长方体和正方体的表面积练习课(秀)
- 格式:ppt
- 大小:1.63 MB
- 文档页数:54
人教版数学五年级下册第三单元《长方体和正方体的表面积》达标练一、选择题1.把棱长为6cm的正方体切成两个相同的长方体,则表面积会增加()cm2。
A.72 B.36 C.1082.一个长方体是由3个相同的小正方体拼成的,拼成后表面积减少16cm2,则大长方体的表面积是()cm2。
A.36 B.56 C.48 D.643.把三个棱长是2厘米的正方体拼成一个长方体,长方体的表面积比原来三个正方体表面积之和减少了()平方厘米。
A.8 B.16 C.4 D.324.有两盒糖果(如图),现要将它包成一包,用最经济的方式包装,至少要用()平方厘米包装纸。
A.1300 B.1200 C.1000 D.9005.将4个棱长都是5厘米的正方体摆放在桌面上(如图),露在外面的面积是()平方厘米。
A.75 B.225 C.325 D.3756.一个正方体的展开图如图所示,折成一个正方体后,会徽所在面的对面所标的字是()。
A .州B .亚C .杭7.爸爸给点点做了一个长30厘米,宽30厘米,高20厘米无盖的长方体纸盒,作为蚕宝宝的家。
做这个纸盒至少需要多大的纸板?下列算式不合理的是( )。
A .203043030⨯⨯+⨯B .303042030⨯⨯+⨯C .()20303030203023030⨯+⨯+⨯⨯-⨯二、填空题8.由棱长是1厘米的搭成的两个立体图形(如图所示),图1的表面积可以这样计算:请根据图1的表面积计算方法,计算图2的表面积:( )=( )(cm 2)。
9.如图,阴影部分是一个正方体展开后其中的5个面,要使它形成完整的正方体展开图,应在写有“数、学、好、玩”4个面中选( )面。
10.将一个正方体纸盒展开(如图),现有三个正方形分别填着3、6、8,如果要使相对面上两个数的和都为10。
那么A=( ),B=( )。
11.一个长方体木料棱长总和为124厘米,高为8厘米,宽为5厘米,这个长方体的长为( )厘米。
如果把它锯成两个完全相同的长方体木料,表面积最多增加( )平方厘米。
长方体与正方体的综合练习题一、表面积1.无盖的长方体或者正方体的表面积(1)一个无盖的正方体的玻璃鱼缸,棱长为7分米,制作这个鱼缸至少需要多大面积的玻璃?正方体的表面积公式=6a²,而这里是无盖的,也就是我们只需要求5个面的面积就可以了,所以S=5×7×7=245(平方分米)(2)教室长为9米,宽为6米,高为3米,用涂料粉刷四壁和天花板,扣除门窗面积20平方米,要粉刷的面积是多少平方米?长方体表面积公式=2(ab+bh+ah),六个面的面积和,但是这里粉刷墙壁,地面不刷,所以求5个面的面积,也就是少求一个长×宽。
可以用总得表面积-长×宽,也可以直接求S=ab+2(ah+bh) ,这个题的特殊性是粉刷墙壁,最后要减掉门窗的面积。
S=9×6+2×(9×3+6×3)=144平方米144-20=124平方米2.求四个面的面积国家游泳中心水立方体育馆外形为长方体,长是177米,宽是177米,高为30米,他四周的总面积是多少?这是一个有两个面是正方形的长方体,除了上下两个面,其余四个面完全相同,求四周的表面积,S=2ah+2bh=177×30×4(这里长宽相等,因此直接求出一个面的乘以4就可以了)3.铺瓷砖的问题求出表面积除以一块瓷砖的小面积,也就是课上经常说的大面积÷小面积二、体积1.利用公式直接求体积这类题较为简单,但是要注意看题目里的单位是否统一,如果不统一要先化成统一单位如长方体长6米,宽70分米,高4米,体积是多少立方米?2.知道体积,长、宽、高其中的两个,求另外一个量h=v÷a÷b,a=v÷h÷b,b=v÷a÷h3.砌砖问题问用了多少块砖的问题?(1)如:某住宅小区,长为30米,厚为24厘米,高为2米,每立方米用砖525块,一共用多少块砖?先统一单位,再求体积,再用体积乘以525就等于一共用了多少块砖(2)长为3米,宽为2米,高为6米的墙,如果用20立方分米的砖去砌墙,用砖多少块大体积÷小体积表面积1、一个长方体的长是8厘米,宽是4厘米,高是2厘米,这个长方体的表面积是多少?2、一个正方体的棱长是5厘米,它的表面积是多少平方厘米?3、用一根48厘米的铁丝扎成一个正方体,这个正方体的表面积是多少平方厘米?4、把一个棱长为5厘米的正方体,锯成3个长方体,它的表面积增加了多少平方厘米?5、把3个棱长为4厘米的正方体拼成一个长方体,这个长方体的表面积比原来的3个正方体的表面积之和减少了多少?6、一个无盖的长方体铁皮水桶,长是8分米,宽是6分米,高是0.5分米,做这样一个水桶至少需要多少平方米的铁皮?7、某商店制作的广告箱是长方体,长1.5米,宽1.2米,高2.5米,如果在它的四周贴一圈广告纸,贴广告纸的面积是多少平方米?8、学校要粉刷教室,已知教室的长是8米,宽是6米,高是3米,扣除门窗黑板的面积是11.5平方米,如果每平方米需要花3.5元涂料费,粉刷这个教室需要花费多少元?一、高的变化引起表面积的变化。
《长方体、正方体表面积与体积的练习》教学内容:补充有关长、正方体表面积和体积计算的练习教学目标:1.加深认识长方体,正方体的表面积和体积的意义,明确表面积和体积的区别和联系。
2.进一步巩固长方体和正方体表面积和体积计算方法。
3.能应用所学的知识解决一些实际问题,提高解决问题的灵活性。
教学重点、难点:能灵活应用表面积、体积计算方法解决相关的实际问题。
教学准备:12个小正方体、魔方、题单、长24厘米宽14厘米的长方形纸板教学过程:一、复习整理我们已经学习了长方体、正方体表面积与体积的计算,长方体、正方体表面积是指什么?怎样计算长方体的表面积?(板书字母公式)怎样计算正方体的表面积?(板书字母公式)通常情况下表面积要算6个面的总面积,有时只要计算一个、两个或几个面的面积就可以了,你能结合生活中的情况来举例说明吗?学生举例说明,教师与学生共同整理:一个面:底面积、占地面积等;四个面:长方体盒子侧面贴的商标纸,烟囱、通风管等的用材料问题;五个面:鱼缸、游泳池贴地砖等;解决表面积计算时需要根据物体的实际情况来确定计算哪几个面。
长、正方体的体积是指什么?可以怎样计算?(板书字母公式)还可统一用什么方法计算?(板书字母公式)容积与体积有何联系与区别?二、实践操作,自主探索。
(一)、动手操作。
1.师:接下来我们给同学们准备了12个小正方体,我们假设它的棱长为1厘米,请同学们把它们摆成形状不同的长方体,看你们能得到几个?(发给表格)2.师:请选择其中一个求它的表面积。
长(厘米)宽(厘米)高(厘米)表面积(平方厘米)12 1 1 506 2 1 404 3 1 343 2 2 323.师:哪位同学愿意来告诉大家,你选择的是哪一个长方体?它的表面积是多少?4.每种摆法的体积都是多少?为什么?(二)合作学习。
1.师:那如果要同学们从这12个小正方体中选取其中的几个摆成一个大正方体,该怎么办?请同学们摆一摆,拼一拼。
2.师;请同学们认真观察这个大的正方体,说一说它的棱长是多少厘米?谁能告诉老师它的棱长总和、表面积和体积各是多少吗?(三)贴近生活学数学。
长方体和正方体表面积练习题含答案班级:姓名:学号:成绩: 一、填空: 1、一个正方体棱长5厘米,它的棱长和是,表面积是,体积是。
2、一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是,占地面积是,表面积是,体积是。
3、一个长方体方钢,横截面积是12平方厘米,长2分米,体积是立方厘米。
4、一个长方体水箱,从里面量,底面积是25平方米,水深1.6米,这个水箱能装水升。
5、一块正方体的钢锭,棱长是10分米,如果1立方分米的钢重7.8千克,这块钢锭重千克。
6、正方体的棱长扩大3倍,棱长和扩大倍,表面积扩大倍,体积扩大倍。
927 7、用棱长5厘米的小正方体拼成一个大正方体,至少需这样的小正方体块。
8、一个长方体的长、宽、高分别 是a米、b米、h米。
如果高增加2米,体积比原来增加立方米。
2ab 二、判断: 1、正方体是由6个完全相同的正方形组成的图形。
2、棱长6厘米的正方体,它的表面积和体积相等。
3、a表示 a×。
4、一个长方体,最多有两个面面积相等。
× 3 5、体积相等的两个正方体,它们的表面积一定相等。
× 三、操作题: 右图是长方体展开图,测量所需数据,并求长方体体积。
四、解决问题: 1、一个长方体铁块,长10分米,宽5分米,高4分米,每立方分米铁块重7.8千克,这个铁块重多少千克?10×5×4=200 200×7.8=1560 答:这个铁块重1560kg。
2、一节长方体形状的铁皮通风管长2米,横截面是边长为10厘米的正方体,做这节通风管至少需要多少平方厘米铁皮? ×2=88× 答:需要88cm2 3、一个无盖的长方体金鱼缸,长8分米,宽6分米,高7分米。
制作这个鱼缸共需玻璃多少平方分米?这个鱼缸能装水多少升? 表面积:8×7+8×6×2+6×7×2=236× 容积:8×7×6=336 答:共需玻璃236dm2,能装水336升。
长方体与正方体外表积知识点梳理+题型总结〔中等〕知识点1:涂色类问题〔1〕把一个涂色的大正方体平均分成假设干个同样大的小正方体。
有三个面涂色的小正方体都在大正方体( )的位置,都是( )个。
有两个面涂色的小正方体都在大正方体( )的位置。
个数都是( 〕的倍数有一个面涂色的小正方体都在大正方体的〔〕的中心位置个数都是( )的倍数。
〔2〕如果用n表示把大正方体的棱平均分的份数,用a、b、c分别表示2面涂色、1面涂色和6面都不涂色的小正方体的个数,那么a=b=c=〔3) 把一个外外表涂有黄色涂料的正方体木块平均分成假设干个同样大的小正方体,至少分成〔〕个小正方体才会出现6个面都不涂色的小正方形。
【例题】下列图是由27个小正方体拼成的大正方体,把它的外表全部涂成绿色。
〔1〕没有涂成绿色的小正方体有几个(2)一面涂成绿色的小正方体有几个(3)两面涂成绿色的小正方体有几个〔4〕三面涂成绿色的小正方体有几个【变式1】右图是由125块大小相同的小正方体拼成的大正方体模型。
将其外表涂上红色。
三面涂色的有〔〕个,两面涂色的有〔〕个,一面涂色的有〔〕个,没有涂色的有(〕个。
【变式2】下列图是由3层小正方体组成的,如果把它的外外表〔包括底面〕全部涂成蓝色,再把它们分开,那么有多少个小正方体三面是蓝色的【变式3】将64个棱长1厘米的白色小正方体拼成一个大正方体,再将这个大正方体的外表涂色。
〔1〕有2个面涂色的小正方体有多少个〔2〕有3个面涂色的小正方体有多少个(3)6个面都没有涂色的小正方体有几个知识点2:高的变化引起外表积的变化【例题】一个长方体,如果高增加2厘米就成了正方体,而且外表积要增加56平方厘米,原来这个长方体的外表积是多少平方厘米?【变式1】一个长方体,如果高减少2厘米就成了正方体,而且外表积要减少56平方厘米,原来这个长方体的外表积是多少平方厘米?【变式2】一个长40厘米,截面是正方形的长方体,如果长增加5厘米,外表积就增加80平方厘米,求原长方体的外表积。
《长方体和正方体的表面积》练习一.选择题。
1、一只无盖的正方体鱼缸,棱长是4分米,做这只鱼缸至少要用玻璃()平方分米。
A.80 B.90 C.96 D.642.两个棱长1厘米的正方体木块,拼成一个长方体,这个长方体表面积是()平方厘米。
A.12 B.10 C.83.一个长方体长5厘米,宽5厘米,高4厘米,这个长方体的表面积是()平方厘米。
A.110 B.120 C.1304.正方体的棱长扩大3倍,它的表面积就扩大()倍。
A.3 B.6 C.9 D.12二.填空题。
1.长方体或正方体6个面的总面积叫做它的()。
2.一个长方体的长是8厘米,宽6厘米,高3厘米,它的表面积是( )平方分米。
3.一个正方体的棱长是5分米,它的表面积是( )平方分米。
4.一个长5分米、宽4分米、高3分米的长方体,它占地面积最大是( ),表面积是( )。
三.判断题。
1.求一个无盖的长方体鱼缸的表面积,就是求这个长方体前后左右和底面这5个面的面积。
()2.正方体的表面积=棱长×棱长×4。
()3.一个正方体的表面积是48平方分米,把它放在桌子上占的面积是8平方分米。
()4.把一个正方体锯成2个相同的长方体,它的表面积增加了6平方厘米,原来正方体的表面积是36平方厘米。
()四.解答题。
1、一个长方体的长是12厘米,宽8厘米,高是6厘米,它的表面积是多少平方厘米?2、一个无盖的长方体鱼缸,底面是边长5分米的正方形,高4分米,做这样的一个鱼缸至少要用多少平方分米的玻璃?3、做20个棱长为30厘米的小正方体纸箱,至少需要多少平方米硬纸?4.一个卫生间长2.4米,宽1.8米,高3米。
如果在四壁贴上花墙砖,贴墙砖的高为2米,地面镶上地砖,不贴瓷砖的面积为多少平方米?参考答案一.选择题。
1.答案:A解析:一只无盖的正方体鱼缸,棱长是4分米,求做这只鱼缸至少要用玻璃多少平方分米,也就是求这个正方体5个面的面积。
列式为4×4×5=80平方分米,选择A2.答案:B解析:两个棱长1厘米的正方体木块,拼成一个长方体,求这个长方体表面积是多少平方厘米。
长方体正方体的表面积专项练习1.一个正方体棱长是7分米,它的表面积是多少平方分米?2.一个长方体的金鱼缸,长50厘米,宽40厘米,高35厘米.它左边一块玻璃打破了,要重配一块.配上的玻璃是多少平方厘米?合多少平方分米?3.用铁丝做一个长10厘米,宽5厘米,高4厘米的长方体框架,至少需要多长的铁丝?在这个长方体框架外面,糊一层纸,至少需要多少平方厘米的纸?4.一间教室的长是8米,宽是6米,高是4米.要粉刷教室的屋顶和四面墙壁.除去门窗和黑板面积25.4平方米,粉刷的面积是多少平方米?8.丁丁家要做一个长5分米,宽4分米,高6分米的无盖玻璃鱼缸.丁丁最少要准备多少平方分米玻璃?9.做一个棱长6分米的无盖正方体木箱,至少需要多少平方分米木板?10.一个长方体纸盒,长12厘米,宽10厘米,高8厘米.如果在它的周围贴有一圈商标纸,这张商标纸的面积至少有多少平方厘米?11.3个棱长都是8厘米的正方体,拼成一个长方体,表面积是多少?12.一种长80厘米、宽20厘米、高130厘米的长方体广告灯箱,框架由铝合金条制成,各个面由灯箱布围成.制作一个这样的广告灯箱,至少需要铝合金条多少分米?需要灯箱布多少平方分米?13.亮亮家要给一个长0.75m,宽0.5m,高1.6m 的简易衣柜换布罩(没有底面).至少需要用布多少平方米?15.一根铁丝,如果围成一个正方形,边长是9分米,如果改围成正方体框架,这个正方体的表面积是多少平方分米?16.一个长方体的表面积是60cm2,现在正好把它锯成两个相等的正方体,每个正方体的表面积是多少平方厘米?17.把一根长24dm的铁丝,焊接成一个正方体框架,再在外面糊上白纸,至少需要多少平方分米的白纸?18.用铁皮做一个长和宽都是6分米、高4分米的长方体水槽,至少需要多少铁皮?19.用铁皮做一个无盖的长方体油桶,长和宽都是4分米,高6分米,用铁皮多少平方分米?21.一间平顶教室,长是8.5米,宽6米,高4.2米.教室的门窗和黑板的面积一共有35.8平方米.要粉刷教室的顶面和四面墙壁,粉刷的面积有多少平方米?23.用3个长3cm,宽2cm,高1cm,的长方体拼成一个表面积最小的大长方体.这个长方体的表面积是多少平方厘米?(上下拼)24.电焊工人需要把三块大小一样的正方形钢块焊接成一个长60厘米的长方形零件(如图),然后在这个零件的表面刷上一层防锈的油漆,刷油漆的面积是多少平方米?25.张叔叔做一个棱长为4分米的无盖玻璃金鱼缸,这个金鱼缸至少需要多大面积的玻璃?26.加工一个长方体铁皮油桶,长2.5分米,宽1.6分米,高3分米,至少要用多少平方分米铁皮?27.现在有一根150cm长的铁丝,用这根铁丝焊成一个正方体的框架,还剩铁丝6cm,周围用纸板封好.至少需要多少平方厘米的纸板?28.张校长打算请赵师傅做50个长、宽、高分别为2.8dm、1.5dm和2dm的抽屉,至少需要多少平方米的木板呢?29.一个长方体木箱,长6米,宽4米,高2米.用它的棱长总和去做一个正方体,正方体的表面积是多少?30.用一根铁丝转成一个长15m,宽7m,高2m的长方体框架,如果要把它改围成一个正方体,棱长总和不变,围成的正方体的表面积是多少?32.做一个无盖、棱长是4dm的正方体玻璃鱼缸,制作这个鱼缸至少需要用玻璃多少dm2?33.李师傅要制作60根长方体通风管.管口是边长20cm的正方形,管长2m.一共需要多少平方米的铁皮?34.用一根60厘米长的铁丝焊成一个最大的正方体模型,它的棱长是多少?表面积是多少?35.在一个长20米,宽8米,深1.5米的长方体蓄水池里面贴瓷砖,瓷砖是边长为0.2米的正方形,贴完共需瓷砖多少块?36.有一块正方形铁皮(如图)边长是20厘米,从四个角分别切掉边长为5厘米的正方形,然后把剩下部分折起来正好是一个无盖的长方体铁盒.这个铁盒的表面积是多少平方厘米?37.一个长方体鞋盒,长12厘米,宽5厘米,高3厘米,做这样的鞋盒500个,至少需要多少平方米的纸板?38.用一根长72cm的铁丝做一个尽可能大的正方体框架,然后在它表面糊纸,至少要用多少cm2的纸?39.有一个长方体,底面是正方形,高是底面边长的2倍,这个长方体的棱长总和是64厘米.这个长方体的底面面积是多少平方厘米?.40.一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?41.从一个长方体上截下一个棱长4厘米的正方体后,剩下的是一个长方体,这个长方体的表面积是64平方厘米,原来长方体最长的一条棱是多少厘米?42.把三块棱长4分米的正方体木块粘接成一个长方体,这个长方体的表面积是多少平方分米?44.有一个长方体,长和宽都是2cm,高是12cm,把它截成6个棱长是2cm的小正方体.这些小正方体的表面积和原来长方体的表面积增加了多少?46.一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,如果商标纸的接头处是4厘米,这张商标纸的面积是多少平方厘米?49.如图是一个长方体的平面展开图,求这个长方体的表面积.50.两个棱长1厘米的正方体木块,拼成一个长方体,这个长方体表面积是多少平方厘米?52.一个底面是正方形的长方体,底面周长是24cm,高是10cm,求它的体积。
上课时间:课时:第 次辅导长方体与正方体的表面积【知识点讲解】一、长方体、正方体特点回顾【知识点2】 棱长和公式:长方体棱长和 == (字母表示)长+宽+高=正方体棱长和 == (字母表示)正方体棱长= 二、表面积正方体所有的棱长 度都所有面都是且完全相同1、表面积的定义:长方体或正方体个面和叫做它的表面积。
归纳:1、长方体用字母表示S = 2(ab+ah+bh)2、正方体正方体的表面积= 棱长×棱长× 6S = a ×a ×6用字母表示S = 6a 2注意:生活实际:1、油箱、罐头盒等都是6 个面2、游泳池、鱼缸等都只有5 个面3、水管、烟囱等都只有4 个面。
【归纳】1、无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-ab=2 (ah+bh)+ab2、无底又无盖长方体表面积=(长×高+宽×高)×2S =注意1:用刀分开物体时,每分一次增加两个面。
(表面积相应增加)注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。
(如长、宽、高各扩大 2 倍,表面积就会扩大到原来的 4 倍)。
例1、它的表面积。
例2、例3、例4一、填空1、一个长方体的棱长总和是2.4 米,同一个顶点的三条棱长和是();一个棱长为6分米的正方体木块表面积为()平方分米。
2、用4 个棱长为2 分米的正方体拼成一个长方体,这个长方体的表面积是()平方分米或()平方分米。
3、一个长方体的表面积是420 平方厘米,这个长方体正好可以截成3 个相同的小正方体,则每个小正方体的表面积是()平方厘米。
4、将一个棱长4 分米的正方体截成4 个同样大的长方体后,表面积至少增加()平方分米。
5、一个长方体把它截成三个同样的正方体后,表面积比原来增加16 平方分米,其中一个正方体的表面积是(),原来长方体的表面积是()。