2015天津,18,13分)已知{a n}是各项均为正数的等比数列,{b n}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.(1)求{a n}和{b n}的通项公式;(2)设c n=a n b n,n∈N*,求数列{c n}的前n项和.解析(1)设数列{a n}的公比为q,数列{b n}的公差为d,由题意知q>0.由已知,有--消去d,整理得q4-2q2-8=0.又因为q>0,解得q=2,所以d=2.所以数列{a n}的通项公式为a n=2n-1,n∈N*;数列{b n}的通项公式为b n=2n-1,n∈N*.(2)由(1)有c n=(2n-1)·2n-1,设{c n}的前n项和为S n,则S n=1×20+3×21+5×22+…+(2n-3)×2n-2+(2n-1)×2n-1,2S n=1×21+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n,上述两式相减,得-S n=1+22+23+…+2n-(2n-1)×2n=2n+1-3-(2n-1)×2n=-(2n-3)×2n-3,所以,S n=(2n-3)·2n+3,n∈N*.5.(2015浙江,17,15分)已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+b2+b3+…+b n=b n+1-1(n∈N*).(1)求a n与b n;(2)记数列{a n b n}的前n项和为T n,求T n.解析(1)由a1=2,a n+1=2a n,得a n=2n(n∈N*).由题意知,当n=1时,b1=b2-1,故b2=2.当n≥2时,b n=b n+1-b n,整理得=,所以b n=n(n∈N*).(2)由(1)知a n b n=n·2n,因此T n=2+2·22+3·23+…+n·2n,2T n=22+2·23+3·24+…+n·2n+1,所以T n-2T n=2+22+23+…+2n-n·2n+1.故T n=(n-1)2n+1+2(n∈N*).6.(2014广东,19,14分)设各项均为正数的数列{a n}的前n项和为S n,且S n满足-(n2+n-3)S n-3(n2+n)=0,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有++…+<.解析(1)∵-(n2+n-3)S n-3(n2+n)=0,∴令n=1,得+a1-6=0,解得a1=2或a1=-3.又a n>0,∴a1=2.(2)由-(n2+n-3)S n-3(n2+n)=0,得[S n-(n2+n)](S n+3)=0,又a n>0,所以S n+3≠0,所以S n=n2+n,所以当n≥2时,a n=S n-S n-1=n2+n-[(n-1)2+n-1]=2n,又由(1)知,a1=2,符合上式,所以a n=2n.(3)证明:由(2)知,=,所以++…+=++…+<+++…+--=+--…-=+-<+×=.7.(2013课标Ⅱ,17,12分)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(1)求{a n}的通项公式;(2)求a1+a4+a7+…+a3n-2.解析(1)设{a n}的公差为d.由题意得,=a1a13,即(a1+10d)2=a1(a1+12d).于是d(2a1+25d)=0.又a1=25,所以d=0(舍去)或d=-2.故a n=-2n+27.(2)令S n=a1+a4+a7+…+a3n-2.由(1)知a3n-2=-6n+31,故{a3n-2}是首项为25,公差为-6的等差数列.从而S n=(a1+a3n-2)=(-6n+56)=-3n2+28n.8.(2013山东,20,12分)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(1)求数列{a n}的通项公式;(2)若数列{b n}满足++…+=1-,n∈N*,求{b n}的前n项和T n.解析(1)设等差数列{a n}的首项为a1,公差为d.由S4=4S2,a2n=2a n+1得解得a1=1,d=2.因此a n=2n-1,n∈N*.(2)由已知++…+=1-,n∈N*,得当n=1时,=;=.当n≥2时,=1----所以=,n∈N*.由(1)知,a n=2n-1,n∈N*,所以b n=-,n∈N*,又T n=+++…+-,T n=++…+-+-,两式相减得T n=+…----,=--所以T n=3-.【三年模拟】时间:50分钟分值:65分一、选择题(每小题5分,共25分)1.(2018福建厦门第一学期期末质检,7)已知数列{a n}满足a n+1+(-1)n+1a n=2,则其前100项和为()A.250B.200C.150D.100答案D2.(2017山西孝义模考,9)已知数列{a n},{b n},其中{a n}是首项为3,公差为整数的等差数列,且a3>a1+3,a4<a2+5,a n=log2b n,则{b n}的前n 项和S n为()A.8(2n-1)B.4(3n-1)C.(4n-1)D.(3n-1)答案C3.(2017陕西渭南二模,9)设S n为等差数列{a n}的前n项和,a2=3,S5=25,若的前n项和为,则n的值为()A.504B.1008C.1009D.2017答案B4.(2018河北衡水中学八模,8)已知函数f(x)=a x+b(a>0,且a≠1)的图象经过点P(1,3),Q(2,5).当n∈N*时,a n=-,记数列{a n}的前n 项和为S n,当S n=时,n的值为()A.7B.6C.5D.4答案D,数列{b n}的前n项和为5.(2019届河南信阳模拟,6)已知数列{a n}的前n项和为S n=2n+1+m,且a1,a4,a5-2成等差数列,b n=-T n,则满足T n>的最小正整数n的值为()A.11B.10C.9D.8答案B二、填空题(每小题5分,共10分)为奇数6.(2019届江苏南京模拟,15)已知数列{a n}的通项公式为a n=则数列{a n}前15项和S15的值为.-为偶数答案7.(2018江西吉安一中、九江一中等八所重点中学4月联考,13)若{a n},{b n}满足a n b n=1,a n=n2+3n+2,则{b n}的前2018项和为.答案三、解答题(共30分)8.(2019届广东模拟,17)已知等比数列{a n}的公比q>1,且a3+a5=40,a4=16.(1)求数列{a n}的通项公式;(2)设b n=,S n是数列{b n}的前n项和,对任意正整数n,不等式S n+>(-1)n·a恒成立,求a的取值范围.解析(1)由得·因为等比数列{a n}的公比q>1,所以q=2,a3=8,所以a n=a3·q n-3=2n.(2)由于a n=2n,b n=,所以b n==,则S n=+++…+①,S n=+++…+②,①-②得S n=…-,所以S n=1+++…+--=---=2-,所以S n+>(-1)n·a即2->(-1)n·a.设f(n)=2-(n∈N*),由于f(n)=2-单调递增,故当n为奇数时,f(1)=1为最小值,所以-a<1,则a>-1,当n为偶数时,f(2)=为最小值,所以a<.所以a的取值范围为-.9.(2018云南昆明一中调研,17)在等差数列{a n}中,公差d≠0,前5项和S5=15,且a1,a3,a7成等比数列.(1)求数列{a n}的通项公式;(2)求a2+a8+a26+…+-(k∈N*)的值.解析(1)根据题意得解得所以数列{a n}的通项公式为a n=a1+(n-1)d=n+.(2)解法一:由(1)得-=(3n-1)+=×3n,所以a2+a8+a26+…+-=×(31+32+33+…+3k)=×--=(3k-1).解法二:设b n=-=(3n-1)+=×3n,则=3(n∈N*).所以数列{b n}是首项为,公比为3的等比数列,所以数列{b n}的前k项和T k=--=(3k-1).10.(2017湖南长沙长郡中学模拟,17)已知{a n}是等差数列,{b n}是等比数列,S n为数列{a n}的前n项和,a1=b1=1,且b3S3=36,b2S2=8(n∈N*).(1)求a n和b n;(2)若a n<a n+1,求数列的前n项和T n.解析(1)设{a n}的公差为d,{b n}的公比为q,由题意得解得或-∴a n=2n-1,b n=2n-1或a n=(5-2n),b n=6n-1.(2)若a n<a n+1,由(1)知a n=2n-1,则=-=--,∴T n=--…--=.。
6.4 数列求和、数列的综合应用挖命题【考情探究】分析解读 1.等差数列和等比数列是数列的两个最基本的模型是高考中的热点之一.基本知识的考查以选择题或填空题的形式呈现,而综合知识的考查则以解答题的形式呈现.2. 以数列为载体来考查推理归纳、类比的能力成为高考的热点3. 数列常与其他知识如不等式、函数、概率、解析几何等综合起来进行考查4. 数学归纳法常与数列、不等式等知识综合在一起,往往综合性比较强,对学生的思维要求比较高.5. 预计2020年高考中,等差数列与等比数列的综合问题仍然是考试的热点,复习时要足够重视.破考点【考点集训】考点一数列的求和1. (2018浙江新高考调研卷五(绍兴一中),14)已知等差数列{a n}的首项为a,公差为-2,S n为数列{a n}的前n项和,若从S7开始为负数,则a的取值范围为_______ ,S n最大时,n= _____ .答案[5,6);32. (2018浙江杭州地区重点中学第一学期期中,22)已知函数f(x)=x 2+x,x €[1,+ ®),a n=f(a n」)(n > 2,n匕N). (1)证明:- -_w f(x)< 2x2;⑵设数列{}的前n项和为A n,数列的前n项和为B,a1亠,证明:2证明 ⑴f(x)-_ -_=x+x-d>0, .・.f(x) >f(x)-2x 2=x 2+x-2x 2=x-x 2=x(1-x) < 0(x >1), ^f(x) < 2x 2,/• --_< f(x) < 2x 2.⑵a n=f(a n-i)=+a n-i ? =a n -a n-i (n > 2),贝寸 A n =++ …+=a n+1-a 1=a n+1-累加得:Bn=——+——+…+——=—-一=一---—= ------- =—31+1 .由(1)得 a n >-一- -? a n+1 +- >— >• *a n+1 > -一 - - —=- a n+1 > 3 • - 一.3a n =f(a n-1) w 2 ? a n+1 w 2 w 2 w …w--—=—a n+〔w _x _ ・ =—・ ,--_ w_w_・即 -1 w —w ,而 -1 >考点二数列的综合应用1. (2018浙江新高考调研卷二(镇海中学),10)数列{a n }的各项均为正数,S n 为其前n 项和,对于任意n € N *,总 有S n = ------ .设b=a 4n+1,d n =3n (n 匕N ),且数列{b n }中存在连续的k (k>1,k 匕N )项和是数列{d n }中的某一项,则k 的取值集合为( )A.{k|k=2 “, a e N *}B.{k|k=3 “,N *}c.{k|k=2 a , a e N} D.{k|k=3 a , a e N} 答案 B2. (2017浙江“七彩阳光”新高考研究联盟测试,9)已知函数f (x )=sin xcos x+COS 2x,0 w X 0VX 1VX 2V …VX n w_,a n =|f (X n )-f (x n-1)|,n eN,S n =a+a 2 +…+a n ,贝 U S n 的最大值等于( ) A. _B.-a n =+a n-i =a n-1 (a n-1+1)? _=.-------=—-—(n > 2),C. _+1D.2 答案A考点三数学归纳法1. (2018浙江新高考调研卷五(绍兴一中),22)在数列{a n}中,a i=a,a n+i=—a n+_ (n € N*),已知0<a<1.⑴求证:a n+i<a n(n € N);(2)求证:a n > ___________证明(1)由题意知a n>0,a n+1-a n=一-一a=一• a n(a n-1)(n € N).下面用数学归纳法证明:a n<1.①n=1时,a 1=a<1,结论成立.②假设n=k时,a k<1,当n=k+1 时,a k+1-a k=—a k(a k-1)<0,即a k+1<a k<1,结论成立.根据①②可知,当n€ N*时,a n<1,所以a n+1<a n.(2) 由a“+1=—a“+— -------- ,得 ----- = -------------- = ---------------- =一=—,因为0<a n <1,所以-------- =— ------------ <—--------- ,所以—< --------- --- ----- = ----------- 乩-—(n》2),即_ < ______ +_- 一< …<_」1= _____ =—L ___ ,所以a n> --------- ,又a1=a,所以当n € N时,a n> --------- .2. (2017浙江新高考临考冲刺卷,22)已知正项数列a满足:a n+1=a n- (n € N*).(1)证明:当n > 2时,a n<——;⑵设S n为数列{a n}的前n项和,证明:S n<1+ln 一(n € N).证明(1)因为a2>0,所以a1- >0,故0<a1<1.下面利用数学归纳法证明结论.4w i,结论成立;当n=2 时,a 2=日1-=-假设当n=k(k > 2)时,结论成立,即a k w+—则当n=k+1 时,a k+1=-因为函数f(x)=- +-在-上单调递增,0<a k<——<,所以a k+i < - ——+_= ---------------------- < ---------- 即当n=k+1时,结论成立.由数学归纳法知,当n》2时,a n< 一.⑵首先证明:当x>0时,均有ln(1+x)> 设g(x)=ln(1+x)- 一,贝Ug'(x)=—— -- ------- = ------ >0,所以g(x)在(0,+ a)上单调递增,因此,当x>0时,g(x)>g(0)=0,即ln(1+x)> —.在上述不等式中,取x=——,则ln —— > -------------- ,即In —— >——,所以,当n>2时,S=a i+(a 2+a3 — ajva i匕+-—+—<a i+ _ - …——=a i+ln ——<1+ln ——.而当n=1 时,S i=a i<1+In 一=1 成立.综上,S n<1+In 一(n e N*).炼技法【方法集训】方法1 错位相减法求和1. 已知数列{a n}的前n 项和为S n,a i=5,nS n+i-(n+1)S n=n2+n.(1) 求证:数列一为等差数列;(2) 令b n=2n a n,求数列{b n}的前n项和Tk解析(1)证明:由nS n+i-(n+1)S n=n+n 得-------- =1,又—5,所以数列一是首项为5,公差为1的等差数列.(2)由(1)可知一=5+(n-1)=n+4,所以S=n2+4n.2 2当 n A 2 时,a n =S n -S n-i =n +4n-(n-1) -4(n-1)=2n+3. 又a i =5也符合上式,所以a n =2n+3(n € N *), 所以 b n =(2n +3)2 :所以 T n =5X 2+7X2 2+9X2 3+…+(2n+3)2 :①2T n =5X2 2+7X2 3+9X 2 4+- +(2n+1)2 n +(2n+3)2 n+1,② 所以②-①得 n+134n+1T n =(2n+3)2 -10-(2 +2+…+2 )=(2n+3)2 n+1-10- _- ____ =(2n+3)2 n+1-10-(2 n+2-8) =(2n+1)2 n+1-2. 2.已知数列{a n }是等比数列,a 2=4,a 3+2是a ?和a 4的等差中项(1) 求数列{a n }的通项公式;(2) 设 b n =2log 2a n -1,求数列{a n b n }的前 n 项和 T n . 解析⑴设数列{a n }的公比为q, 因为 a 2=4,所以 a 3=4q,a 4=4q 2.因为a ?+2是日2和日4的等差中项,所以2(a 3+2)=a 2+a 4. 即 2(4q+2)=4+4q 2,化简得 q 2-2q=0. 因为公比q 工0,所以q=2.n-2n-2 n*所以 a n =a 2q =4X2 =2 (n € N).所以数列{a n }的通项公式a n =2n (n € N *). (2)因为 a n =2n ,所以 b n =2log 2a “-1=2n-1, 所以 a n b n =(2n-1)2 n,则 T n =1X 2+3X 2 2+5X 2 3+…+(2n-3)2 n-1+(2n-1)2 n ,①2T n =1X 2 2+3X 2 3+5X 2 4+- +(2n-3)2 n +(2n-1)2 n+1.② 由①-②得,-T n =2+2X 2 2+2X2 3+…+2X2 n -(2n-1)2 n+1方法2 裂项相消法求和1. (2018浙江嘉兴高三期末,22)已知数列{a n }满足a 1=1,a n = (1)求数列{a n }的通项公式; ⑵求证:对任意的n € N,都有: ①一+—+—+…+—<3;②一+——+——+…+——>——(k A 2,k € N).=2+2 -(2n-1)2 n+1=-6-(2n-3)2n+1所以 T n =6+(2n-3)2n+1解析⑴当n A 2时,一=a n-1 (n A 2)./•当n>2 时,a n=n.又i=1,「.a n=n,n 匕 N*.(3 分)⑵证明:①当n=1时,1<3成立;•••当n》2 时,—=——= ------ < = - • ------- ---- =—-—•——一<一-_.(6 分)_+_+一+…+_<1+ -= + —^― + _=-= + _ ^― + …+- = + —_ =1+1+_- _- ------- <3,•_+_+一+…+_<3.(9 分)②—+ __ + __ + …+ __ =_+ __ +__ + …+ __ + ___ ,设s=-+——+…+——+——,_则S=——+——+…+——+-,2S=- ——+————+…+——一+——+- .(11分)T 当x>0,y>0 时,(x+y) _ - =2卜+-> 4,•_+_>一,当且仅当x=y时等号成立.(13分)•当k>2,k € N*时,2S> ----------- •(nk-n)=——>—— .•S>—,即一+一+一+ …+——>^—(k >2,k € N).(15 分)2. (2017 浙江宁波期末,22)已知数列&}满足Q=2,a n+1=2(S n+n+1)(n € N),b n=a・+1.(1)求证:{b n}是等比数列;⑵记数列{nb n}的前n项和为T n,求T n;(3) 求'证: ----- <—I—I—+ …+—<—.解析(1)证明:由日1=2,得a2=2(a汁1+1)=8.由a n+1=2(S n+n+1),得a n=2(S n-1 +n)(n》2),两式相减,得a n+1=3a n+2(n > 2),当n=1时上式也成立,故a n+1=3a n+2(n € N).所以有a n+1+1=3(a n+1),即b n+1=3b n,又b1=3,故{b n}是等比数列.⑵由(1)得b n=3n,所以「=1X 3+2X 3 2+3X 3 3+…+n • 3”, 3T n =1 X 3 2+2X 3 3+3X 3 4+…+n • 3n+1,两式相减,得-2「=3+32+33+…+3n -n • 3n+1= - -n • 3n+1,n+1故卩=---• 3 +-•⑶证明:由 a n=b n-仁3 n -1,得—= ----->—,k € N *,所以—+_+_+••• +_<_+_ ---------------- -------------------- … --------------------------=—+ ------- ------- =—+ — • --------- < .故一- -- <_+_+_+…+_v_.过专题 【五年高考】A 组自主命题•浙江卷题组考点一数列的求和1.(2016浙江文,17,15分)设数列{a n }的前n 项和为S.已知S=4,a n+1=2S+1,n € N.⑴求通项公式a n ;⑵求数列{|a n-n-2|}的前n 项和.解析⑴由题意得 则又当 n 》2 时,由 a n+1-a n =(2S n +1)-(2S n-1 +1)=2a n , 得 a n+1=3an .所以,数列{a n }的通项公式为a n =3n-1 ,n € N *. (2)设 b n =|3n-1-n-2|,n€ N *,贝U b=2,b 2=1.当 n > 3 时,由于 3n-1 >n+2,故 b n =3n-1 -n-2,n > 3. 设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3. 当 n > 3 时,T n =3+ --------------------- — ---------------- ,所以T n =- - €易错警示 (1)当n 》2时,得出a n+1 =3a n ,要注意a ’是否满足此关系式 (2)在去掉绝对值时,要考虑n=1,2时的情形.在又一=^所以 + + +■…+ >一+ + +■… + = ____------ ,k € N,求和过程中,要注意项数,最后「要写成分段函数的形式.2. (2015浙江文,17,15分)已知数列{a n}和{b n}满足a i=2,b i=1,a n+i=2a“(n € N),b i+_b2+_b3+…+_b n=b n+i-1(n € N*).(1) 求a n 与b n;(2) 记数列{a n b n}的前n项和为「,求T解析(1)由a1=2,a n+1=2a n,得a“=2 (n € N).由题意知:当n=1 时,b1=b2-1,故b2=2.当n》2 时,-b n=b n+1-b n,整理得 -- =—,所以b n=n(n € N).(2)由(1)知a n b n=n • 2n,因此T n=2+2 • 22+3・23+…+n • 2n,2T n=22+2 • 23+3 • 24+…+n • 2:所以升2「=2+22+23+…+2n-n • 2n+1.故T n=(n-1)2 n+1+2(n € N*).评析本题主要考查数列的通项公式,等差、等比数列的基础知识,同时考查数列求和的基本思想方法,以及推理论证能力.考点二数列的综合应用1. (2018浙江,20,15分)已知等比数列{a n}的公比q>1,且日3+日4+日5=28,日4+2是a3,a 5的等差中项.数列{b n}满足b1=1,数列{(b n+1-b n)a n}的前n 项和为2n2+n.(1) 求q的值;(2) 求数列{b n}的通项公式.解析本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1) 由日4+2是a3,a 5的等差中项得日3+&=2日4+4,所以日3+日4+日 5 = 384+4 = 28,解得a4=8.由a3+a5=20 得8 - =20,解得q=2或q=_,因为q>1,所以q=2.(2) 设C n=(b n+1-b n)a n,数列{C n}的前n 项和为S.由C n= 解得C n=4n-1.由(1)可知a n=2,所以b n+1-b n=(4n-1)故b n-b n-i =(4n-5) ■- ,n A 2,b n-b i=(b n-b n-i)+(b n-1 -b n-2 )+ …+(b 3-b 2)+(b 2-b i)=(4n-5) •一+(4n-9) •一+ …+7 •一+3.设T n=3+7 •-+11 •- + …+(4n-5) •- ,n > 2, -T n=3 •-+7 •- + …+(4n-9) •- +(4n-5) •- ,所以_T n=3+4 • _+4 •一+ …+4 •一-(4n-5) •一,因此T n=14-(4n+3) •一,n > 2,又b i=1,所以b n=15-(4n+3) •--.易错警示利用错位相减法求和时,要注意以下几点:(1) 错位相减法求和,适合数列{a n b n},其中{a n}为等差数列,{b n}为等比数列.(2) 在等式两边所乘的数是等比数列{b n}的公比.(3) 两式相减时,一定要错开一位.⑷特别要注意相减后等比数列的项数.(5)进行检验.2. (2016浙江,20,15分)设数列{an}满足-—— < 1,n € N.n 1 *(1)证明:|a n| A 2- (|a 1|-2),n € N;⑵若|a n| < - ,n € N,证明:|a n| < 2,n € N*.证明(1)由---------- W 1 得|a n|-—|a n+1 |W 1,故---- -- ---- 三一,n € N ,所以——-——=——-—— + ——-—+…+ — -—— W— +—+••• +——<1,因此|a n| A 2n-1 (|a 1|-2).⑵任取n€ N*,由(1)知,对于任意m>n,--- ------= ------------ + --------------------- + …+ ---- -- ------- W — + --- +…+ ----- < ---- ,n n n故|a n|< —--- • 2 W ——・ _ • 2 =2+ —・ 2 .从而对于任意m>n,均有|a n|<2+ - • 2.①由m的任意性得|a n| W2.否则,存在n0€ N,有| |>2,取正整数m>lo _—-且m>n。
6.3等比数列及其前n项和挖命题【考情探究】分析解读本节是高考的考查热点,主要考查等比数列的基本运算和性质,等比数列的通项公式和前n项和公式,尤其要注意以数学文化为背景的数列题,题型既有选择题、填空题,也有解答题.考查学生的数学运算和逻辑推理能力以及学生对函数与方程、转化与化归和分类讨论思想的应用.破考点【考点集训】考点一等比数列的通项公式与前n项和公式1.(2018河南开封一模,5)已知等比数列{a n}的前n项和为S n,且9S3=S6,a2=1,则a1=()A. B. C. D.2答案A2.(2018陕西延安黄陵中学(重点班)第一次大检测,10)已知公比不为1的等比数列{a n}的前n 项和为S n,且满足a2,2a5,3a8成等差数列,则=()A. B. C. D.答案C3(2018天津滨海新区七所重点学校联考,11)等比数列{a n}中,各项都是正数,且a1,a3,2a2成等差数列,则=.答案-1考点二等比数列的性质1.(2018安徽马鞍山第二次教学质量监测,5)已知等比数列{a n}满足a1=1,a3·a5=4(a4-1),则a7的值为()A.2B.4C.D.6答案B2.(2017福建4月模拟,6)已知递增的等比数列{a n}的公比为q,其前n项和S n<0,则()A.a1<0,0<q<1B.a1<0,q>1C.a1>0,0<q<1D.a1>0,q>1答案A3.设等比数列{a n}的前n项和为S n,若=3,则等于()A.2B.C.D.3答案B炼技法【方法集训】方法等比数列的判定与证明1.下列结论正确的是()A.若数列{a n}的前n项和S n=n2+n+1,则{a n}为等差数列B.若数列{a n}的前n项和S n=2n-2,则{a n}为等比数列C.非零实数a,b,c不全相等,若a,b,c成等差数列,则,,也可能构成等差数列D.非零实数a,b,c不全相等,若a,b,c成等比数列,则,,一定构成等比数列答案D2.(2018河南信阳模拟,17)已知数列{a n}满足a1=1,a n+1=2a n+λ(λ为常数).(1)试探究数列{a n+λ}是不是等比数列,并求a n;(2)当λ=1时,求数列{n(a n+λ)}的前n项和T n.解析(1)因为a n+1=2a n+λ,所以a n+1+λ=2(a n+λ).又a1=1,所以当λ=-1时,a1+λ=0,数列{a n+λ}不是等比数列,此时a n+λ=a n-1=0,即a n=1;当λ≠-1时,a1+λ≠0,所以a n+λ≠0,所以数列{a n+λ}是以1+λ为首项,2为公比的等比数列,此时a n+λ=(1+λ)2n-1,即a n=(1+λ)2n-1-λ.(2)由(1)知a n=2n-1,所以n(a n+1)=n×2n,T n=2+2×22+3×23+…+n×2n①,2T n=22+2×23+3×24+…+n×2n+1②,-n×2n+1=2n+1-2-n×2n+1=(1-n)2n+1-2.①-②得:-T n=2+22+23+…+2n-n×2n+1=--所以T n=(n-1)2n+1+2.过专题【五年高考】A组统一命题·课标卷题组考点一等比数列的通项公式与前n项和公式1.(2017课标Ⅱ,3,5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏答案B2.(2015课标Ⅱ,4,5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84答案B3.(2018课标Ⅲ,17,12分)等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.解析(1)设{a n}的公比为q,由题设得a n=q n-1.由已知得q4=4q2,解得q=0(舍去)或q=-2或q=2.故a n=(-2)n-1或a n=2n-1.(2)若a n=(-2)n-1,则S n=--.由S m=63得(-2)m=-188.此方程没有正整数解.若a n=2n-1,则S n=2n-1.由S m=63得2m=64,解得m=6.综上,m=6.考点二等比数列的性质(2016课标Ⅰ,15,5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.答案64B组自主命题·省(区、市)卷题组考点一等比数列的通项公式与前n项和公式1.(2018北京,4,5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A. B.f C.f D.f答案D2.(2017江苏,9,5分)等比数列{a n}的各项均为实数,其前n项和为S n.已知S3=,S6=,则a8=.答案32考点二等比数列的性质1.(2016天津,5,5分)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n-1+a2n<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件答案C2.(2014广东,13,5分)若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=.答案50C组教师专用题组考点一等比数列的通项公式与前n项和公式1.(2014重庆,2,5分)对任意等比数列{a n},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列答案D2.(2013课标Ⅱ,3,5分,0.859)等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A. B.- C. D.-答案C3.(2012课标Ⅰ,5,5分)已知{a n}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=()A.7B.5C.-5D.-7答案D4.(2017北京,10,5分)若等差数列{a n}和等比数列{b n}满足a1=b1=-1,a4=b4=8,则=. 答案15.(2015湖南,14,5分)设S n为等比数列{a n}的前n项和.若a1=1,且3S1,2S2,S3成等差数列,则a n=.答案3n-16.(2014天津,11,5分)设{a n}是首项为a1,公差为-1的等差数列,S n为其前n项和.若S1,S2,S4成等比数列,则a1的值为.答案-7.(2014安徽,12,5分)数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=.答案18.(2016四川,19,12分)已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n+1=qS n+1,其中q>0,n∈N*.(1)若2a2,a3,a2+2成等差数列,求数列{a n}的通项公式;(2)设双曲线x2-=1的离心率为e n,且e2=,证明:e1+e2+…+e n>-.-解析(1)由已知,S n+1=qS n+1,S n+2=qS n+1+1,两式相减得到a n+2=qa n+1,n≥1.又由S2=qS1+1得到a2=qa1,故a n+1=qa n对所有n≥1都成立.所以,数列{a n}是首项为1,公比为q的等比数列.从而a n=q n-1.由2a2,a3,a2+2成等差数列,可得2a3=3a2+2,即2q2=3q+2,则(2q+1)(q-2)=0,由已知,q>0,故q=2.所以a n=2n-1(n∈N*).(2)证明:由(1)可知,a n=q n-1.所以双曲线x2-=1的离心率e n==-.由e2==,解得q=.因为1+q2(k-1)>q2(k-1),所以->q k-1(k∈N*).,于是e1+e2+…+e n>1+q+…+q n-1=--.故e1+e2+…+e n>--9.(2015江苏,20,16分)设a1,a2,a3,a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:,,,依次构成等比数列;(2)是否存在a1,d,使得a1,,,依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得,,,依次构成等比数列?并说明理由. 解析(1)证明:因为=-=2d(n=1,2,3)是同一个常数,所以,,,依次构成等比数列.(2)令a1+d=a,则a1,a2,a3,a4分别为a-d,a,a+d,a+2d(a>d,a>-2d,d≠0).假设存在a1,d,使得a1,,,依次构成等比数列,则a4=(a-d)(a+d)3,且(a+d)6=a2(a+2d)4.令t=,则1=(1-t)(1+t)3,且(1+t)6=(1+2t)4-,化简得t3+2t2-2=0(*),且t2=t+1.将t2=t+1代入(*)式,得t(t+1)+2(t+1)-2=t2+3t=t+1+3t=4t+1=0,则t=-.显然t=-不是方程t2=t+1的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,,,依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得,,,依次构成等比数列,则(a1+2d)n+2k=(a1+d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k).分别在两个等式的两边同除以及,并令t=-,则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k).将上述两个等式两边取对数,得(n+2k)ln(1+2t)=2(n+k)·ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t).化简得2k[ln(1+2t)-ln(1+t)]=n[2ln(1+t)-ln(1+2t)],且3k[ln(1+3t)-ln(1+t)]=n[3ln(1+t)-ln(1+3t)].再将这两式相除,化简得ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t)(**).令g(t)=4ln(1+3t)ln(1+t)-ln(1+3t)ln(1+2t)-3ln(1+2t)·ln(1+t),则g'(t)=-.令φ(t)=(1+3t)2ln(1+3t)-3(1+2t)2ln(1+2t)+3(1+t)2·ln(1+t),则φ'(t)=6[(1+3t)ln(1+3t)-2(1+2t)ln(1+2t)+(1+t)·ln(1+t)].令φ1(t)=φ'(t),则φ'1(t)=6[3ln(1+3t)-4ln(1+2t)+ln(1+t)].令φ2(t)=φ'1(t),则φ'2(t)=>0.由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ'2(t)>0,知φ2(t),φ1(t),φ(t),g(t)在-和(0,+∞)上均单调.故g(t)只有唯一零点t=0,即方程(**)只有唯一解t=0,故假设不成立.所以不存在a1,d及正整数n,k,使得,,,依次构成等比数列.评析本题考查等差数列的定义、等比数列的运算和综合应用,考查演绎推理、直接证明、间接证明等逻辑思维能力.10.(2015山东,18,12分)设数列{a n}的前n项和为S n.已知2S n=3n+3.(1)求{a n}的通项公式;(2)若数列{b n}满足a n b n=log3a n,求{b n}的前n项和T n.解析(1)因为2S n=3n+3,所以2a1=3+3,故a1=3,当n>1时,2S n-1=3n-1+3,此时2a n=2S n-2S n-1=3n-3n-1=2×3n-1,即a n=3n-1,所以a n=-(2)因为a n b n=log3a n,所以b1=,当n>1时,b n=31-n log33n-1=(n-1)·31-n.所以T1=b1=;当n>1时,T n=b1+b2+b3+…+b n=+[1×3-1+2×3-2+…+(n-1)×31-n],所以3T n=1+[1×30+2×3-1+…+(n-1)×32-n],两式相减,得2T n=+(30+3-1+3-2+…+32-n)-(n-1)×31-n=+---(n-1)×31-n=-,--所以T n=-(n>1).经检验,n=1时也适合.综上可得T n=-(n∈N*).11.(2014课标Ⅱ,17,12分,0.299)已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明是等比数列,并求{a n}的通项公式;(2)证明++…+<.解析(1)由a n+1=3a n+1得a n+1+=3.又a1+=,所以是首项为,公比为3的等比数列.a n+=,因此{a n}的通项公式为a n=-..(2)由(1)知=-因为当n≥1时,3n-1≥2×3n-1,所以-≤-.于是++…+≤1++…+-=-<.所以++…+<.评析本题考查了等比数列的定义、数列求和等问题,放缩法求和是本题的难点.考点二等比数列的性质1.(2018浙江,10,4分)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4答案B2.(2014大纲全国,10,5分)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A.6B.5C.4D.3答案C3.(2015安徽,14,5分)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.答案2n-14.(2014江苏,7,5分)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是.答案4【三年模拟】一、选择题(每小题5分,共35分)1.(2019届山东济南第一中学高三期中考试,7)在等比数列{a n}中,若a3,a7是方程x2+4x+2=0的两根,则a5的值是()A.-2B.-C.±D.答案B2.(2019届安徽黄山11月“八校联考”,7)设S n是等比数列{a n}的前n项和,S4=5S2,则的值为()A.±B.±2C.±2或-1D.±或-1答案D3.(2018河南新乡二模,6)在公比为q的正项等比数列{a n}中,a4=4,则当2a2+a6取得最小值时,log2q=()A. B.- C. D.-答案A4.(2018福建厦门模拟,8)设等比数列{a n}的前n项和为S n,若S n=2n+1+λ,则λ=()A.-2B.-1C.1D.2答案A5.(2018山东实验中学诊断测试,7)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人应偿还a升,b升,c升,1斗为10升,则下列判断正确的是()A.a,b,c依次成公比为2的等比数列,且a=B.a,b,c依次成公比为2的等比数列,且c=C.a,b,c依次成公比为的等比数列,且a=D.a,b,c依次成公比为的等比数列,且c=答案D6.(2017湖北六校联合体4月模拟,10)在数列{a n}中,a1=1,a n+1=2a n,则-等于()S n=-+-+…+-A.(2n-1)B.(1-24n)C.(4n-1)D.(1-2n)答案B7.(2018湖南湘潭三模,9)已知等比数列{a n}的前n项积为T n,若a1=-24,a4=-,则当T n取最大值时,n的值为()A.2B.3C.4D.6答案C二、填空题(每小题5分,共15分)8.(2019届河北衡水中学高三第一次摸底考试,14)已知数列{a n},若数列{3n-1a n}的前n项和T n=×6n-,则a5的值为.答案169.(2019届广东化州高三第一次模拟考试,16)已知函数f(x)=,数列{a n}为等比数列,a n>0,a1010=1,则f(lna1)+f(lna3)+…+f(lna2019)=.答案10.(2017江西仿真模拟,16)已知数列{a n}的前n项和为S n,且满足:a1=1,a2=2,S n+1=a n+2-a n+1(n∈N*),若不等式λS n>a n恒成立,则实数λ的取值范围是.答案(1,+∞)三、解答题(共25分)11.(2019届江西九江高三第一次十校联考,20)已知数列{a n}满足a n+1-a n-1=2(a n+a n-1)(n≥2),a1=1,a2=7,令b n=a n+1+a n.(1)求证数列{b n}为等比数列,并求{b n}的通项公式;(2)求数列{a n}的前n项和S n.解析(1)∵a n+1-a n-1=2(a n+a n-1)(n≥2),∴a n+1+a n=3(a n+a n-1).∵b n=a n+1+a n,∴b n=3b n-1(n≥2),又b1=a2+a1=8≠0,∴数列{b n}是首项为8,公比为3的等比数列,∴b n=8·3n-1(n∈N*).(2)当n为正偶数时,S n=(a1+a2)+(a3+a4)+…+(a n-1+a n)=b1+b3+…+b n-1=--=3n-1.当n为正奇数时,S n=a1+(a2+a3)+(a4+a5)+…+(a n-1+a n)=1+b2+b4+…+b n-1=1+---=3n-2.∴S n=-为正偶数-为正奇数解后反思(1)证明数列为等比数列时,在运用定义证明的同时还要说明数列中不存在等于零的项,这一点容易被忽视.(2)数列求和时要根据数列通项公式的特点,选择合适的方法进行求解,求解时要注意确定数列的项数.12.(2018湖南郴州第二次教学质量检测,17)已知在等比数列{a n}中,a1=1,且a1,a2,a3-1成等差数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=2n-1+a n(n∈N*),数列{b n}的前n项和为S n,试比较S n与n2+2n的大小.解析(1)设等比数列{a n}的公比为q,∵a1,a2,a3-1成等差数列,∴2a2=a1+(a3-1)=a3,∴q==2,∴a n=a1q n-1=2n-1(n∈N*).(2)由(1)知b n=2n-1+a n=2n-1+2n-1,∴S n=(1+1)+(3+2)+(5+22)+…+(2n-1+2n-1)=[1+3+5+…+(2n-1)]+(1+2+22+…+2n-1)=n2+2n-1.=-·n+--∵S n-(n2+2n)=-1<0,∴S n<n2+2n.方法点拨利用“分组求和法”求数列前n项和的常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列的求和公式求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列的求和公式、等比数列的求和公式求和后再相加减.。
6.4 数列的综合应用挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.数列求和掌握非等差、等比数列求和的几种常见方法2016北京文,15 分组法求数列的前n项和等差数列★★★2014北京文,15 等比数列2.数列的综合应用1.能在具体的问题情境中识别数列的等差关系或等比关系,抽象出数列的模型,并能用有关知识解决相应的问题2.能综合应用等差、等比数列解决相应问题2013北京,20等差数列与周期数列的综合问题充分必要条件的判断★★★2017北京,20等差数列中的有关问题不等式分析解读综合运用数列,特别是等差数列、等比数列的有关知识,解答数列的综合问题和实际问题,培养学生的理解能力、数学建模能力和运算能力.主要从以下几个方面考查:1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组求和法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决数列的综合问题.3.数列递推关系以及非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.在北京高考中,数列的综合应用常为压轴题,主要考查数列的概念,结合新定义和新数列进行逻辑推理或计算求值.破考点 【考点集训】考点一 数列求和1.已知数列{a n },{b n },其中{a n }是首项为3,公差为整数的等差数列,且a 3>a 1+3,a 4<a 2+5,a n =log 2b n ,则{b n }的前n 项和S n 为( )A.8(2n -1)B.4(3n -1)C.83(4n -1) D.43(3n -1) 答案 C2.已知S n 为{a n }的前n 项和,若a n (4+cos nπ)=n(2-cos nπ),则S 88等于 . 答案 2 332考点二 数列的综合应用3.已知等差数列{a n }的公差和首项都不等于0,且a 2,a 4,a 8成等比数列,则a 1+a 5+a 9a 2+a 3=( )A.2B.3C.5D.7 答案 B4.数列{a n }满足:a n-1+a n+1>2a n (n>1,n ∈N *),给出下列命题: ①若数列{a n }满足a 2>a 1,则a n >a n-1(n>1,n ∈N *)成立; ②存在常数c,使得a n >c(n ∈N *)成立;③若p+q>m+n(其中p,q,m,n ∈N *),则a p +a q >a m +a n ; ④存在常数d,使得a n >a 1+(n-1)d(n ∈N *)都成立.上述命题正确的是 .(写出所有正确命题的序号) 答案 ①5.已知数列{a n }的前n 项和S n =n 2+n2,等比数列{b n }的前n 项和为T n ,若b 1=a 1+1,b 2-a 2=2.(1)求数列{a n },{b n }的通项公式;(2)求满足T n +a n >300的最小的n 值. 解析 (1)a 1=S 1=1,n>1时,a n =S n -S n-1=n 2+n 2-(n -1)2+(n -1)2=n,又n=1时,a 1=1,所以a n =n 成立,∴a n =n(n ∈N *), 则由题意可知b 1=2,b 2=4, ∴{b n }的公比q=42=2,∴b n =2n (n ∈N *). (2)∵T n =2×(1-2n )1-2=2×(2n -1), ∴T n +a n =2×(2n -1)+n, ∴T n +a n 随n 的增大而增大,又T 7+a 7=2×127+7=261<300,T 8+a 8=2×255+8=518>300, ∴所求最小的n 值为8.炼技法 【方法集训】方法1 错位相减法求和1.已知数列{a n }的前n 项和为S n ,a 1=5,nS n+1-(n+1)S n =n 2+n. (1)求证:数列{S n n}为等差数列;(2)令b n =2n a n ,求数列{b n }的前n 项和T n . 解析 (1)证明:由nS n+1-(n+1)S n =n 2+n 得S n+1n+1-S nn=1, 又S 11=5,所以数列{S n n}是首项为5,公差为1的等差数列. (2)由(1)可知S n n=5+(n-1)=n+4,所以S n =n 2+4n. 当n ≥2时,a n =S n -S n-1=n 2+4n-(n-1)2-4(n-1)=2n+3. 又a 1=5也符合上式,所以a n =2n+3(n ∈N *),所以b n =(2n+3)2n ,所以T n =5×2+7×22+9×23+…+(2n+3)2n ,① 2T n =5×22+7×23+9×24+…+(2n+1)2n +(2n+3)2n+1,② 由②-①得T n =(2n+3)2n+1-10-(23+24+…+2n+1)=(2n+3)2n+1-10-23(1-2n -1)1-2=(2n+3)2n+1-10-(2n+2-8) =(2n+1)2n+1-2.2.已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项. (1)求数列{a n }的通项公式;(2)设b n =2log 2a n -1,求数列{a n b n }的前n 项和T n . 解析 (1)设数列{a n }的公比为q, 因为a 2=4,所以a 3=4q,a 4=4q 2. 因为a 3+2是a 2和a 4的等差中项, 所以2(a 3+2)=a 2+a 4,即2(4q+2)=4+4q 2,化简得q 2-2q=0. 因为公比q ≠0,所以q=2. 所以a n =a 2q n-2=4×2n-2=2n (n ∈N *). (2)因为a n =2n ,所以b n =2log 2a n -1=2n-1, 所以a n b n =(2n-1)2n ,则T n =1×2+3×22+5×23+…+(2n-3)2n-1+(2n-1)2n ,① 2T n =1×22+3×23+5×24+…+(2n-3)2n +(2n-1)2n+1.②由①-②得,-T n =2+2×22+2×23+…+2×2n -(2n-1)2n+1 =2+2[4(1-2n -1)1-2]-(2n-1)2n+1=-6-(2n-3)2n+1, 所以T n =6+(2n-3)2n+1.方法2 裂项相消法求和3.已知数列{a n }(n ∈N *)是公差不为0的等差数列,a 1=1,且1a 2,1a 4,1a 8成等比数列.(1)求数列{a n }的通项公式; (2)设数列{1a n a n+1}的前n 项和为T n ,求证:T n <1.解析 (1)设{a n }的公差为d. 因为1a 2,1a 4,1a 8成等比数列, 所以(1a 4)2=1a 2·1a 8, 即(1a 1+3d )2=1a 1+d ·1a 1+7d, 化简得(a 1+3d)2=(a 1+d)·(a 1+7d), 又a 1=1,且d ≠0,解得d=1. 所以a n =a 1+(n-1)d=n. (2)证明:由(1)得1a n a n+1=1n(n+1)=1n -1n+1, 所以T n =1-12+12-13+…+1n -1n+1=1-1n+1<1. 因此T n <1.4.在等差数列{a n }中,a 2=4,其前n 项和S n 满足S n =n 2+λn(λ∈R ). (1)求实数λ的值,并求数列{a n }的通项公式; (2)若数列{1S n+b n }是首项为λ,公比为2λ的等比数列,求数列{b n }的前n 项和T n .解析 (1)设等差数列{a n }的公差为d, 因为a 2=S 2-S 1=(4+2λ)-(1+λ)=3+λ,所以3+λ=4,所以λ=1. 所以a 1=S 1=2,所以d=a 2-a 1=2. 所以a n =a 1+(n-1)d=2n. (2)由(1)知λ=1,所以S n =n 2+n. 由题意知1S n+b n =1×2n-1=2n-1. 所以b n =2n-1-1n(n+1)=2n-1-(1n -1n+1).所以T n =(20+21+…+2n-1)-(1-12)+(12-13)+…+(1n -1n+1)=1-2n 1-2-(1-1n+1)=2n -2n+1n+1.试题分析 (1)设等差数列{a n }的公差为d,由题意得λ=1,进而得d=2,即可得到数列{a n }的通项公式; (2)由(1)知λ=1,得S n =n 2+n,由题意得1S n+b n =2n-1,进而得b n =2n-1-(1n -1n+1),利用等比数列的前n 项和公式以及裂项相消法求和即可得到数列{b n }的前n 项和.方法3 分组求和法求和5.(2014北京文,15,13分)已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.解析 (1)设等差数列{a n }的公差为d,由题意得 d=a 4-a 13=12-33=3. 所以a n =a 1+(n-1)d=3n(n=1,2,…). 设等比数列{b n -a n }的公比为q,由题意得 q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q=2.所以b n -a n =(b 1-a 1)q n-1=2n-1.从而b n =3n+2n-1(n=1,2,…). (2)由(1)知b n =3n+2n-1(n=1,2,…).数列{3n}的前n 项和为32n(n+1),数列{2n-1}的前n 项和为1×1-2n1-2=2n -1. 所以数列{b n }的前n 项和为32n(n+1)+2n -1.过专题 【五年高考】A 组 自主命题·北京卷题组1.(2017北京,20,13分)设{a n }和{b n }是两个等差数列,记c n =max{b 1-a 1n,b 2-a 2n,…,b n -a n n}(n=1,2,3,…), 其中max{x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数. (1)若a n =n,b n =2n-1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n ≥m 时,c n n>M;或者存在正整数m,使得c m ,c m+1,c m+2,…是等差数列.解析 本题考查等差数列,不等式,合情推理等知识,考查综合分析,归纳抽象,推理论证能力. (1)c 1=b 1-a 1=1-1=0,c 2=max{b 1-2a 1,b 2-2a 2}=max{1-2×1,3-2×2}=-1,c 3=max{b 1-3a 1,b 2-3a 2,b 3-3a 3}=max{1-3×1,3-3×2,5-3×3}=-2. 当n ≥3时,(b k+1-na k+1)-(b k -na k )=(b k+1-b k )-n(a k+1-a k )=2-n<0, 所以{b k -na k }关于k ∈N *单调递减.所以c n =max{b 1-a 1n,b 2-a 2n,…,b n -a n n}=b 1-a 1n=1-n. 所以对任意n ≥1,c n =1-n,于是c n+1-c n =-1, 所以{c n }是等差数列.(2)证明:设数列{a n }和{b n }的公差分别为d 1,d 2,则b k -na k =b 1+(k-1)d 2-[a 1+(k-1)d 1]n=b 1-a 1n+(d 2-nd 1)(k-1). 所以c n ={b 1-a 1n +(n -1)(d 2-nd 1),b 1-a 1n,当d 2>nd 1时,当d 2≤nd 1时.①当d 1>0时,取正整数m>d 2d 1,则当n ≥m 时,nd 1>d 2,因此c n =b 1-a 1n. 此时,c m ,c m+1,c m+2,…是等差数列. ②当d 1=0时,对任意n ≥1,c n =b 1-a 1n+(n-1)max{d 2,0}=b 1-a 1+(n-1)(max{d 2,0}-a 1). 此时,c 1,c 2,c 3,…,c n ,…是等差数列. ③当d 1<0时, 当n>d 2d 1时,有nd 1<d 2. 所以c n n =b 1-a 1n+(n -1)(d 2-nd 1)n=n(-d 1)+d 1-a 1+d 2+b 1-d 2n≥n(-d 1)+d 1-a 1+d 2-|b 1-d 2|. 对任意正数M,取正整数m>max {M+|b 1-d 2|+a 1-d 1-d 2-d 1,d 2d 1},故当n ≥m 时,c n n>M.解后反思 解决数列的相关题时,可通过对某些项的观察、分析和比较,发现它们的相同性质或变化规律,再利用综合法进行推理论证.2.(2013北京,20,13分)已知{a n }是由非负整数组成的无穷数列.该数列前n 项的最大值记为A n ,第n 项之后各项a n+1,a n+2,…的最小值记为B n ,d n =A n -B n .(1)若{a n}为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N*,a n+4=a n),写出d1,d2,d3,d4的值;(2)设d是非负整数.证明:d n=-d(n=1,2,3,…)的充分必要条件为{a n}是公差为d的等差数列;(3)证明:若a1=2,d n=1(n=1,2,3,…),则{a n}的项只能是1或者2,且有无穷多项为1.解析(1)d1=d2=1,d3=d4=3.(2)证明:(充分性)因为{a n}是公差为d的等差数列,且d≥0,所以a1≤a2≤…≤a n≤….因此A n=a n,B n=a n+1,d n=a n-a n+1=-d(n=1,2,3,…).(必要性)因为d n=-d≤0(n=1,2,3,…),所以A n=B n+d n≤B n.又因为a n≤A n,a n+1≥B n,所以a n≤a n+1.于是,A n=a n,B n=a n+1.因此a n+1-a n=B n-A n=-d n=d,即{a n}是公差为d的等差数列.(3)证明:因为a1=2,d1=1,所以A1=a1=2,B1=A1-d1=1.故对任意n≥1,a n≥B1=1.假设{a n}(n≥2)中存在大于2的项.设m为满足a m>2的最小正整数,则m≥2,并且对任意1≤k<m,a k≤2.又因为a1=2,所以A m-1=2,且A m=a m>2.于是,B m=A m-d m>2-1=1,B m-1=min{a m,B m}≥2.故d m-1=A m-1-B m-1≤2-2=0,与d m-1=1矛盾.所以对于任意n ≥1,有a n ≤2,即非负整数列{a n }的各项只能为1或2. 因为对任意n ≥1,a n ≤2=a 1, 所以A n =2. 故B n =A n -d n =2-1=1.因此对于任意正整数n,存在m 满足m>n,且a m =1,即数列{a n }有无穷多项为1.B 组 统一命题、省(区、市)卷题组考点一 数列求和1.(2018课标Ⅱ,17,12分)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.解析 (1)设{a n }的公差为d,由题意得3a 1+3d=-15. 由a 1=-7得d=2.所以{a n }的通项公式为a n =2n-9. (2)由(1)得S n =n 2-8n=(n-4)2-16.所以当n=4时,S n 取得最小值,最小值为-16.方法总结 求等差数列前n 项和S n 的最值的两种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn,通过配方或借助图象求二次函数的最值. (2)邻项变号法:①当a 1>0,d<0时,满足{a m ≥0,a m+1≤0的项数m,可使得S n 取得最大值,最大值为S m ;②当a 1<0,d>0时,满足{a m ≤0,a m+1≥0的项数m,可使得S n 取得最小值,最小值为S m .2.(2018天津,18,13分)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前n 项和为T n (n ∈N *).(i)求T n ;(ii)证明∑k=1n(T k +b k+2)b k (k+1)(k+2)=2n+2n+2-2(n ∈N *). 解析 本小题主要考查等差数列的通项公式,等比数列的通项公式及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.(1)设等比数列{a n }的公比为q.由a 1=1,a 3=a 2+2,可得q 2-q-2=0.由q>0,可得q=2,故a n =2n-1.设等差数列{b n }的公差为d.由a 4=b 3+b 5,可得b 1+3d=4.由a 5=b 4+2b 6,可得3b 1+13d=16,从而b 1=1,d=1,故b n =n.所以,数列{a n }的通项公式为a n =2n-1,数列{b n }的通项公式为b n =n.(2)(i)由(1),有S n =1-2n 1-2=2n -1, 故T n =∑k=1n (2k -1)=∑k=1n 2k -n =2×(1-2n )1-2-n=2n+1-n-2. (ii)证明:因为(T k +b k+2)b k (k+1)(k+2)=(2k+1-k -2+k+2)k (k+1)(k+2) =k ·2k+1(k+1)(k+2)=2k+2k+2-2k+1k+1,所以,∑k=1n (T k +b k+2)b k (k+1)(k+2)=(233-222)+(244-233)+…+(2n+2n+2-2n+1n+1)=2n+2n+2-2. 方法总结 解决数列求和问题的两种思路(1)利用转化的思想将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.(2)不能转化为等差或等比数列的,往往通过裂项相消法、倒序相加法等来求和.3.(2017天津,18,13分)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b n }的前n 项和(n ∈N *).解析 (1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12, 而b 1=2,所以q 2+q-6=0.又因为q>0,解得q=2.所以,b n =2n .由b 3=a 4-2a 1,可得3d-a 1=8①.由S 11=11b 4,可得a 1+5d=16②,联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,{a n }的通项公式为a n =3n-2,{b n }的通项公式为b n =2n .(2)设数列{a 2n b n }的前n 项和为T n ,由a 2n =6n-2,得T n =4×2+10×22+16×23+…+(6n-2)×2n ,2T n =4×22+10×23+16×24+…+(6n-8)×2n +(6n-2)×2n+1,上述两式相减,得-T n =4×2+6×22+6×23+…+6×2n -(6n-2)×2n+1=12×(1-2n )1-2-4-(6n-2)×2n+1 =-(3n-4)2n+2-16,故T n =(3n-4)2n+2+16.所以,数列{a 2n b n }的前n 项和为(3n-4)2n+2+16.评析本题主要考查等差数列、等比数列及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.方法总结 (1)等差数列与等比数列中分别有五个量,a 1,n,d(或q),a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和d(或q),问题可迎刃而解.(2)对于数列{a n b n },其中{a n }是公差为d 的等差数列,{b n }是公比q ≠1的等比数列,求{a n b n }的前n 项和应采用错位相减法.4.(2016课标Ⅱ,17,12分)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解析 (1)设{a n }的公差为d,据已知有7+21d=28,解得d=1.所以{a n }的通项公式为a n =n.b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n ={0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.疑难突破 充分理解[x]的意义,求出b n 的表达式,从而求出{b n }的前1 000项和.评析本题主要考查了数列的综合运用,同时对学生创新能力进行了考查,充分理解[x]的意义是解题的关键.5.(2015课标Ⅰ,17,12分)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n+1,求数列{b n }的前n 项和.解析 (1)由a n 2+2a n =4S n +3,可知a n+12+2a n+1=4S n+1+3.可得a n+12-a n 2+2(a n+1-a n )=4a n+1,即2(a n+1+a n )=a n+12-a n 2=(a n+1+a n )(a n+1-a n ).由于a n >0,可得a n+1-a n =2.又a 12+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,故通项公式为a n =2n+1.(2)由a n =2n+1可知b n =1a n a n+1=1(2n+1)(2n+3)=12(12n+1-12n+3). 设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12×[(13-15)+(15-17)+…+(12n+1-12n+3)] =n 3(2n+3). 6.(2015天津,18,13分)已知数列{a n }满足a n+2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.解析 (1)由已知,得(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3,所以a 2(q-1)=a 3(q-1).又因为q ≠1,故a 3=a 2=2,由a 3=a 1·q,得q=2.当n=2k-1(k ∈N *)时,a n =a 2k-1=2k-1=2n -12;当n=2k(k ∈N *)时,a n =a 2k =2k =2n 2.所以,{a n }的通项公式为a n ={2n -12,n 为奇数,2n 2,n 为偶数.(2)由(1)得b n =log 2a 2na 2n -1=n 2n -1.设{b n }的前n 项和为S n ,则S n =1×120+2×121+3×122+…+(n-1)×12n -2+n×12n -1, 12S n =1×121+2×122+3×123+…+(n-1)×12n -1+n×12n , 上述两式相减,得12S n =1+12+122+…+12n -1-n 2n =1-12n 1-12-n 2n =2-22n -n 2n , 整理得,S n =4-n+22n -1.所以,数列{b n }的前n 项和为4-n+22n -1,n ∈N *.评析本题主要考查等比数列及其前n 项和公式、等差中项等基础知识.考查数列求和的基本方法、分类讨论思想和运算求解能力.7.(2014四川,19,12分)设等差数列{a n }的公差为d,点(a n ,b n )在函数f(x)=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln2,求数列{a n b n }的前n 项和T n .解析 (1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,有2a 8=4×2a 7=2a 7+2.解得d=a 8-a 7=2.所以,S n =na 1+n(n -1)2d=-2n+n(n-1)=n 2-3n. (2)函数f(x)=2x 的图象在(a 2,b 2)处的切线方程为y-2a 2=(2a 2ln 2)(x-a 2),它在x 轴上的截距为a 2-1ln2. 由题意得,a 2-1ln2=2-1ln2, 解得a 2=2.所以d=a 2-a 1=1.从而a n =n,b n =2n .所以T n =12+222+323+…+n -12n -1+n2n , 2T n =11+22+322+…+n2n -1. 因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n+1-n -22n. 所以,T n =2n+1-n -22n . 评析本题考查等差数列与等比数列的概念、等差数列与等比数列通项公式与前n 项和、导数的几何意义等基础知识,考查运算求解能力.考点二 数列的综合应用1.(2018浙江,20,15分)已知等比数列{a n }的公比q>1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n+1-b n )a n }的前n 项和为2n 2+n.(1)求q 的值;(2)求数列{b n }的通项公式.解析 本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1)由a 4+2是a 3,a 5的等差中项得a 3+a 5=2a 4+4,所以a 3+a 4+a 5=3a 4+4=28,解得a 4=8.由a 3+a 5=20得8(q +1q )=20,解得q=2或q=12,因为q>1,所以q=2.(2)设c n =(b n+1-b n )a n ,数列{c n }的前n 项和为S n .由c n ={S 1,n =1,S n -S n -1,n ≥2,解得c n =4n-1. 由(1)可知a n =2n-1,所以b n+1-b n =(4n-1)·(12)n -1, 故b n -b n-1=(4n-5)·(12)n -2,n ≥2, b n -b 1=(b n -b n-1)+(b n-1-b n-2)+…+(b 3-b 2)+(b 2-b 1)=(4n-5)·(12)n -2+(4n-9)·(12)n -3+…+7·12+3. 设T n =3+7·12+11·(12)2+…+(4n-5)·(12)n -2,n ≥2, 12T n =3·12+7·(12)2+…+(4n-9)·(12)n -2+(4n-5)·(12)n -1, 所以12T n =3+4·12+4·(12)2+…+4·(12)n -2-(4n-5)·(12)n -1, 因此T n =14-(4n+3)·(12)n -2,n ≥2, 又b 1=1,所以b n =15-(4n+3)·(12)n -2. 易错警示 利用错位相减法求和时,要注意以下几点:(1)错位相减法求和,只适合于数列{a n b n },其中{a n }为等差数列,{b n }为等比数列.(2)在等式两边所乘的数是等比数列{b n }的公比.(3)两式相减时,一定要错开一位.(4)特别要注意相减后等比数列的次数.(5)进行检验.2.(2014湖北,18,12分)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n,使得S n >60n+800?若存在,求n 的最小值;若不存在,说明理由.解析 (1)设数列{a n }的公差为d,依题意,2,2+d,2+4d 成等比数列,故有(2+d)2=2(2+4d),化简得d 2-4d=0,解得d=0或d=4.当d=0时,a n =2;当d=4时,a n =2+(n-1)·4=4n-2,从而得数列{a n }的通项公式为a n =2或a n =4n-2.(2)当a n =2时,S n =2n.显然2n<60n+800,此时不存在正整数n,使得S n>60n+800成立.当a n=4n-2时,S n=n[2+(4n-2)]2=2n2.令2n2>60n+800,即n2-30n-400>0,解得n>40或n<-10(舍去),此时存在正整数n,使得S n>60n+800成立,n的最小值为41.综上,当a n=2时,不存在满足题意的n;当a n=4n-2时,存在满足题意的n,其最小值为41.评析本题考查了数列的通项公式和求和公式,考查了分类讨论的方法.C组教师专用题组1.(2013课标Ⅰ,12,5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3,….若b1>c1,b1+c1=2a1,a n+1=a n,b n+1=c n+a n2,c n+1=b n+a n2,则( )A.{S n}为递减数列B.{S n}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列D.{S2n-1}为递减数列,{S2n}为递增数列答案B2.(2013重庆,12,5分)已知{a n}是等差数列,a1=1,公差d≠0,S n为其前n项和,若a1,a2,a5成等比数列,则S8= .答案643.(2012课标,16,5分)数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为.答案 1 8304.(2014江西,17,12分)已知首项都是1的两个数列{a n},{b n}(b n≠0,n∈N*)满足a n b n+1-a n+1b n+2b n+1b n=0.(1)令c n=a nb n,求数列{c n}的通项公式;(2)若b n=3n-1,求数列{a n}的前n项和S n.解析(1)因为a n b n+1-a n+1b n+2b n+1b n=0,b n≠0(n∈N*),所以a n+1b n+1-a nb n=2,即c n+1-c n=2.因为a1=b1=1,所以c1=a1b1=1,所以数列{c n}是以1为首项,2为公差的等差数列,故c n=2n-1.(2)由b n=3n-1知a n=c n b n=(2n-1)3n-1,于是数列{a n}的前n项和S n=1·30+3·31+5·32+…+(2n-1)·3n-1,3S n=1·31+3·32+…+(2n-3)·3n-1+(2n-1)·3n,相减得-2S n=1+2·(31+32+…+3n-1)-(2n-1)·3n=-2-(2n-2)3n,所以S n=(n-1)3n+1.评析本题主要考查等差数列的有关概念及求数列的前n项和,考查学生的运算求解能力,在利用错位相减法求和时,计算失误是学生失分的主要原因.5.(2014湖南,20,13分)已知数列{a n}满足a1=1,|a n+1-a n|=p n,n∈N*.(1)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(2)若p=12,且{a2n-1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.解析(1)因为{a n}是递增数列,所以|a n+1-a n|=a n+1-a n=p n.而a1=1,因此a2=p+1,a3=p2+p+1.又a1,2a2,3a3成等差数列,所以4a2=a1+3a3,因而3p2-p=0,解得p=13或p=0.当p=0时,a n+1=a n,这与{a n}是递增数列矛盾.故p=13.(2)由于{a2n-1}是递增数列,因而a2n+1-a2n-1>0,于是(a2n+1-a2n)+(a2n-a2n-1)>0.①但122n <122n -1, 所以|a 2n+1-a 2n |<|a 2n -a 2n-1|.②由①②知,a 2n -a 2n-1>0,因此a 2n -a 2n-1=(12)2n -1=(-1)2n 22n -1.③ 因为{a 2n }是递减数列,同理可得,a 2n+1-a 2n <0,故a 2n+1-a 2n =-(12)2n =(-1)2n+122n.④ 由③④知,a n+1-a n =(-1)n+12n . 于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)=1+12-122+…+(-1)n 2n -1 =1+12·1-(-12)n -11+12=43+13·(-1)n 2n -1, 故数列{a n }的通项a n =43+13·(-1)n 2n -1. 6.(2013北京文,20,13分)给定数列a 1,a 2,…,a n .对i=1,2,…,n-1,该数列前i 项的最大值记为A i ,后n-i 项a i+1,a i+2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n ≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n-1是等比数列;(3)设d 1,d 2,…,d n-1是公差大于0的等差数列,且d 1>0.证明:a 1,a 2,…,a n-1是等差数列. 解析 (1)d 1=2,d 2=3,d 3=6.(2)因为a 1>0,公比q>1,所以a 1,a 2,…,a n 是递增数列.因此,对i=1,2,…,n-1,A i =a i ,B i =a i+1.于是对i=1,2,…,n-1,d i=A i-B i=a i-a i+1=a1(1-q)q i-1.因此d i≠0且d i+1d i=q(i=1,2,…,n-2),即d1,d2,…,d n-1是等比数列.(3)设d为d1,d2,…,d n-1的公差.对1≤i≤n-2,因为B i≤B i+1,d>0,所以A i+1=B i+1+d i+1≥B i+d i+d>B i+d i=A i.又因为A i+1=max{A i,a i+1},所以a i+1=A i+1>A i≥a i.从而a1,a2,…,a n-1是递增数列.因此A i=a i(i=1,2,…,n-1).又因为B1=A1-d1=a1-d1<a1,所以B1<a1<a2<…<a n-1.因此a n=B1.所以B1=B2=…=B n-1=a n.所以a i=A i=B i+d i=a n+d i.因此对i=1,2,…,n-2都有a i+1-a i=d i+1-d i=d,即a1,a2,…,a n-1是等差数列.评析本题考查了等差、等比数列的定义,单调性等知识,考查了分析问题、解决问题的能力,考查了反证法.问题(3)难度较大,具有很强的区分度.7.(2017浙江,22,15分)已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*).证明:当n∈N*时,(1)0<x n+1<x n;(2)2x n+1-x n≤x n x n+12;(3)12n-1≤x n≤12n-2.证明 本题主要考查数列的概念、递推关系与单调性基础知识,不等式及其应用,同时考查推理论证能力、分析问题和解决问题的能力. (1)用数学归纳法证明:x n >0. 当n=1时,x 1=1>0.假设n=k 时,x k >0,那么n=k+1时,若x k+1≤0,则0<x k =x k+1+ln(1+x k+1)≤0,矛盾,故x k+1>0. 因此x n >0(n ∈N *).所以x n =x n+1+ln(1+x n+1)>x n+1. 因此0<x n+1<x n (n ∈N *). (2)由x n =x n+1+ln(1+x n+1)得,x n x n+1-4x n+1+2x n =x n+12-2x n+1+(x n+1+2)ln(1+x n+1).记函数f(x)=x 2-2x+(x+2)ln(1+x)(x ≥0), f '(x)=2x 2+xx+1+ln(1+x)>0(x>0). 函数f(x)在[0,+∞)上单调递增,所以f(x)≥f(0)=0,因此x n+12-2x n+1+(x n+1+2)ln(1+x n+1)=f(x n+1)≥0,故2x n+1-x n ≤x n x n+12(n ∈N *). (3)因为x n =x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,所以x n ≥12n -1.由x n x n+12≥2x n+1-x n 得1x n+1-12≥2(1x n -12)>0, 所以1x n -12≥2(1x n -1-12)≥…≥2n-1(1x 1-12)=2n-2, 故x n ≤12n -2.综上,12n -1≤x n ≤12n -2(n ∈N*).方法总结 1.证明数列单调性的方法.①差比法:作差a n+1-a n ,然后分解因式,判断符号,或构造函数,利用导数求函数的值域,从而判断其符号. ②商比法:作商a n+1a n ,判断an+1a n与1的大小,同时注意a n 的正负.③数学归纳法.④反证法:例如求证:n∈N*,a n+1<a n,可反设存在k∈N*,有a k+1≥a k,从而导出矛盾.2.证明数列的有界性的方法.①构造法:构造函数,求函数的值域,得数列有界.②反证法.③数学归纳法.3.数列放缩的方法.①裂项法:利用不等式性质,把数列的第k项分裂成某数列的相邻两项差的形式,再求和,达到放缩的目的.②累加法:先把a n+1-a n进行放缩.例:a n+1-a n≤q n,则有n≥2时,a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)≤a1+q+q2+…+q n-1.③累乘法:先把a n+1a n 进行放缩.例:a n+1a n≤q(q>0),则有n≥2时,a n=a1·a2a1·a3a2·…·a na n-1≤a1q n-1(其中a1>0).④放缩为等比数列:利用不等式性质,把非等比数列{a n}放缩成等比数列{b n},求和后,再进行适当放缩.8.(2014陕西,21,14分)设函数f(x)=ln(1+x),g(x)=xf '(x),x≥0,其中f '(x)是f(x)的导函数.(1)令g1(x)=g(x),g n+1(x)=g(g n(x)),n∈N+,求g n(x)的表达式;(2)若f(x)≥ag(x)恒成立,求实数a的取值范围;(3)设n∈N+,比较g(1)+g(2)+…+g(n)与n-f(n)的大小,并加以证明.解析由题设得,g(x)=x1+x(x≥0).(1)由已知,得g1(x)=x1+x,g2(x)=g(g1(x))=x1+x1+x1+x=x1+2x,g3(x)=x1+3x ,……,可得g n(x)=x1+nx.下面用数学归纳法证明.①当n=1时,g1(x)=x1+x,结论成立.②假设n=k 时结论成立,即g k (x)=x 1+kx. 那么,当n=k+1时,g k+1(x)=g(g k (x))=g k (x)1+g k (x)=x1+kx1+x 1+kx=x 1+(k+1)x, 即结论成立.由①②可知,结论对n ∈N +成立. (2)已知f(x)≥ag(x)恒成立, 即ln(1+x)≥ax1+x恒成立. 设φ(x)=ln(1+x)-ax1+x(x ≥0), 即φ'(x)=11+x -a (1+x)2=x+1-a (1+x)2,当a ≤1时,φ'(x)≥0(仅当x=0,a=1时等号成立), ∴φ(x)在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x)≥0在[0,+∞)上恒成立, ∴a≤1时,ln(1+x)≥ax1+x恒成立(仅当x=0时等号成立).当a>1时,对x ∈(0,a-1]有φ'(x)<0,∴φ(x)在(0,a-1]上单调递减, ∴φ(a -1)<φ(0)=0.即a>1时,存在x>0,使φ(x)<0,故知ln(1+x)≥ax1+x不恒成立, 综上可知,a 的取值范围是(-∞,1]. (3)由题设知g(1)+g(2)+…+g(n)=12+23+…+n n+1, n-f(n)=n-ln(n+1),比较结果为g(1)+g(2)+…+g(n)>n-ln(n+1). 证明如下:证法一:上述不等式等价于12+13+…+1n+1<ln(n+1),在(2)中取a=1,可得ln(1+x)>x1+x,x>0. 令x=1n,n ∈N +,则1n+1<ln n+1n. 下面用数学归纳法证明. ①当n=1时,12<ln 2,结论成立. ②假设当n=k 时结论成立,即12+13+…+1k+1<ln(k+1). 那么,当n=k+1时,12+13+…+1k+1+1k+2<ln(k+1)+1k+2<ln(k+1)+ln k+2k+1=ln(k+2), 即结论成立.由①②可知,结论对n ∈N +成立. 证法二:上述不等式等价于12+13+…+1n+1<ln(n+1), 在(2)中取a=1,可得ln(1+x)>x1+x,x>0. 令x=1n,n ∈N +,则ln n+1n >1n+1. 故有ln 2-ln 1>12, ln 3-ln 2>13, …… ln(n+1)-ln n>1n+1, 上述各式相加可得ln(n+1)>12+13+…+1n+1. 结论得证. 证法三:如图,∫ n0xx+1dx 是由曲线y=xx+1,x=n 及x 轴所围成的曲边梯形的面积,而12+23+…+nn+1是图中所示各矩形的面积和, ∴12+23+…+n n+1>∫ n 0x x+1dx=∫ n 0(1-1x+1)dx=n-ln(n+1), 结论得证.【三年模拟】一、选择题(每小题5分,共20分)1.(2017北京丰台期末,7)中国历法推测遵循以测为辅、以算为主的原则.例如《周髀算经》和《易经》里对二十四节气的晷(guǐ)影长的记录中,冬至和夏至的晷影长是实测得到的,其他节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中115.146寸表示115寸146分(1寸=10分).节气冬至小寒(大雪)大寒(小雪)立春(立冬)雨水(霜降)惊蛰(寒露)春分(秋分)清明(白露)谷雨(处暑)立夏(立秋)小满(大暑)芒种(小暑)夏至晷影长(寸)135.0125.56115.146105.24695.32685.42675.566.55655.64645.73635.82625.91616.0已知《易经》中记录的冬至的晷影长为130.0寸,夏至的晷影长为14.8寸,那么《易经》中所记录的惊蛰的晷影长应为( )A.72.4寸B.81.4寸C.82.0寸D.91.6寸 答案 C2.(2017北京东城期末,8)数列{a n }表示第n 天某种细菌的数量.细菌在理想条件下第n 天的日增长率r n =0.6(r n =a n+1-a na n,n ∈N *).当这种细菌在实际条件下生长时,其日增长率r n 会发生变化.如图描述了细菌在理想和实际两种状态下细菌数量Q 随时间的变化规律.那么,对这种细菌在实际条件下日增长率r n 的规律,描述正确的是( )ABCD答案B3.(2017北京东城二模,8)已知甲、乙两个容器,甲容器容量为x,装满纯酒精,乙容器容量为z,其中装有体积为y的水(x,y<z,单位:L).现将甲容器中的液体倒入乙容器中,直至甲容器中液体倒完或乙容器盛满,搅拌使乙容器中两种液体充分混合,再将乙容器中的液体倒入甲容器中直至倒满,搅拌使甲容器中的液体充分混合,如此称为一次操作.假设操作过程中溶液体积变化忽略不计.设经过n(n∈N*)次操作之后,乙容器中含有纯酒精a n(单位:L),下列关于数列{a n}的说法正确的是( )A.当x=y=a时,数列{a n}有最大值a2B.设b n=a n+1-a n(n∈N*),则数列{b n}为递减数列C.对任意的n∈N*,始终有a n≤xyzD.对任意的n∈N*,都有a n≤xyx+y答案D4.(2019届北京潞河中学10月月考文,8)设等差数列{a n}的前n项和为S n.在同一个坐标系中,f(n)=a n及g(n)=S n的部分图象如图所示,则( )A.当n=4时,S n取得最大值B.当n=3时,S n取得最大值C.当n=4时,S n取得最小值D.当n=3时,S n取得最小值答案A二、填空题(每小题5分,共15分)5.(2018北京海淀期末,10)已知公差为1的等差数列{a n}中,a1,a2,a4成等比数列,则{a n}的前100项和为.答案 5 0506.(2018北京通州一模,11)已知数列{a n}是等比数列,a3=4,a6=32,那么a8a6= ;记数列{a n-2n}的前n项和为S n,则S n= .答案4;2n-1-n2-n7.(2019届北京一零一中学10月月考,13)定义np1+p2+…+p n为n个正整数p1,p2,…,p n的“均倒数”,若已知数列{a n}的前n项的“均倒数”为12n+1,且b n=a n+14,则1b1b2+1b2b3+…+1b10b11= .答案1011三、解答题(共50分)8.(2018北京朝阳一模,15)已知数列{a n}的前n项和S n满足S n=2a n-1(n∈N*).(1)求a1,a2,a3的值;(2)若数列{b n}满足b1=2,b n+1=a n+b n,求数列{b n}的通项公式.解析(1)由题意知S1=a1=2a1-1,得a1=1,S2=2a2-1=a1+a2,得a2=a1+1=2,S3=2a3-1=a1+a2+a3,得a3=a1+a2+1=4.(2)S n =2a n -1,当n ≥2时,S n-1=2a n-1-1, 所以a n =S n -S n-1=2a n -1-(2a n-1-1),n>2, 化简得a n =2a n -2a n-1,n>2,即a n =2a n-1,n>2,所以数列{a n }是以a 1=1为首项,2为公比的等比数列, 则a n =2n-1(n ∈N *).因为b n+1=a n +b n ,所以a n =b n+1-b n ,当n ≥2时,b n =b 1+(b 2-b 1)+…+(b n -b n-1)=2+a 1+a 2+…+a n-1=2+a 1(1-2n -1)1-2=2n-1+1, 当n=1时,b 1=2=21-1+1,符合上式. 综上,b n =2n-1+1(n ∈N *).试题分析 (1)由S 1=a 1=2a 1-1,得a 1=1,由S 2=2a 2-1=a 1+a 2,得a 2=a 1+1=2,由S 3=2a 3-1=a 1+a 2+a 3,得a 3=a 1+a 2+1=4;(2)由S n =2a n -1,可得n ≥2时S n-1=2a n-1-1,两式相减可得a n =2a n-1,根据等比数列的通项公式可得a n =2n-1,根据累加法及等比数列的求和公式可得b n =2n-1+1,注意验证n=1时是否符合. 9.(2019届北京潞河中学10月月考文,17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }满足a 1=b 1=1,S 3=b 3+2,S 5=b 5-1. (1)求数列{a n },{b n }的通项公式;(2)如果数列{b n }为递增数列,求数列{a n b n }的前n 项和T n .解析 (1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q,则由题意得{3+3d =q 2+2,5+10d =q 4-1,即9d 2-4d-5=0,解得d=1或d=-59(舍). 所以q=±2.所以a n =n,b n =2n-1或b n =(-2)n-1. (2)因为数列{b n }为递增数列, 所以b n =2n-1,所以T n =1×20+2×21+3×22+…+n×2n-1, 2T n =1×21+2×22+3×23+…+(n-1)×2n-1+n×2n , 相减得-T n =20+21+22+…+2n-1-n×2n =2n -1-n×2n , 所以T n =1+(n-1)2n .10.(2019届北京朝阳期中,15)设{a n }(n ∈N *)是各项均为正数的等比数列,且a 2=3,a 4-a 3=18. (1)求{a n }的通项公式;(2)若b n =a n +log 3a n ,求b 1+b 2+…+b n .解析 (1)设{a n }的首项为a 1,公比为q(a 1>0,q>0),则依题意得{a 1q =3,a 1q 3-a 1q 2=18,解得a 1=1,q=3.所以{a n }的通项公式为a n =3n-1,n ∈N *. (2)因为b n =a n +log 3a n =3n-1+(n-1),所以b 1+b 2+b 3+…+b n =(1+3+32+…+3n-1)+[0+1+2+…+(n-1)]=1-3n 1-3+n(n -1)2=3n -12+n(n -1)2. 11.(2019届北京海淀期中,20)记数列{a n }的前n 项中最大值为M n ,最小值为m n ,令b n =M n +m n2. (1)若a n =2n -3n,请写出b 1,b 2,b 3,b 4的值;(2)求证:“数列{a n }是等差数列”是“数列{b n }是等差数列”的充要条件. 解析 (1)因为a n =2n -3n,所以a 1=-1,a 2=-2,a 3=-1,a 4=4,所以b 1=M n +m n 2=-1-12=-1, b 2=M n +m n 2=-1-22=-32, b 3=M n +m n 2=-1-22=-32, b 4=M n +m n 2=4-22=1. (2)证明:①充分性:当数列{a n }是等差数列时,设其公差为d, 当d>0时,a n -a n-1=d>0,所以a n >a n-1,所以M n =a n ,m n =a 1, 当d<0时,a n -a n-1=d<0,所以a n <a n-1,所以M n =a 1,m n =a n ,当d=0时,a n-a n-1=d=0,所以a n=a n-1,所以M n=a1,m n=a n,综上,总有b n=a n+a12,所以b n-b n-1=a n+a12-a n-1+a12=d2,所以数列{b n}是等差数列.②必要性:当数列{b n}是等差数列时,设其公差为d*,所以b n-b n-1=M n+m n2-M n-1+m n-12=M n-M n-12+m n-m n-12=d*,根据M n,m n的定义,有以下结论:M n≥M n-1,m n≤m n-1,且两个不等式至少有一个取等号.(i)当d*>0时,则必有M n>M n-1,所以a n=M n>M n-1=a n-1, 所以{a n}是一个单调递增数列,所以M n=a n,m n=a1,所以b n-b n-1=a n+a12-a n-1+a12=a n-a n-12=d*,所以a n-a n-1=2d*,即{a n}为等差数列.(ii)当d*<0时,则必有m n<m n-1,所以a n=m n<m n-1=a n-1, 所以{a n}是一个单调递减数列,所以M n=a1,m n=a n,所以b n-b n-1=a1+a n2-a1+a n-12=a n-a n-12=d*,所以a n-a n-1=2d*,即{a n}为等差数列. (iii)当d*=0时,b n-b n-1=M n+m n2-M n-1+m n-12=M n-M n-12+m n-m n-12=0,因为M n-M n-1,m n-m n-1中必有一个为0,根据上式,一个为0,则另一个也为0,所以M n=M n-1,m n=m n-1,所以{a n}为常数列,所以{a n}为等差数列. 综上,“数列{a n}是等差数列”是“数列{b n}是等差数列”的充要条件.。
6.4 数列求和、数列的综合应用挖命题【考情探究】分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等.破考点【考点集训】考点一数列求和1.(2017湖南郴州第一次教学质量监测,6)在等差数列{a n}中,a4=5,a7=11.设b n=(-1)n·a n,则数列{b n}的前100项之和S100=( )A.-200B.-100C.200D.100答案 D2.(2018湖北东南省级示范高中联考,15)已知S n为{a n}的前n项和,若a n(4+cosnπ)=n(2-cos nπ),则S88等于.答案23323.(2018江西吉安一中、九江一中等八所重点中学4月联考,13)若{a n},{b n}满足a nb n=1,a n=n2+3n+2,则{b n}的前2018项和为.答案考点二数列的综合应用1.(2018福建漳州期末调研测试,5)等差数列{a n}和等比数列{b n}的首项均为1,公差与公比均为3,则++=( )A.64B.32C.38D.33答案 D2.(2017陕西西安铁一中第五次模拟,9)已知数列{a n}满足a n=log(n+1)(n+2)(n∈N*),我们把使乘积a1·a2·a3·…·a n为整数的数n叫做“优数”,则在区间(1,2004)内的所有“优数”的和为( ) A.1024 B.2003 C.2026 D.2048答案 C3.已知a n=3n(n∈N*),记数列{a n}的前n项和为T n,若对任意的n∈N*,k≥3n-6恒成立,则实数k的取值范围是.答案k≥炼技法【方法集训】方法1 错位相减法求和1.(2018福建闽侯第八中学期末,16)已知数列{na n}的前n项和为S n,且a n=2n,则使得S n-na n+1+50<0的最小正整数n的值为.答案52.(2018河南安阳第二次模拟,17)设等差数列{a n}的前n项和为S n,点(n,S n)在函数f(x)=x2+Bx+C-1(B,C∈R)的图象上,且a1=C.(1)求数列{a n}的通项公式;(2)记b n=a n(-+1),求数列{b n}的前n项和T n.解析(1)设数列{a n}的公差为d,则S n=na1+-d=n2+-n,又S n=n2+Bn+C-1,两式对照得-解得所以a1=1,所以数列{a n}的通项公式为a n=2n-1(n∈N*).(2)由(1)知b n=(2n-1)(2·2n-1-1+1)=(2n-1)2n,则T n=1×2+3×22+…+(2n-1)·2n,2T n=1×22+3×23+…+(2n-3)·2n+(2n-1)·2n+1,两式相减得T n=(2n-1)·2n+1-2(22+…+2n)-2=(2n-1)·2n+1-2×----2=(2n-3)·2n+1+6.方法2 裂项相消法求和1.(2018湖南株洲醴陵第二中学、第四中学联考,3)数列的前2017项的和为( )A. B. C.+1 D.答案 B2.(2018湖南邵阳期末,15)设数列{(n2+n)a n}是等比数列,且a1=,a2=,则数列{3n a n}的前15项和为.答案3.(2017广东潮州二模,16)已知S n为数列{a n}的前n项和,a n=2·3n-1(n∈N*),若b n=,则b1+b2+…+b n= .答案--过专题【五年高考】A组统一命题·课标卷题组考点一数列求和1.(2017课标Ⅱ,15,5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则= .答案2.(2015课标Ⅰ,17,12分)S n为数列{a n}的前n项和.已知a n>0,+2a n=4S n+3.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和.解析(1)由+2a n=4S n+3,可知+2a n+1=4S n+1+3.可得-+2(a n+1-a n)=4a n+1,即2(a n+1+a n)=-=(a n+1+a n)(a n+1-a n).由于a n>0,所以a n+1-a n=2.又由+2a1=4a1+3,解得a1=-1(舍去)或a1=3.所以{a n}是首项为3,公差为2的等差数列,通项公式为a n=2n+1.(6分)(2)由a n=2n+1可知b n===-.设数列{b n}的前n项和为T n,则T n=b1+b2+…+b n=-+-+…+-=.(12分)思路分析(1)由+2a n=4S n+3,得+2a n+1=4S n+1+3,两式相减得出递推关系,再求出a1,利用等差数列的通项公式可得通项.(2)利用裂项相消法求T n-.考点二数列的综合应用1.(2017课标Ⅰ,12,5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110答案 A2.(2016课标Ⅱ,17,12分)S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(1)求b1,b11,b101;(2)求数列{b n}的前1000项和.解析(1)设{a n}的公差为d,据已知有7+21d=28,解得d=1.所以{a n}的通项公式为a n=n.b1=[lg1]=0,b11=[lg11]=1,b101=[lg101]=2.(6分)(2)因为b n=(9分)所以数列{b n}的前1000项和为1×90+2×900+3×1=1893.(12分)思路分析(1)先求公差,从而得通项a n,再根据已知条件求b1,b11,b101.(2)分析出{b n}中项的规律,进而求出数列{b n}的前1000项和.B组自主命题·省(区、市)卷题组考点一数列求和1.(2018天津,18,13分)设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(1)求{a n}和{b n}的通项公式;(2)设数列{S n}的前n项和为T n(n∈N*).(i)求T n;(ii)证明=-2(n∈N*).解析(1)设等比数列{a n}的公比为q.由a1=1,a3=a2+2,可得q2-q-2=0.因为q>0,可得q=2,故a n=2n-1.设等差数列{b n}的公差为d.由a4=b3+b5,可得b1+3d=4.由a5=b4+2b6,可得3b1+13d=16,从而b1=1,d=1,故b n=n.所以,数列{a n}的通项公式为a n=2n-1,数列{b n}的通项公式为b n=n.=2n-1,(2)(i)由(1),有S n=--故T n=--=--n=2n+1-n-2.-(ii)证明:因为=--==-,所以,=-+-+…+-=-2.2.(2016山东,18,12分)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(1)求数列{b n}的通项公式;(2)令c n=,求数列{c n}的前n项和T n.解析(1)由题意知,当n≥2时,a n=S n-S n-1=6n+5.当n=1时,a1=S1=11,所以a n=6n+5.设数列{b n}的公差为d.由即可解得b1=4,d=3.所以b n=3n+1.(2)由(1)知c n==3(n+1)·2n+1.又T n=c1+c2+…+c n,得T n=3×[2×22+3×23+…+(n+1)×2n+1],2T n=3×[2×23+3×24+…+(n+1)×2n+2],两式作差,得-T n=3×[2×22+23+24+…+2n+1-(n+1)×2n+2]=3×---=-3n·2n+2.所以T n=3n·2n+2.考点二数列的综合应用1.(2015福建,8,5分)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( ) A.6 B.7 C.8 D.9答案 D2.(2018浙江,20,15分)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1-b n)a n}的前n项和为2n2+n.(1)求q的值;(2)求数列{b n}的通项公式.解析(1)由a4+2是a3,a5的等差中项得a3+a5=2a4+4,所以a3+a4+a5=3a4+4=28,解得a4=8.由a3+a5=20得8=20,解得q=2或q=,因为q>1,所以q=2.(2)设c n=(b n+1-b n)a n,数列{c n}的前n项和为S n.由c n=--解得c n=4n-1.由(1)可知a n=2n-1,所以b n+1-b n=(4n-1)·-,故b n-b n-1=(4n-5)·-,n≥2,b n-b1=(b n-b n-1)+(b n-1-b n-2)+…+(b3-b2)+(b2-b1)=(4n-5)·-+(4n-9)·-+…+7·+3.设T n=3+7·+11·+…+(4n-5)·-,n≥2,T n=3·+7·+…+(4n-9)·-+(4n-5)·-,所以T n=3+4·+4·+…+4·--(4n-5)·-,因此T n=14-(4n+3)·-,n≥2,又b1=1,所以b n=15-(4n+3)·-.C组教师专用题组考点一数列求和1.(2017天津,18,13分)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b2n-1}的前n项和(n∈N*).解析(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0,解得q=2或q=-3,又因为q>0,所以q=2.所以,b n=2n.由b3=a4-2a1,可得3d-a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n-2.所以,数列{a n}的通项公式为a n=3n-2,数列{b n}的通项公式为b n=2n.(2)设数列{a2n b2n-1}的前n项和为T n,由a2n=6n-2,b2n-1=2×4n-1,有a2n b2n-1=(3n-1)×4n,故T n=2×4+5×42+8×43+…+(3n-1)×4n,4T n=2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,上述两式相减,得-3T n=2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=---4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得T n=-×4n+1+.所以,数列{a2n b2n-1}的前n项和为-×4n+1+.方法总结(1)等差数列与等比数列中有五个量a1,n,d(或q),a n,S n,一般可以“知三求二”,通过列方程(组)求关键量a1和d(或q),问题可迎刃而解.(2)数列{a n}是公差为d的等差数列,{b n}是公比q≠1的等比数列,求数列{a n b n}的前n项和适用错位相减法.2.(2015湖北,18,12分)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q.已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式;(2)当d>1时,记c n=,求数列{c n}的前n项和T n.解析(1)由题意有,即解得或故--或-(2)由d>1,知a n=2n-1,b n=2n-1,故c n=--,于是T n=1+++++…+--,①T n=+++++…+-.②①-②可得T n=2+++…+---=3-,故T n=6--.3.(2015天津,18,13分)已知数列{a n}满足a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列.(1)求q的值和{a n}的通项公式;(2)设b n=-,n∈N*,求数列{b n}的前n项和.解析(1)由已知,有(a3+a4)-(a2+a3)=(a4+a5)-(a3+a4),即a4-a2=a5-a3,所以a2(q-1)=a3(q-1).又因为q≠1,故a3=a2=2,由a3=a1·q,得q=2.当n=2k-1(k∈N*)时,a n=a2k-1=2k-1=-;当n=2k(k∈N*)时,a n=a2k=2k=.所以,{a n}的通项公式为a n=-为奇数为偶数(2)由(1)得b n=-=-.设{b n}的前n项和为S n,则S n=1×+2×+3×+…+(n-1)×-+n×-,S n=1×+2×+3×+…+(n-1)×-+n×,上述两式相减,得S n=1+++…+--=---=2--,整理得,S n=4--.所以,数列{b n}的前n项和为4--,n∈N*.4.(2014江西,17,12分)已知首项都是1的两个数列{a n},{b n}(b n≠0,n∈N*)满足a nb n+1-a n+1b n+2b n+1b n=0.(1)令c n=,求数列{c n}的通项公式;(2)若b n=3n-1,求数列{a n}的前n项和S n.解析(1)因为a n b n+1-a n+1b n+2b n+1b n=0,b n≠0(n∈N*),所以-=2,即c n+1-c n=2.所以数列{c n}是以1为首项,2为公差的等差数列,故c n=2n-1. (2)由(1)及b n=3n-1知a n=c n b n=(2n-1)3n-1,于是数列{a n}的前n项和S n=1·30+3·31+5·32+…+(2n-1)·3n-1,3S n=1·31+3·32+…+(2n-3)·3n-1+(2n-1)·3n,相减得-2S n=1+2·(31+32+…+3n-1)-(2n-1)·3n=-2-(2n-2)3n,所以S n=(n-1)3n+1.5.(2014山东,19,12分)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-1,求数列{b n}的前n项和T n.解析(1)因为S1=a1,S2=2a1+×2=2a1+2,S4=4a1+×2=4a1+12,所以由题意得(2a1+2)2=a1(4a1+12),解得a1=1,所以a n=2n-1.(2)b n=(-1)n-1=(-1)n-1-=(-1)n-1-.当n为偶数时,T n=-+…+----=1-=.当n为奇数时,T n=-+…--+-+-+=1+=.所以T n=为奇数为偶数或--考点二数列的综合应用1.(2018江苏,14,5分)已知集合A={x|x=2n-1,n∈N*},B={x|x=2n,n∈N*}.将A∪B的所有元素从小到大依次排列构成一个数列{a n}.记S n为数列{a n}的前n项和,则使得S n>12a n+1成立的n 的最小值为.答案272.(2018江苏,20,16分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q 的等比数列.(1)设a1=0,b1=1,q=2,若|a n-b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n-b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).解析(1)由条件知a n=(n-1)d,b n=2n-1.因为|a n-b n|≤b1对n=1,2,3,4均成立,即1≤1,1≤d≤3,3≤2d≤5,7≤3d≤9,得≤d≤.因此,d的取值范围为.(2)由条件知:a n=b1+(n-1)d,b n=b1q n-1.若存在d∈R,使得|a n-b n|≤b1(n=2,3,…,m+1)均成立,即|b1+(n-1)d-b1q n-1|≤b1(n=2,3,…,m+1).即当n=2,3,…,m+1时,d满足---b1≤d≤--b1.因为q∈(1,所以1<q n-1≤q m≤2,从而---b1≤0,--b1>0,对n=2,3,…,m+1均成立.因此,取d=0时,|a n-b n|≤b1对n=2,3,…,m+1均成立.下面讨论数列---的最大值和数列--的最小值(n=2,3,…,m+1).①当2≤n≤m时,-----=----=----,当1<q≤时,有q n≤q m≤2,从而n(q n-q n-1)-q n+2>0.因此,当2≤n≤m+1时,数列---单调递增,故数列---的最大值为-.②设f(x)=2x(1-x),当x>0时,f'(x)=(ln2-1-xln2)2x<0.所以f(x)单调递减,从而f(x)<f(0)=1.当2≤n≤m时,--=-≤-=f<1.因此,当2≤n≤m+1时,数列--单调递减,故数列--的最小值为.因此,d的取值范围为-.3.(2015安徽,18,12分)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{x n}的通项公式;(2)记T n=…-,证明:T n≥.解析(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2.从而切线方程为y-2=(2n+2)(x-1).令y=0,解得切线与x轴交点的横坐标x n=1-=.(2)证明:由题设和(1)中的计算结果知T n=…-=…-.当n=1时,T1=.当n≥2时,因为-=-=->--=-=-.所以T n>×××…×-=.综上可得对任意的n∈N*,均有T n≥.4.(2015陕西,21,12分)设f n(x)是等比数列1,x,x2,…,x n的各项和,其中x>0,n∈N,n≥2.(1)证明:函数F n(x)=f n(x)-2在内有且仅有一个零点(记为x n),且x n=+;(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n(x),比较f n(x)和g n(x)的大小,并加以证明.解析(1)证明:F n(x)=f n(x)-2=1+x+x2+…+x n-2,则F n(1)=n-1>0,F n=1+++…+-2=---2=-<0,所以F n(x)在内至少存在一个零点.又F'n(x)=1+2x+…+nx n-1>0,故F n(x)在内单调递增,所以F n(x)在内有且仅有一个零点x n.因为x n是F n(x)的零点,所以F n(x n)=0,即---2=0,故x n=+.(2)由题设知,g n(x)=.设h(x)=f n(x)-g n(x)=1+x+x2+…+x n-,x>0.当x=1时,f n(x)=g n(x).当x≠1时,h'(x)=1+2x+…+nx n-1--.若0<x<1,则h'(x)>x n-1+2x n-1+…+nx n-1-x n-1 =x n-1-x n-1=0.若x>1,则h'(x)<x n-1+2x n-1+…+nx n-1-x n-1=x n-1-x n-1=0.所以h(x)在(0,1)上递增,在(1,+∞)上递减,所以h(x)<h(1)=0,即f n(x)<g n(x).综上所述,当x=1时,f n(x)=g n(x);当x≠1时,f n(x)<g n(x).5.(2015重庆,22,12分)在数列{a n}中,a1=3,a n+1a n+λa n+1+μ=0(n∈N+).(1)若λ=0,μ=-2,求数列{a n}的通项公式;(2)若λ=(k0∈N+,k0≥2),μ=-1,证明:2+<<2+.解析(1)由λ=0,μ=-2,得a n+1a n=2(n∈N+).若存在某个n0∈N+,使得=0,则由上述递推公式易得-=0.重复上述过程可得a1=0,此与a1=3矛盾,所以对任意n∈N+,a n≠0.从而a n+1=2a n(n∈N+),即{a n}是一个公比q=2的等比数列.故a n=a1q n-1=3·2n-1.(2)证明:若λ=,μ=-1,则数列{a n}的递推关系式变为a n+1a n+a n+1-=0,变形为a n+1=(n∈N+).由上式及a1=3>0,归纳可得3=a1>a2>...>a n>a n+1> 0因为a n+1==-=a n-+·,所以对n=1,2,…,k0求和得=a1+(a2-a1)+…+(-) =a1-k0·+·…>2+·…个=2+.另一方面,由上已证的不等式知a1>a2>…>>>2,得=a1-k0·+·…<2+·…个=2+.综上,2+<<2+.【三年模拟】一、选择题(每小题5分,共30分)1.(2019届江西抚州七校高三10月联考,11)已知数列{a n}的前n项和为S n,且满足a1=a2=1,S n=a n+2-1,则下列命题错误的是( )A.a n+2=a n+1+a nB.a1+a3+a5+…+a99=a100C.a2+a4+a6+…+a98=a99D.S1+S2+S3+…+S98=S100-100答案 C2.(2019届山西太原高三阶段性考试,10)已知集合P={x|x=2n,n∈N*},Q={x|x=2n-1,n∈N*},将P∪Q中的所有元素从小到大依次排列构成一个数列{a n},记S n为数列{a n}的前n项和,则使得S n<1000成立的n的最大值为( )A.9B.32C.35D.61答案 C3.(2018福建厦门第一学期期末质检,7)已知数列{a n}满足a n+1+(-1)n+1a n=2,则其前100项和为( )A.250B.200C.150D.100答案 D4.(2018河北衡水中学八模,8)已知函数f(x)=a x+b(a>0,且a≠1)的图象经过点P(1,3),Q(2,5).当n∈N*时,a n=-,记数列{a n}的前n项和为S n,当S n=时,n的值为( )A.7B.6C.5D.4答案 D5.(2018四川南充模拟,11)设数列{a n}的前n项和为S n,已知a1=,a n+1=则-S2018等于( )A. B. C. D.答案 B6.(2018百校联盟TOP20三月联考,12)已知数列{a n}的通项公式为a n=-为奇数为偶数则数列{3a n+n-7}的前2n项和的最小值为( )A.-B.-C.-D.-答案 D二、填空题(每小题5分,共15分)7.(2019届山西太原高三上学期阶段性考试,15)在数列{a n}中,a1=1,a n=-a n-1(n≥2),记S n为数列的前n项和,若S n=,则n= .答案498.(2018安徽皖南八校第三次联考,16)已知数列{a n}的前n项和为S n=2n+1,b n=log2(·),数列{b n}的前n项和为T n,则满足T n>1024的n的最小值为.答案99.(2017河北“五个一名校联盟”二模,16)已知数列{a n}的前n项和为S n,S n=n2+2n,b n=a n a n+1cos[(n+1)π],数列{b n}的前n项和为T n,若T n≥tn2对n∈N*恒成立,则实数t的取值范围是.答案(-∞,-5]三、解答题(共25分)10.(2019届全国I卷五省优创名校联考,17)设数列{a n}的前n项和为S n,a1=3,且S n=na n+1-n2-n.(1)求{a n}的通项公式;(2)若数列{b n}满足b n=-,求{b n}的前n项和T n.解析(1)由条件知S n=na n+1-n2-n,①当n=1时,a2-a1=2;当n≥2时,S n-1=(n-1)a n-(n-1)2-(n-1),②①-②得a n=na n+1-(n-1)a n-2n,整理得a n+1-a n=2.综上可知,数列{a n}是首项为3、公差为2的等差数列,故a n=2n+1.(2)由(1)得b n==-,所以T n=--…-=-=-.11.(2018安徽淮南一模,17)已知数列{a n}为等差数列,且a3=5,a5=9,数列{b n}的前n项和为S n=b n+.(1)求数列{a n}和{b n}的通项公式;(2)设c n=a n|b n|,求数列{c n}的前n项和T n.解析(1)∵数列{a n}为等差数列,且a3=5,a5=9,=-=2,∴a1=a3-2d=5-4=1,∴d=--∴a n=1+(n-1)×2=2n-1.∵数列{b n}的前n项和为S n=b n+,∴n=1时,S1=b1+,由S1=b1,解得b1=1,当n≥2时,b n=S n-S n-1=b n-b n-1,∴b n=-2b n-1,∴{b n}是首项为1,公比为-2的等比数列,∴b n=(-2)n-1.(2)c n=a n|b n|=(2n-1)·2n-1,∴数列{c n}的前n项和T n=1×1+3×2+5×22+…+(2n-1)×2n-1,∴2T n=1×2+3×22+5×23+…+(2n-1)×2n,两式相减,得:-T n=1+2(2+22+…+2n-1)-(2n-1)·2n-(2n-1)·2n=1+2×--=1+2n+1-4-(2n-1)·2n=-3+(3-2n)·2n,∴T n=(2n-3)·2n+3.易错警示在利用错位相减法求和时,注意相减后的项求和.如本题-T n=1+2(2+22+…+2n-1)-(2n-1)·2n中,对于2+22+…+2n-1的求解,利用S n=-(q≠1)更好一些.-。