最新人教版高中数学必修5第二章《等差数列》自我检测2
- 格式:doc
- 大小:215.50 KB
- 文档页数:5
高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。
试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。
等差数列的性质(20分钟35分)1.(2020·榆林高二检测)已知数列{a n}是等差数列,a7+a13=20,则a9+a10+a11=( )A.36B.30C.24D.1〖解析〗选B.由于a7+a13=2a10=20,即a10=10,故a9+a10+a11=3a10=30.〖补偿训练〗已知等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为( )A.1B.2C.3D.4〖解析〗选B.因为数列{a n}是等差数列,所以2a3=a1+a5=10,所以a3=5,又a4=7,所以数列{a n}的公差d=a4-a3=2.2.《九章算术》一书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第十五日所织尺数为( )A.13B.14C.15D.16〖解析〗选 C.由题意可知,每日所织数量构成等差数列{a n},且a2+a5+a8=15,a1+a2+a3+a4+a5+a6+a7=28,设公差为d,由a2+a5+a8=15,得3a5=15,所以a5=5,由a1+a2+a3+a4+a5+a6+a7=7a4=28,得a4=4,则d=a5-a4=1,所以a15=a5+10d=5+10×1=15.3.已知等差数列{a n}的公差为d(d≠0),且a3+a6+a10+a13=32,若a m=8,则m的值为( )A.12B.8C.6D.4〖解析〗选B.由等差数列的性质,得a3+a6+a10+a13=(a3+a13)+(a6+a10)=2a8+2a8=4a8=32,所以a8=8,又d≠0,所以m=8.〖补偿训练〗在等差数列{a n}中,a1=,a2+a5=4,a n=33,则n是( )A.48B.49C.50D.51〖解析〗选C.a1=,a2+a5=2a1+5d=4,所以d=,所以a n=a1+(n-1)d=+(n-1)=33,所以n=50.4.已知等差数列{a n}:1,0,-1,-2,…;等差数列{b n}:0,20,40,60,…,则数列{a n+b n}是( )A.公差为-1的等差数列B.公差为20的等差数列C.公差为-20的等差数列D.公差为19的等差数列〖解析〗选D.(a2+b2)-(a1+b1)=(a2-a1)+(b2-b1)=-1+20=19.所以由等差数列性质知数列{a n+b n}是公差为19的等差数列.5.如果等差数列{a n}中,a1=2,a3=6,则数列{2a n-3}是公差为________的等差数列.〖解析〗因为a3-a1=6-2=4,所以2d=4,即d=2.所以{2a n-3}的公差为2d=4.答案:46.已知数列{a n}为等差数列,且公差为d.(1)若a15=8,a60=20.求a65的值;(2)若a2+a3+a4+a5=34,a2a5=52,求公差d.〖解析〗(1)等差数列{a n}中,a15=8,a60=20,则解得d=,a65=a60+5d=20+=.(2)数列{a n}为等差数列,且公差为d且a2+a3+a4+a5=34,a2a5=52,解得a2=4,a5=13或a2=13,a5=4.a5=a2+3d,即13=4+3d或4=13+3d,解得d=3或d=-3.(30分钟60分)一、选择题(每小题5分,共25分)1.已知数列{a n}是等差数列,若a1-a9+a17=7,则a3+a15=( )A.7B.14C.21D.7(n-1)〖解析〗选B.因为a1-a9+a17=(a1+a17)-a9=2a9-a9=a9=7,所以a3+a15=2a9=2×7=14.2.数列{a n}满足3+a n=a n+1且a2+a4+a6=9,则log6(a5+a7+a9)的值是( )A.-2B.-C.2D.〖解析〗选C.因为a n+1-a n=3,所以{a n}为等差数列,设其公差为d,则d=3.a2+a4+a6=9=3a4,所以a4=3,a5+a7+a9=3a7=3(a4+3d)=3(3+3×3)=36,所以log6(a5+a7+a9)=log636=2.补偿训练〗在等差数列{a n}中,a2 000=log27,a2 022=log2,则a2 011=( )A.0B.7C.1D.49〖解析〗选A.因为数列{a n}是等差数列,所以由等差数列的性质可知2a2 011=a2 000+a2 022=log27+log2=log21=0,故a2 011=0.3.设等差数列{a n}的公差为d,若数列{2a1a n}为递减数列,则( )A.d<0B.d>0C.a1d<0D.a1d>0〖解析〗选C.因为数列{2a1a n}为递减数列,a1a n=a1〖a1+(n-1)d〗=a1dn+a1(a1-d),等式右边为关于n的一次函数,所以a1d<0.4.目前农村电子商务发展取得了良好的进展,若某家农村网店从第一个月起利润就成递增等差数列,且第2个月利润为2 500元,第5个月利润为4 000元,第m个月后该网店的利润超过5 000元,则m等于( )A.6B.7C.8D.10〖解析〗选B.设该网店从第一个月起每月的利润构成等差数列{a n},则a2=2 500,a5=4 000.由a5=a2+3d,即4 000=2 500+3d,得d=500.由a m=a2+(m-2)×500=5 000,得m=7.〖补偿训练〗《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题:把100个面包分给5个人,使每个人的所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份的量为( )A.个B.个C.个D.个〖解析〗选C.易得中间的一份为20个面包,设最小的一份的量为a1,公差为d(d>0),根据题意,有〖20+(a1+3d)+(a1+4d)〗×=a1+(a1+d),解得a1=.故最小一份的量为个.5.下面是关于公差d>0的等差数列{a n}的四个说法.(1)数列{a n}是递增数列;(2)数列{na n}是递增数列;(3)数列是递增数列;(4)数列{a n+3nd}是递增数列.其中正确的是( )A.(1)(2)B.(3)(4)C.(2)(3)D.(1)(4)〖解析〗选D.因为a n=a1+(n-1)d,d>0,所以a n-a n-1=d>0,说法(1)正确;na n=na1+n(n-1)d,所以na n-(n-1)a n-1=a1+2(n-1)d,与n的大小和a1的取值情况有关. 故数列{na n}不一定递增,说法(2)不正确;=+d,所以-=,当d-a1>0,即d>a1时,数列递增,但d>a1不一定成立,则(3)不正确;设b n=a n+3nd,则b n+1-b n=a n+1-a n+3d=4d>0.所以数列{a n+3nd}是递增数列,(4)正确.综上,正确的说法为(1)(4).〖补偿训练〗若{a n}是等差数列,则下列数列为等差数列的有( )①{a n+a n+1};②{};③{a n+1-a n};④{2a n};⑤{2a n+n}.A.1个B.2个C.3个D.4个〖解析〗选D.设等差数列{a n}的公差为d.对于①,(a n+a n+1)-(a n-1+a n)=(a n-a n-1)+(a n+1-a n)=2d(n≥2),所以{a n+a n+1}是以2d为公差的等差数列;对于②,-=(a n+1-a n)(a n+a n+1)=d(a n+a n+1)≠常数,所以{}不是等差数列;对于③,因为a n+1-a n=d,所以{a n+1-a n}为常数列;所以{a n+1-a n}为等差数列;对于④,因为2a n+1-2a n=2d,所以{2a n}为等差数列;对于⑤,(2a n+1+n+1)-(2a n+n)=2d+1,所以{2a n+n}为等差数列.二、填空题(每小题5分,共15分)6.(2020·成都高二检测)等差数列{a n}中,a1=1,a9=21,则a3与a7等差中项的值为________. 〖解析〗根据等差数列的性质可知,a3+a7=a1+a9=1+21=22,所以a3与a7的等差中项为(a3+a7)=11.答案:117.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________.〖解析〗设这三个数为a-d,a,a+d,则解得a=3,d=4或a=3,d=-4.所以这三个数为-1,3,7或7,3,-1.所以这三个数的积为-21.答案:-218.在等差数列{a n}中,已知a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9的值为________.〖解析〗方法一:因为(a2+a5+a8)-(a1+a4+a7)=3d,(a3+a6+a9)-(a2+a5+a8)=3d,所以a1+a4+a7,a2+a5+a8,a3+a6+a9成等差数列.所以a3+a6+a9=2(a2+a5+a8)-(a1+a4+a7)=2×33-39=27.方法二:因为a1+a4+a7=a1+(a1+3d)+(a1+6d)=3a1+9d=39,所以a1+3d=13,①因为a2+a5+a8=(a1+d)+(a1+4d)+(a1+7d)=3a1+12d=33.所以a1+4d=11,②联立①②解得所以a3+a6+a9=(a1+2d)+(a1+5d)+(a1+8d)=3a1+15d=3×19+15×(-2)=27.答案:27三、解答题(每小题10分,共20分)9.已知数列{a n},a n=2n-1,b n=a2n-1.(1)求{b n}的通项公式;(2)数列{b n}是否为等差数列?说明理由.〖解析〗(1)因为a n=2n-1,b n=a2n-1,所以b n=a2n-1=2(2n-1)-1=4n-3.(2)由b n=4n-3,知b n-1=4(n-1)-3=4n-7.因为b n-b n-1=(4n-3)-(4n-7)=4,b1=4×1-3=1,所以{b n}是首项为1,公差为4的等差数列.10.已知数列a1,a2,…,a30,其中a1,a2,…,a10是首项为1,公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…,a30是公差为d2的等差数列(d≠0).(1)若a20=30,求公差d;(2)试写出a30关于d的关系式,并求a30的取值范围.〖解析〗(1)a10=1+9=10,a20=10+10d=30,所以d=2.(2)a30=a20+10d2=10(1+d+d2)(d≠0),a30=10,当d∈(-∞,0)∪(0,+∞)时,a30∈.1.如果有穷数列a1,a2,…,a m(m为正整数)满足条件:a1=a m,a2=a m-1,…,a m=a1,那么称其为“对称”数列.例如数列1,2,5,2,1与数列8,4,2,4,8都是“对称”数列.已知在21项的“对称”数列{c n}中,c11,c12,…,c21是以1为首项,2为公差的等差数列,则c2=________.〖解析〗因为c11,c12,…,c21是以1为首项,2为公差的等差数列,所以c20=c11+9d=1+9×2=19. 又{c n}为21项的对称数列,所以c2=c20=19.答案:192.已知无穷等差数列{a n},首项a1=3,公差d=-5,依次取出项的序号被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求数列{b n}的通项公式;(3)数列{b n}中的第110项是数列{a n}中的第几项?〖解析〗(1)由题意,等差数列{a n}的通项公式为a n=3-5(n-1)=8-5n,设数列{b n}的第n项是数列{a n}的第m项,则需满足m=4n-1,n∈N*.所以b1=a3=8-5×3=-7, b2=a7=8-5×7=-27.(2)由(1)知b n+1-b n=a4(n+1)-1-a4n-1=4d=-20,所以数列{b n}也为等差数列,且首项b1=-7,公差d′=-20,所以b n=b1+(n-1)d′=-7+(n-1)×(-20)=13-20n.(3)因为m=4n-1,n∈N*,所以当n=110时,m=4×110-1=439,所以数列{b n}中的第110项是数列{a n}中的第439项.。
自我小测 2.2.1等差数列(一)夯基达标1.{a n }是首项a 1=1,公差d =3的等差数列,如果a n =2 005,则序号n 等于( ) A.667 B.668 C.669 D.6702.一个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差是( )A.-2B.-3C.-4D.-63.在数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101的值是( )A.52B.51C.50D.494.设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A.0 B.37 C.100 D.-375.数列{a n }满足递推公式a n =3a n -1+3n -1(n ≥2),又a 1=5,则使得}3{nn a λ+为等差数列的实数λ=_______________.6.在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ; (2)已知a 1+a 6=12,a 4=7,求a 9. 能力提升7.在直角坐标平面上有一点列P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n ),…,对一切正整数n ,点P n 位于函数4133+=x y 的图象上,且P n 的横坐标构成以25-为首项,-1为公差的等差数列{x n },则P n 的坐标为____________________.8.若x ≠y ,且x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各自都成等差数列,则=--1212b b a a _______________.9.已知数列{a n }中,a 1=3,5111=--n n a a (n ≥2),则a n =______________.10.在数列{a n }中,1235lg +=n n a ,判断该数列是否为等差数列.11.已知等差数列{a n }中,a 15=33,a 61=217,试判断153是否是这个数列中的项?如果是,是第几项?拓展探究12.下表给出一个“等差数阵”:其中每行、每列都是等差数列,a ij 表示位于第i 行第j 列的数. (1)写出a 45的值;(2)写出a ij 的计算公式,以及2 008这个数在等差数阵中所在的一个位置.参考答案1答案:C2 解析:∵a n =23+(n -1)d ,则⎩⎨⎧<>,0,076a a得-4.6<d <653-,且d ∈Z ,∴d =-4. 答案:C3解析:∵2a n +1=2a n +1,∴211+=+n n a a , 即211=-+n n a a (常数).∴数列{a n }是以a 1=2为首项,21=d 为公差的等差数列. ∴5221)1101(2)1101(1101=⨯-+=⨯-+=d a a .答案:A4 解析:设{a n }、{b n }的公差分别为d 1、d 2,则a 2+b 2=a 1+d 1+b 1+d 2, ∴100=25+75+d 1+d 2.∴d 1+d 2=0.∴a 37+b 37=a 1+36d 1+b 1+36d 2=a 1+b 1+36(d 1+d 2)=100+36×0=100. 答案:C5解析:a 1=5,a 2=23,a 3=95,令n n n a b 3λ+=, 则2795,923,35321λλλ+=+=+=b b b , ∵b 2-b 1=b 3-b 2,∴21-=λ.答案:21-6解:(1)由题意,知⎩⎨⎧=-+-=-+.2)18(,1)15(11d a d a解得⎩⎨⎧=-=.1,51d a(2)由题意,知⎩⎨⎧=-+=-++.7)14(,12)16(111d a d a a 解得⎩⎨⎧==.2,11d a∴a 9=a 1+(9-1)d =1+8×2=17.7解析:∵23)1)(1(25--=--+-=n n x n , ∴4534133--=+=n x y n n . ∴)453,23(----n n P n .答案:)453,23(----n n P n8 解析:设数列x ,a 1,a 2,y 的公差为d 1,数列x ,b 1,b 2,b 3,y 的公差为d 2,则a 2-a 1=d 1,b 2-b 1=d 2,而y =x +3d 1, 所以31x y d -=. 又y =x +4d 2,所以42xy d -=. 所以3421=d d .所以34211212==--d d b b a a .答案:349 解析:∵5111=--n n a a (n ≥2), ∴数列}1{na 是以5为公差的等差数列, 且首项为3111=a . 根据数列}1{na 的通项公式:3141555315)1(111-=-+=⨯-+=n n n a a n , ∴14153-=n a n .答案:14153-n10解:∵常数==⨯⋅=-=-++++++31lg )53335lg(35lg35lg1221121)1(21n n n n n n a a ,∴数列{a n }是等差数列. 11 解法一:设等差数列的公差为d ,则a n =a 1+(n -1)d . ∵a 15=33,a 61=217, ∴⎩⎨⎧+=+=,60217,143311d a d a 解得⎩⎨⎧=-=,4,231d a∴a n =-23+(n -1)·4=4n -27.令a n =153,则4n -27=153,得n =45∈N *, ∴153是所给数列的第45项. 解法二:∵{a n }不是常数列,∴{a n }的通项公式是关于n 的一次函数.假设153是该数列的第n 项,则(15,33)、(61,217)、(n ,153)三点共线. ∴1533153156133217--=--n ,解得n =45∈N *.∴153是所给数列的第45项. 12解:(1)a 45=49.(2)该等差数阵的第1行是首项为4,公差为3的等差数列:a 1j =4+3(j -1);第2行是首项为7,公差为5的等差数列:a 2j =7+5(j -1);…;第i 行是首项为4+3(i -1),公差为2i +1的等差数列,因此 a i j =4+3(i -1)+(2i +1)(j -1) =2ij +i +j =i (2j +1)+j .要找2 008在该等差数阵中的位置,也就是要找正整数i ,j 使得2ij +i +j =2 008, ∴122008+-=t ij .当i =1时,得j =669.∴2 008在等差数阵中的一个位置是第1行第669列.2.2.2等差数列(二)夯基达标1.)23lg(-与)23lg(+的等差中项为( ) A.0 B.2323lg +- C.)625lg(- D.12.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13等于( )A.120B.105C.90D.753.设等差数列{a n }中,311=a ,a 2+a 5=4,a n =33,则n 是( ) A.48 B.49 C.50 D.514.已知等差数列a 1,a 2,a 3,…,a n 的公差为d ,则ca 1,ca 2,ca 3,…,ca n (c 为常数,且c ≠0)是( ) A.公差为d 的等差数列 B.公差为cd 的等差数列 C.非等差数列 D.以上都不对5.已知等差数列{a n }中,a 3和a 15是方程x 2-6x -1=0的两个根,则a 7+a 8+a 9+a 10+a 11=_______.6.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 等于________.能力提升7.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则11931a a -的值为( ) A.14 B.15 C.16 D.178.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则|m -n |的值为( )A.1B.43C.21D.839.在-1与7之间顺次插入三个数a ,b ,c ,使这五个数成等差数列,则这个数列为___________.10.已知a ,b ,lg6,2lg2+lg3为等差数列,求a 、b 的值. 11.已知c b a 1,1,1成等差数列,则cb a bc a a c b +++,,是否也成等差数列?并说明你的理由.拓展探究12.已知数列a 1,a 2,a 3,…,a 30,其中a 1,a 2,a 3,…,a 10是首项为1,公差为1的等差数列;a 10,a 11,a 12,…,a 20是公差为d 的等差数列;a 20,a 21,a 22,…,a 30是公差为d 2的等差数列(d ≠0). (1)若a 20=40,求d ;(2)试写出a 30关于d 的关系式,并求a 30的取值范围.参考答案1 解析:等差中项为01lg 21)23)(23lg(21)]23lg()23[lg(21==+-=++-. 答案:A 2 解析:由⎩⎨⎧=++==+=++,80)2)((,15332113211321d a d a a a a a d a a a a得⎩⎨⎧-==⎩⎨⎧==3,83,211d a d a 或(舍去), 所以a 11+a 12+a 13=3a 12=3(a 1+11d )=105. 答案:B3 解析:∵a 2+a 5=a 1+a 6=4,∴3116=a . ∴321616=--=a a d .由a n =a 1+(n -1)d ,知)1(323133-+=n , ∴n =50. 答案:C4解析:∵ca n -ca n -1=c (a n -a n -1)=cd ,∴选B. 答案:B 5解析:∵a 3+a 15=6,∴2a 9=6.∴a 9=3. ∴a 7+a 8+a 9+a 10+a 11=5a 9=5×3=15. 答案:156 解析:因为a 3+a 6+a 10+a 13=4a 8=32, 所以a 8=8,即m =8. 答案:87解析:由题意知5a 8=120,∴a 8=24. ∴1632)3(31)(31888119==+-+=-a d a d a a a . 答案:C8解析:本题主要考查等差数列的性质和探索问题的能力,因为原方程有四个根,所以方程x 2-2x +m =0和x 2-2x +n =0各有两个根. 又因为这两个方程的两根之和都等于2,且四个根组成等差数列,记为{a n }, 所以可设四个根为a 1,a 2,a 3,a 4.根据等差数列的性质,只能a 1+a 4=a 2+a 3=2, 设公差为d ,则2341232141=+⨯=+=+d d a a a , 21=d ,从而47,45,43432===a a a . 于是|m -n |=|a 1·a 4-a 2·a 3| 21|45434741|=⨯-⨯=,故选C 项. 答案:C9解析:由等差中项的定义,知3271=+-=b , ∴527327,123121=+=+==+-=+-=b c b a . 答案:-1,1,3,5,710解法一:∵a ,b ,lg6,2lg2+lg3为等差数列, ∴d =2lg2+lg3-lg6=lg12-lg6=lg2. ∴b =lg6-lg2=lg3,23lg 2lg =-=b a . 解法二:(利用性质)∵a ,b ,lg6,2lg2+lg3为等差数列, ∴2lg6=b +2lg2+lg3. ∴b =lg3. 同理2b =a +lg6.∴23lg=a . 11 解法一:∵c b a 1,1,1成等差数列,∴bc a 211=+,即2ac =b (a +c ).∴acb a ac b c c b a a c b )()(+++=+++ bc a c a b c a ac c a b c a )(2)()(2)(222+=++=+++=. ∴cb a bc a a c b +++,,也成等差数列. 解法二:∵cb a 1,1,1成等差数列,∴c cb a bc b a a c b a ++++++,,也成等差数列, 即1,1,1++++++c ba b c a a c b 也成等差数列. 故cba b c a a c b +++,,也成等差数列. 12解:(1)∵a 10=10,∴a 20=10+10d =40.∴d =3. (2)∵a 30=a 20+10d 2=10(1+d +d 2)(d ≠0), 则]43)21[(10230++=d a ,∴当d ∈(-∞,0)∪(0,+∞)时,a 30∈[7.5,+∞).。
人教A版高中数学必修五第二章2.2等差数列的性质同步检测题一、选择题1.在等差数列{a n}中,若a2=4,a4=2,则a6=()A.-1B.0C.1 D.62.已知等差数列{a n},则使数列{b n}一定为等差数列的是() A.b n=-a n B.b n=a2nC.b n=a n D.b n=1 a n3.在等差数列{a n}中,若a2=1,a6=-1,则a4=() A.-1 B.1C.0 D.-1 24.等差数列{a n}的公差d<0,且a2·a4=12,a2+a4=8,则数列{a n}的通项公式是()A.a n=2n-2(n∈N*) B.a n=2n+4(n∈N*)C.a n=-2n+12(n∈N*) D.a n=-2n+10(n∈N*)5.如果数列{a n}是等差数列,则下列式子一定成立的有()A.a1+a8<a4+a5B.a1+a8=a4+a5C.a1+a8>a4+a5D.a1a8=a4a56.已知数列{a n}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为() A. 3 B.±3C.-33D.- 37.等差数列{a n}中,a5+a6=4,则log2(2a1·2a2·…·2a10)=() A.10 B.20C.40 D.2+log25二、填空题8.等差数列{a n}中,a15=33,a25=66,则a35=________.9.在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=________.10.在等差数列{a n }中,若a 5=a ,a 10=b ,则a 15=________.11.数列{a n }满足递推关系a n =3a n -1+3n -1(n ∈N *,n ≥2),a 1=5,则使得数列 ⎭⎬⎫⎩⎨⎧+n n m a 3为等差数列的实数m 的值为________. 12.若m ≠n ,两个等差数列m ,a 1,a 2,n 与m ,b 1,b 2,b 3,n 的公差分别为d 1和d 2,则d 1d 2的值为________. 三、解答题13.梯子的最高一级宽33 cm ,最低一级宽110 cm ,中间还有10级,各级宽度依次成等差数列,计算中间各级的宽度.14.若三个数a -4,a +2,26-2a 适当排列后构成递增等差数列,求a 的值和相应的数列.15.两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?16.已知数列{a n}的通项公式为a n=pn2+qn(常数p,q∈R).(1)当p和q满足什么条件时,数列{a n}是等差数列?(2)求证:对任意的实数p和q,数列{a n+1-a n}都是等差数列.人教A 版高中数学必修五第二章2.2等差数列的性质同步检测题解析一、选择题1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6解析:由等差数列的性质得a 6=2a 4-a 2=2×2-4=0,选B.答案:B2.已知等差数列{a n },则使数列{b n }一定为等差数列的是( )A .b n =-a nB .b n =a 2nC .b n =a nD .b n =1a n解析:∵数列{a n }是等差数列,∴a n +1-a n =d (常数).对于A ,b n +1-b n =a n -a n +1=-d ,正确;对于B 不一定正确,如a n =n ,则b n=a 2n =n 2,显然不是等差数列;对于C 和D ,a n 及1a n不一定有意义,故选A. 答案:A3.在等差数列{a n }中,若a 2=1,a 6=-1,则a 4=( )A .-1B .1C .0D .-12解析:∵2a 4=a 2+a 6=1-1=0,∴a 4=0.答案:C4.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是( )A .a n =2n -2(n ∈N *)B .a n =2n +4(n ∈N *)C .a n =-2n +12(n ∈N *)D .a n =-2n +10(n ∈N *)解析:由⎪⎩⎪⎨⎧<=+=∙,,,08124242d a a a a ⇒⎩⎨⎧==,,2642a a ⇒⎩⎨⎧-==,,281d a ∴a n =a 1+(n -1)d =8+(n -1)·(-2)=-2n +10.5.如果数列{a n }是等差数列,则下列式子一定成立的有( )A .a 1+a 8<a 4+a 5B .a 1+a 8=a 4+a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 5解析:由等差数列的性质有a 1+a 8=a 4+a 5,故选B.答案:B6.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为() A . 3 B .±3C .-33 D .- 3解析:由等差数列的性质得a 1+a 7+a 13=3a 7=4π,∴a 7=4π3.∴tan(a 2+a 12)=tan(2a 7)=tan 8π3=tan 2π3=- 3.答案:D7.等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( )A .10B .20C .40D .2+log 25解析:由等差数列的性质知a 1+a 2+…+a 10=5(a 5+a 6)=5×4=20,从而log 2(2a 1·2a 2·…·2a 10)=log 2220=20.答案:B二、填空题8.等差数列{a n }中,a 15=33,a 25=66,则a 35=________.解析:由a 25是a 15与a 35的等差中项知2a 25=a 15+a 35,∴a 35=2a 25-a 15=2×66-33=99.答案:999.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________.解析:由等差数列的性质可知,a 2+a 8=a 4+a 6=a 3+a 7,∴a 2+a 4+a 6+a 8=37×2=74.10.在等差数列{a n }中,若a 5=a ,a 10=b ,则a 15=________.解析:设数列{a n }的公差为d .法一:由题意知⎩⎨⎧=+==+=,,b d a a a d a a 9411015 解得⎪⎪⎩⎪⎪⎨⎧-=-=,,55491a b d b a a∴a 15=a 1+14d =9a -4b 5+14×b -a 5=2b -a .法二:d =a 10-a 510-5=b -a 5, ∴a 15=a 10+5d =b +5×b -a 5=2b -a .法三:∵a 5,a 10,a 15成等差数列,∴a 5+a 15=2a 10.∴a 15=2a 10-a 5=2b -a .答案:2b -a11.数列{a n }满足递推关系a n =3a n -1+3n -1(n ∈N *,n ≥2),a 1=5,则使得数列⎭⎬⎫⎩⎨⎧+n n m a 3为等差数列的实数m 的值为________. 解析:由题设知a n +m 3n -a n -1+m 3n -1=3a n -1+3n -1+m 3n -a n -1+m 3n -1 =3n -1-2m 3n=1-1+2m 3n 为常数, 则1+2m =0,故m =-12.答案:-1212.若m ≠n ,两个等差数列m ,a 1,a 2,n 与m ,b 1,b 2,b 3,n 的公差分别为d 1和d 2,则d 1d 2的值为________. 解析:n -m =3d 1,d 1=13(n -m ).又n -m =4d 2,d 2=14(n -m ).∴d 1d 2=13·(n -m )14·(n -m )=43. 答案:43三、解答题13.梯子的最高一级宽33 cm ,最低一级宽110 cm ,中间还有10级,各级宽度依次成等差数列,计算中间各级的宽度.解析:由题意可设最低一级宽度为a 1,梯子的宽度依次成等差数列,设为{a n },依题意a 12=33,由a 12=a 1+(12-1)d ⇒33=110+11d ,∴d =-7,∴a n =110+(n -1)×(-7),∴a 2=103,a 3=96,a 4=89,a 5=82,a 6=75,a 7=68,a 8=61,a 9=54,a 10=47,a 11=40,故梯子中间各级的宽度依次为103,96,89,82,75,68,61,54,47,40.14.若三个数a -4,a +2,26-2a 适当排列后构成递增等差数列,求a 的值和相应的数列.解析:显然a -4<a +2,(1)若a -4,a +2,26-2a 成等差数列,则(a -4)+(26-2a )=2(a +2),∴a =6,相应的等差数列为:2,8,14.(2)若a -4,26-2a ,a +2成等差数列,则(a -4)+(a +2)=2(26-2a ),∴a =9,相应的等差数列为:5,8,11.(3)若26-2a ,a -4,a +2成等差数列,则(26-2a )+(a +2)=2(a -4),∴a =12,相应的等差数列为:2,8,14.15.两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?解析:设两个数列分别为{a n }与{b k }.则a 1=5,d 1=8-5=3,通项公式a n =5+(n -1)·3=3n +2;b 1=3,d 2=7-3=4,通项公式b k =3+(k -1)·4=4k -1.设数列{a n }的第n 项与{b k }的第k 项相同, 即a n =b k ,也就是3n +2=4k -1,∴n =43k -1,而n ∈N *,k ∈N *,∴k 必须为3的倍数,设k =3r (r ∈N *),得n =4r -1.由条件知⎩⎨⎧≤-≤≤≤,,10014110031r r 解得12≤r ≤1014.又r ∈N *,∴1≤r ≤25(r ∈N *).∴共有25个共同的项.16.已知数列{a n }的通项公式为a n =pn 2+qn (常数p ,q ∈R).(1)当p 和q 满足什么条件时,数列{a n }是等差数列?(2)求证:对任意的实数p 和q ,数列{a n +1-a n }都是等差数列. 解析:(1)设数列{a n }是等差数列,则a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2+qn )=2pn +p +q , 若2pn +p +q 是一个与n 无关的常数,则2p =0,即p =0,q ∈R.∴当p =0,q ∈R 时,数列{a n }是等差数列.(2)证明:∵a n +1-a n =2pn +p +q ,∴a n +2-a n +1=2p (n +1)+p +q ,∴(a n +2-a n +1)-(a n +1-a n )=[2p (n +1)+p +q ]-(2pn +p +q )=2p (常数). ∴对任意的实数p 和q ,数列{a n +1-a n }都是等差数列.。
高中数学学习材料唐玲出品必修五 第二章 数列 2.2 等差数列 同步测试一、选择题1.等差数列34,37,40中的第一个负数项是 ( ) A.第13项 B.第14项 C.第15项 D.第16项 2.等差数列}{n a 中,153,334515==a a ,则217是这个数列的 ( ) A.第59项 B.第60项 C.第61项 D.第62项3.已知等差数列}{n a 的项数为n ,前4项和为21,后4项和为67,所有项的和为220,则n 的值为 ( ) A.20 B.18 C.22 D.214.等差数列}{n a 中,40,19552==+S a a ,则10a 为 ( ) A.27 B.28 C.29 D.305.数列}{n a 是等差数列的一个充要条件是 ( ) A.c bn an S n ++=2 B.bn an S n +=2 C.)0(2≠++=a c bn an S n D.)0(2≠+=a bn an S n6.等差数列}{n a 的公差为d ,则前20项的和20S 等于 ( ) A.2020a B.d a 102010+ C.d a 380201+ D.d a 3801+ 二、填空题7.在1-与7之间顺次插入三个数,使这五个数成等差数列,则此数列为 .8.在等差数列}{n a 的公差为1,前100项的和为150100=S ,则=++++99531a a a a .9.已知等差数列}{n a 满足:4,126473-=+-=a a a a ,则通项公式=n a . 10.已知数列n 2,,4,3,2,1 ,则其和为 ,奇数项的和为 . 11.在数列}{n a 中,122,211=--=+n n a a a ,则=51a .12.一个项数为偶数的等差数列,奇数项的和为24,偶数项的和为30,且末项比首项大5.10,则该数列的项数为 . 三、解答题13.已知222,,c b a 成等差数列,求证:ba a c cb +++1,1,1也成等差数列.14.已知等差数列}{n a 的首项为60,公差为3-,试求数列}{n a 前30项的和.15.设n S 是等差数列}{n a 的前n 项的和,已知331S 与441S 的等比中项为551S ,331S 与441S 的等差中项为1,求等差数列}{n a 的通项公式.16.设等差数列}{n a 的前n 项和是n S ,已知0,0,1213123<>=S S a , (1)求公差d 的取值范围;(2)指出1221,,,S S S 中那一个值最大,并说明理由.17.设}{n a 是等差数列,nan b ⎪⎭⎫⎝⎛=21,已知:81,821321321==++b b b b b b ,求等差数列的通项n a .*18.设}{n a 是公差为d 等差数列,}{n b 满足n n a n nb b b b )321(32321++++=++++)(N n ∈,求证:}{n b 是等差数列,并求公差.答案1.C ;2.C ;3.A ;4.C ;5.B ;6.B ;7.7,5,3,1,1-;8.50;9.122-=n a n 或82+-=n a n ;10.2),12(n n n +;11.23;12.8项;13.略;14.765;15.1=n a 或)(532512N n n a n ∈+-=;16.(1)3724-<<-d ;(2)6S 最大;17.32-=n a n 或n a n 25-=;18.公差为d 23.。
第二章过关检测(时间:90分钟满分:100分)知识点分布表一、选择题(本大题共10小题,每小题4分,共40分)1.在等差数列{a n}中,S10=120,则a1+a10的值是()A.12B.24C.36D.48答案:B解析:S10==120解得,a1+a10=24.2.等比数列{a n}中,a2,a6是方程x2-34x+64=0的两根,则a4=()A.8B.-8C.±8D.以上都不对答案:A解析:由已知得a2+a6=34,a2·a6=64,所以a2>0,a6>0,则a4>0.又=a2·a6=64,∴a4=8.3.如果f(n+1)=(n=1,2,3,…)且f(1)=2,则f(101)等于()A.49B.50C.51D.52答案:D解析:∵f(n+1)==f(n)+,∴f(n+1)-f(n)=,即数列{f(n)}是首项为2,公差为的等差数列.∴通项公式为f(n)=2+(n-1)×n+.∴f(101)=×101+=52.4.已知各项均为正数的等比数列{a n}中,a1a2a3=5,a7a8a9=10,则a4a5a6=()A.5B.7C.6D.4答案:A解析:(a1a2a3)·(a7a8a9)=(a1a9)·(a2a8)·(a3a7)==50,∴=5.又a4a5a6=(a4a6)·a5=,故选A.5.若数列{a n}满足a1=15,且3a n+1=3a n-2,则使a k·a k+1<0的k值为()A.22B.21C.24D.23答案:D解析:因为3a n+1=3a n-2,所以a n+1-a n=-,所以数列{a n}是首项为15,公差为-的等差数列,所以a n=15-(n-1)=-n+,由a n=-n+>0,得n<23.5,所以使a k·a k+1<0的k值为23.6.若数列{a n}满足a n+1=1-,且a1=2,则a2 012等于()A.-1B.2C.D.答案:D解析:∵a n+1=1-,a1=2,∴a2=1-,a3=1-2=-1,a4=1-=2.-由此可见,数列{a n}的项是以3为周期重复出现的,∴a2 012=a670×3+2=a2=.7.数列{a n}的首项为3,{b n}为等差数列且b n=a n+1-a n(n∈N*).若b3=-2,b10=12,则a8=()A.0B.3C.8D.11答案:B解析:{b n}为等差数列,公差d=-=2,-∴b n=b3+2(n-3)=2n-8.∴a n+1-a n=2n-8.∴a8=a1+(a2-a1)+(a3-a2)+…+(a8-a7)=3+(-6)+(-4)+…+6=3+-=3.8.设等差数列{a n}的前n项和为S n,若S m-1=-2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6答案:C解析:∵S m-1=-2,S m=0,S m+1=3,∴a m=S m-S m-1=0-(-2)=2,a m+1=S m+1-S m=3-0=3.∴d=a m+1-a m=3-2=1.∵S m=ma1+-×1=0,∴a1=--.又∵a m+1=a1+m×1=3,∴--+m=3.∴m=5.故选C.9.等差数列{a n}中,已知3a5=7a10,且a1<0,则数列{a n}前n项和S n(n∈N*)中最小的是()A.S7或S8B.S12C.S13D.S14答案:C解析:由3a5=7a10得3(a1+4d)=7(a1+9d),解得d=-a1>0.所以a n=a1+(n-1)d=a1-(n-1)×a1,由a n=a1-(n-1)×a1≤0,即1--≥0,解得n≤=13,即当n≤13时,a n<0.当n>13时,a n>0,所以前13项和最小,所以选C.10.(2015河南南阳高二期中,12)数列{a n}的前n项和S n=n2+n+1;b n=(-1)n a n(n∈N*);则数列{b n}的前50项和为()A.49B.50C.99D.100答案:A解析:∵数列{a n}的前n项和S n=n2+n+1,∴a1=S1=3,当n≥2时,a n=S n-S n-1=n2+n+1-[(n-1)2+(n-1)+1]=2n,故a n=∴b n=(-1)n a n=--∴数列{b n}的前50项和为(-3+4)+(-6+8)+(-10+12)+…+(-98+100)=1+24×2=49,故选A.二、填空题(本大题共4小题,每小题4分,共16分)11.已知数列{a n}中,a n=2×3n-1,则由它的偶数项所组成的新数列的前n项和S n=.答案:-解析:∵数列{a n}是等比数列,∴它的偶数项也构成等比数列,且首项为6,公比为9.∴其前n项和S n=---.12.正项数列{a n}满足:a1=1,a2=2,2-(n∈N*,n≥2),则a7=.答案:解析:因为2-(n∈N*,n≥2),所以数列{}是以=1为首项,以d==4-1=3为公差的等差数列.所以=1+3(n-1)=3n-2.所以a n=-,n≥1.所以a7=-.13.(2015江西吉安联考,13)已知数列{a n}满足a n a n+1a n+2a n+3=24,且a1=1,a2=2,a3=3,则a1+a2+a3+…+a2 013+a2 014=.答案:5 033解析:∵数列{a n}满足a n a n+1a n+2a n+3=24,∴a1a2a3a4=24,a4==4,∵a n a n+1a n+2a n+3=24,∴a n+1a n+2a n+3a n+4=24,∴a n+4=a n,∴数列{a n}是以4为周期的周期数列,2 014=503×4+2,∴a1+a2+a3+…+a2 013+a2 014=503×(1+2+3+4)+1+2=5 033.14.(2015山东省潍坊四县联考,14)已知数列{a n}满足a1+3·a2+32·a3+…+3n-1·a n=,则a n=.答案:-解析:∵a1+3·a2+32·a3+…+3n-1·a n=,∴当n≥2时,a1+3·a2+32·a3+…+3n-2·a n-1=-,两式相减得3n-1·a n=-,即a n=,n≥2,-,当n=1时,a1=,满足a n=-.故a n=-三、解答题(本大题共4小题,15、16小题每小题10分,17、18小题每小题12分,共44分)15.(2015河南郑州高二期末,17)设等差数列{a n}满足a3=5,a10=-9.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n的最大值.解:(1)由a n=a1+(n-1)d及a3=5,a10=-9得,解得-数列{a n}的通项公式为a n=11-2n.(2)由(1)知S n=na1+-d=10n-n2.因为S n=-(n-5)2+25.所以n=5时,S n取得最大值25.16.在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,a n;(2)若d<0,求|a1|+|a2|+|a3|+…+|a n|.解:(1)由题意得5a3·a1=(2a2+2)2,即d2-3d-4=0.故d=-1或d=4.所以a n=-n+11,n∈N*或a n=4n+6,n∈N*.(2)设数列{a n}的前n项和为S n,因为d<0,由(1)得d=-1,a n=-n+11.则当1≤n≤11时,|a1|+|a2|+|a3|+…+|a n|=S n=-n2+n.当n≥12时,|a1|+|a2|+|a3|+…+|a n|=-S n+2S11=n2-n+110.综上所述,|a1|+|a2|+|a3|+…+|a n|=17.(2015福建省宁德市五校联考,21)已知数列{a n}中,a1=3,a n+1=4a n+3.(1)试写出数列{a n}的前三项;(2)求证:数列{a n+1}是等比数列,并求数列{a n}的通项公式a n;(3)设b n=log2(a n+1),记数列的前n项和为T n,求T n的取值范围.解:(1)∵a1=3,a n+1=4a n+3,∴a1=3,a2=15,a3=63.(2)∵=4,∴数列{a n+1}是公比为4的等比数列.∴a n+1=(a1+1)·4n-1=4n,∴a n=4n-1.(3)∵b n=log2(a n+1)=log24n=2n,∴-,∴T n=---…=-,∵T n=-是关于n(n∈N*)的单调递增函数,∴n=1时,(T n)min=,n→+∞时,T n→.∴T n的取值范围是.18.(2015山东高考,理18)设数列{a n}的前n项和为S n.已知2S n=3n+3.(1)求{a n}的通项公式;(2)若数列{b n}满足a n b n=log3a n,求{b n}的前n项和T n.解:(1)因为2S n=3n+3,所以2a1=3+3,故a1=3,当n>1时,2S n-1=3n-1+3,此时2a n=2S n-2S n-1=3n-3n-1=2×3n-1,即a n=3n-1,所以a n=-(2)因为a n b n=log3a n,所以b1=,当n>1时,b n=31-n log33n-1=(n-1)·31-n.所以T1=b1=;当n>1时,T n=b1+b2+b3+…+b n=+(1×3-1+2×3-2+…+(n-1)×31-n), 所以3T n=1+(1×30+2×3-1+…+(n-1)×32-n),两式相减,得2T n=+(30+3-1+3-2+…+32-n)-(n-1)×31-n=-----(n-1)×31-n =,所以T n=.经检验,n=1时也适合.综上可得T n=.。
单元测评数 列(时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.一个等差数列的第5项等于10,前3项的和等于3,那么( ) A .它的首项是-2,公差是3 B .它的首项是2,公差是-3 C .它的首项是-3,公差是2 D .它的首项是3,公差是-2解析:⎩⎪⎨⎪⎧a 5=10,S 3=3⇒⎩⎪⎨⎪⎧a 1+4d =10,3a 1+3×22·d =3⇒a 1=-2,d =3.答案:A2.等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则( ) A .a 1=1 B .a 3=1 C .a 4=1D .a 5=1解析:∵T 5=a 1a 2a 3a 4a 5=a 23·a 23·a 3=1,∴a 3=1. 答案:B3.若一个等差数列前三项的和为34,最后三项和为146,且所有项的和为390,则这个数列有( )A .13项B .12项C .11项D .10项解析:⎩⎪⎨⎪⎧a 1+a 2+a 3=34,a n +a n -1+a n -2=146,∴3(a 1+a n )=180.∴a 1+a n =60.∵n2(a 1+a n )=390,∴n =13.答案:A4.已知数列{a n }的通项公式a n =26-2n ,要使此数列的前n 项和S n 最大,则n 的值为( ) A .12 B .13 C .12或13D .14解析:∵a 13=0,∴n =12或13,S n 最大. 答案:C5.在等比数列{a n }中,若a 1=1,q =2,则a 21+a 22+…+a 2n =( )A .(2n -1)2B.13(2n-1) C .4n-1 D.13(4n-1) 解析:S n =1·1-4n1-4=13(4n-1). 答案:D6.在正项等比数列{a n }中,a 5a 6=9,则log 3a 1+log 3a 2+…+log 3a 10=( ) A .12 B .10 C .8D .2+log 35解析:∵a 1a 10=a 2a 9=a 3a 8=a 4a 7=a 5a 6,∴log 3a 1+log 3a 2+…+log 3a 10=log 2(a 5a 6)5=log 395=10. 答案:B7.已知等差数列前n 项的和为S n ,若S 13<0,S 12>0,则在数列中绝对值最小的项为( ) A .第5项 B .第6项 C .第7项D .第8项解析:⎩⎪⎨⎪⎧S 13<0,S 12>0⇒⎩⎪⎨⎪⎧a 1+a 13<0,a 1+a 12>0⇒⎩⎪⎨⎪⎧a 7+a 7<0,a 6+a 7>0⇒⎩⎪⎨⎪⎧a 7<0,a 6>0,∴绝对值最小的项为第7项. 答案:C8.已知数列的前n 项和为S n =an 2+bn (a ,b ∈R )且S 25=100,则a 12+a 14为( ) A .16 B .4 C .8D .不确定解析:{a n }是等差数列. 答案:C9.某储蓄所计划从2011年起,力争做到每年的吸储量比前一年增长8%,则到2014年底该储蓄所的吸储量将比2011年的吸储量增加( )A .24%B .32%C .(1.083-1)×100% D .(1.084-1)×1.083答案:C10.数列1,2,2,3,3,3,4,4,4,4,…中,第100项是( ) A .10 B .13 C .14D .100答案:C第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =__________.解析:当n =1时,a 1=S 1=1;当n >1时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3.又n =1时,2n -3≠a 1,所以有a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >1.答案:⎩⎪⎨⎪⎧1,n =1,2n -3,n >112.设{a n }为公比q >1的等比数列,若a 2 006和a 2 007是方程4x 2-8x +3=0的两根,则a 2 008+a 2009=__________.解析:方程4x 2-8x +3=0的两根是12和32,又q >1,则a 2 006=12,a 2 007=32.则q =a 2 007a 2 006=3. 所以a 2 008+a 2 009=q 2(a 2 006+a 2 007)=18. 答案:1813.用[x ]表示不超过x 的最大整数,如[0.78]=0,[3.01]=3,如果定义数列{x n }的通项公式为x n =⎣⎢⎡⎦⎥⎤n 5(n ∈N *),则x 1+x 2+…+x 5n =__________.解析:x 5n =⎣⎢⎡⎦⎥⎤5n 5=[n ]=n ,则x 1+x 2+…+x 5n =5[x 5+x 10+x 15+…+x 5(n -1)]+x 5n =5(1+2+…+n -1)+n =52n 2-32n .答案:52n 2-32n14.设y =f (x )是一次函数,f (0)=1,且f (1),f (4),f (13)成等比数列,则f (2)+f (4)+…+f (2n )=__________.解析:设f (x )=kx +b (k ≠0),又f (0)=1,则b =1, 所以f (x )=kx +1(k ≠0). 又f 2(4)=f (1)f (13),所以(4k +1)2=(k +1)(13k +1),解得k =2. 所以f (x )=2x +1,则f (2n )=4n +1. 所以{f (2n )}是公差为4的等差数列.所以f (2)+f (4)+…+f (2n )=n 5+4n +12=2n 2+3n .答案:2n 2+3n三、解答题:本大题共4小题,满分50分.15.(12分)数列{a n }的前n 项和记为S n ,点(n ,S n )在曲线f (x )=x 2-4x (x ∈N *)上. 求数列{a n }的通项公式.解:由点(n ,S n )在曲线f (x )=x 2-4x (x ∈N *)上知S n =n 2-4n ,(4分) 当n ≥2时a n =S n -S n -1=n 2-4n -[(n -1)2-4(n -1)]=2n -5;(8分) 当n =1时,a 1=S 1=-3,满足上式;(10分) ∴数列{a n }的通项公式为a n =2n -5.(12分)16.(12分)(2012·肇庆高二检测)已知数列{a n }是一个等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项a n 和前n 项和S n ;(2)设c n =5-a n2,b n =2c n ,证明数列{b n }是等比数列.解:(1)设{a n }的公差为d ,由已知条件得,⎩⎪⎨⎪⎧a 1+d =1,a 1+4d =-5,解得a 1=3,d =-2,(3分) 所以a n =a 1+(n -1)d =-2n +5,S n =na 1+n n -12d =-n 2+4n .(6分)(2)∵a n =-2n +5,∴c n =5-a n 2=5--2n +52=n ;(8分)∴b n =2c n =2n.(10分)∵b n +1b n =2n +12n =2(常数), ∴数列{b n }是等比数列.(12分)17.(12分)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n . 解:(1)由S n =2n 2+n ,可得当n ≥2时,a n =S n -S n -1=(2n 2+n )-[2(n -1)2+(n -1)]=4n -1, 当n =1时,a 1=3符合上式,所以a n =4n -1(n ∈N *). 由a n =4log 2b n +3,(4分)可得4n -1=4log 2b n +3, 解得b n =2n -1(n ∈N *).(6分)(2)a n b n =(4n -1)·2n -1,∴T n =3+7×21+11×22+15×23+…+(4n -1)×2n -1,①2T n =3×21+7×22+11×23+15×24+…+(4n -1)×2n.② ①-②可得-T n =3+4(21+22+23+24+…+2n -1)-(4n -1)×2n=3+4×21-2n -11-2-(4n -1)×2n=-5+(5-4n )×2n, ∴T n =5+(4n -5)×2n.(12分)18.(14分)已知数列{a n }各项均为正数,其前n 项和为S n ,且满足4S n =(a n +1)2. (1)求{a n }的通项公式; (2)设b n =1a n ·a n +1,数列{b n }的前n 项和为T n ,求T n 的最小值.解:(1)因为(a n +1)2=4S n , 所以S n =a n +124,S n +1=a n +1+124.所以S n +1-S n =a n +1=a n +1+12-a n +124,即4a n +1=a 2n +1-a 2n +2a n +1-2a n ,∴2(a n +1+a n )=(a n +1+a n )(a n +1-a n ).(4分) 因为a n +1+a n ≠0, 所以a n +1-a n =2,即{a n }为公差等于2的等差数列. 由(a 1+1)2=4a 1,解得a 1=1, 所以a n =2n -1.(6分) (2)由(1)知b n =12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n=12⎝⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=12-122n +1.(10分)∵T n +1-T n =12-122n +3-⎣⎢⎡⎦⎥⎤12-122n +1=122n +1-122n +3=12n +12n +3>0,∴T n +1>T n .∴数列{T n }为递增数列,(12分) ∴T n 的最小值为T 1=12-16=13.(14分)。
2.2 等差数列2.2.1 等差数列1.等差数列的前4项依次是a -1,a +1,2a +3,2b -3,则a ,b 的值为( ) A .1,2 B .-1,4 C .0,4 D .2,-22.在等差数列{a n }中,a 3+a 12=60,a 6+a 7+a 8=75,则其通项公式为( ) A .a n =10n +45 B .a n =6n -24 C .a n =10n -45 D .a n =6n +243.已知△ABC 的三个内角A 、B 、C 成等差数列,则tan(A +C)=________.4.若a ,x 1,x 2,x 3,b 与a ,y 1,y 2,y 3,y 4,y 5,b 均为等差数列,则x 3-x 1y 3-y 1=__________.答案:1.C 方法一:依题意可知⎩⎪⎨⎪⎧a -1+2a +3=2(a +1),a +1+2b -3=2(2a +3),解得⎩⎪⎨⎪⎧a =0,b =4.方法二:由(a +1)-(a -1)=2可得d =2,再利用通项公式可得a ,b 的值.方法三:采用特殊值代入法求解.2.C ∵a 6+a 7+a 8=3a 7=75,∴a 7=25. 又∵a 3+a 12=a 7+a 8=60, ∴a 8=35,d =a 8-a 7=10.∴a n =a 8+(n -8)d =35+10×(n -8)=10n -45. 3.- 3 ∵∠A 、∠B 、∠C 成等差数列, ∴2∠B =∠A +∠C .∴∠A +∠B +∠C =3∠B =180°. ∴∠B =60°.∴∠A +∠C =120°. ∴tan(A +C )=tan120°=- 3. 4.32∵a ,x 1,x 2,x 3,b 成等差数列, ∴其公差d 1=b -a4.又∵a ,y 1,y 2,y 3,y 4,y 5,b 成等差数列,∴其公差d 2=b -a6.∴x 3-x 1y 3-y 1=2d 12d 2=d 1d 2=b -a 4×6b -a =32.课堂巩固 1.已知m 和2n 的等差中项是4,2m 和n 的等差中项是5,则m 和n 的等差中项是( ) A .2 B .3 C .6 D .92.(2009辽宁高考,文3){a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d 等于( )A .-2B .-12 C.12D .23.等差数列的首项为125,第10项为开始比1大的项,则公差d 的取值范围为( )A .d >875 B.875<d ≤325 C .d <325 D.875<d <3254.(2009山东高考,文13)在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=__________. 5.若lg2,lg(2x -1),lg(2x +3)成等差数列,则x 的值为__________.6.已知1a ,1b ,1c成等差数列,并且a +c ,a -c ,a +c -2b 均为正数,求证:lg(a +c),lg(a-c),lg(a +c -2b)也成等差数列.7.等差数列{a n }中,已知a 59=70,a 80=112,求a 101.答案:1.B 由题意,得⎩⎪⎨⎪⎧ m +2n =8,2m +n =10,∴⎩⎪⎨⎪⎧m =4,n =2. ∴m 和n 的等差中项是3.2.B 方法一:a 7-2a 4=a 1+6d -2(a 1+3d )=-a 1=-1,∴a 1=1.∴a 3=a 1+2d =1+2d =0.∴d =-12.方法二:∵a 7-2a 4=a 3+4d -2(a 3+d )=-a 3+2d =2d =-1,∴d =-12.3.B 依题意⎩⎪⎨⎪⎧a 10>1a 9≤1⇒⎩⎪⎨⎪⎧ 125+9d >1125+8d ≤1⇒⎩⎪⎨⎪⎧d >875d ≤325⇒875<d ≤325. 4.13 等差数列{a n }中,a 3=7,a 5-a 2=6, ∴3d =6.∴a 6=a 3+3d =7+6=13.5.log 25 2lg(2x -1)=lg2+lg(2x+3),所以可得(2x -1)2=2(2x+3),即(2x )2-4·2x-5=0.解之,得2x =5或2x=-1(舍). 所以x =log 25.6.证明:由已知1a ,1b ,1c成等差数列,∴2b =1a +1c .∴2b =a +c ac. ∴2ac =ab +bc .∴-2ac =2ac -2b (a +c ).∴-2ac +a 2+c 2=2ac -2b (a +c )+a 2+c 2.∴(a -c )2=(a +c )(a +c -2b ).又∵a -c ,a +c ,a +c -2b 都是正数, ∴2lg(a -c )=lg(a +c )+lg(a +c -2b ).∴lg(a +c ),lg(a -c ),lg(a +c -2b )成等差数列. 7.解法一:设首项为a 1,公差为d ,则由题意得 ⎩⎪⎨⎪⎧a 1+58d =70,a 1+79d =112. 解得⎩⎪⎨⎪⎧a 1=-46,d =2.∴a 101=a 1+100d =-46+100×2=154.解法二:设公差为d ,则a 80=a 59+(80-59)d =a 59+21d , 即112=70+21d , ∴d =2.∴a 101=a 80+(101-80)d =112+21×2=154.解法三:∵a n =a 1+(n -1)d =dn +a 1-d 是关于n 的一次函数,其图象是直线上的点, ∴点(59,a 59),(80,a 80),(101,a 101)共线. ∴a 80-a 5980-59=a 101-a 80101-80,即112-7021=a 101-11221. ∴a 101=154.1.在数列{a n }中,a 1=-2,2a n +1=2a n +3,则a 11等于( ) A.272B .10C .13D .19 1.答案:C 由2a n +1=2a n +3得a n +1-a n =32,∴{a n }是等差数列.a 1=-2,d =32,a 11=13.2.(2009安徽高考,文5)已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( )A .-1B .1C .3D .7 2.答案:B 设其公差为d ,∵a 1+a 3+a 5=105, ∴3a 3=105.∴a 3=35.同理,由a 2+a 4+a 6=99,得a 4=33. ∴d =a 4-a 3=-2.∴a 20=a 4+16d =33+16×(-2)=1.3.已知等差数列{a n }的公差为d ,若c ≠0,且c 为常数,则数列{ca n }是( ) A .公差为d 的等差数列 B .公差为cd 的等差数列 C .不是等差数列 D .不能判断 3.答案:B 因为a n +1-a n =d ,所以ca n +1-ca n =cd . 所以数列{ca n }是公差为cd 的等差数列.4.设{a n }是递增的等差数列,其前三项的和为12,前三项的积为48,则数列{a n }的首项为( )A .1B .2C .4D .6 4.答案:B 方法一:设首项为a ,公差为d ,则由题意知:d >0,且⎩⎪⎨⎪⎧a +a +d +a +2d =12,a (a +d )(a +2d )=48,解得a =2.方法二:设三数为:a -d ,a ,a +d ,依题意有⎩⎪⎨⎪⎧d >0,a -d +a +a +d =12,(a -d )·a ·(a +d )=48,解得⎩⎪⎨⎪⎧a =4,d =2.∴a -d =2.5.等差数列{a n }单调递增且a 3+a 6+a 9=12,a 3·a 6·a 9=28,则此数列的通项公式a n =__________.5.答案:n -2 ∵a 3+a 9=2a 6,a 6=4, ∴a 3+a 9=8,a 3·a 9=7.∴a 3、a 9是一元二次方程x 2-8x +7=0的两个根. 又∵{a n }单调递增, ∴a 3=1,a 9=7,d =1.从而a n =a 3+(n -3)d =1+(n -3)=n -2.6.已知方程(x 2-2x +m)(x 2-2x +n)=0的四个根组成一个首项为14的等差数列,则|m -n|等于________.6. 答案:12 设a 1=14,a 2=14+d ,a 3=14+2d ,a 4=14+3d ,而方程x 2-2x +m =0中的两根之和为2,方程x 2-2x +n =0中的两根之和也为2,∴a 1+a 2+a 3+a 4=1+6d =4.∴d =12.因此a 1=14,a 4=74是一个方程的两根,a 2=34,a 3=54是另一个方程的两个根.∴m ,n 分别为716,1516.∴|m -n |=12.7.第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次,奥运会如因故不能举行,届数照算.(1)试写出由举行奥运会的年份构成的数列的通项公式; (2)2012年伦敦奥运会是第几届?2050年举行奥运会吗?7.答案:解:(1)由题意知,举行奥运会的年份构成的数列是一个以1 896为首项,4为公差的等差数列.这个数列的通项公式为a n =1 896+4(n -1)=1 892+4n (n ∈N +).(2)假设a n =2 012,由2 012=1 892+4n ,得n =30. 假设a n =2 050,2 050=1 892+4n 无正整数解,即所求通项公式为a n =1 892+4n (n ∈N +),2012年伦敦奥运会是第30届奥运会,2050年不举行奥运会.8.已知f(x)=x a(x +2),且方程x =f(x)有唯一解,且f(x 0)=11 005,f(x n -1)=x n ,n =1,2,3,….(1)问数列{1x n}是否是等差数列?(2)求x 2 009的值.8.答案:解:(1)由f (x )=x 得x a (x +2)=x ,即x [1-1a (x +2)]=0.解得x =0或x =1a-2.∵方程x =f (x )有唯一解, ∴1a -2=0.∴a =12.∴f (x )=2x x +2. 又x n =f (x n -1)=2x n -1x n -1+2,∴1x n =1x n -1+12.∵x 1=f (x 0)=11 005,∴{1x n }是首项为1 005,公差为12的等差数列. (2)由(1)知1x n =1x 1+(n -1)12=1 005+(n -1)12=2 009+n2,∴x n =22 009+n.∴x 2 009=22 009+2 009=12 009.9.如下图,三个正方形的边AB 、BC 、CD 的长组成等差数列,且AD =21 cm ,这三个正方形的面积之和是179 cm 2.(1)求AB 、BC 、CD 的长; (2)以AB 、BC 、CD 的长为等差数列的前三项,以第10项为边长的正方形的面积是多少? 9.答案:解:(1)设公差为d (d >0),BC =x , 则AB =x -d ,CD =x +d .由题意得⎩⎪⎨⎪⎧(x -d )+x +(x +d )=21,(x -d )2+x 2+(x +d )2=179,解得⎩⎪⎨⎪⎧x =7,d =4或⎩⎪⎨⎪⎧x =7,d =-4(舍去).所以AB=3(cm),BC=7(cm),CD=11(cm).(2)正方形的边长组成首项是3,公差是4的等差数列{a n},所以a10=3+(10-1)×4=39.a210=392=1 521(cm2).所求正方形的面积为1 521 cm2.。
高中数学学习材料马鸣风萧萧*整理制作2.2 等差数列(人教A 版必修5)建议用时 实际用时满分 实际得分45分钟100分一、选择题(每小题3分,共30分)1.在等差数列{}n a 中,已知48a a +=16,则210a a +=( )A.12B.16C.20D.242.已知等差数列{}n a 的公差为d (d ≠0),且36a a ++1013a a +=32,若m a =8,则m 的值为( )A.12B.8C.6D.43.已知不等式2230x x <--的整数解构成等差数列{}n a 的前三项,则数列{}n a 的第四项为()A.3B.-1C.2D.3或-14.已知数列{}n a 为等差数列且17134πa a a ++=,则212tan()a a +的值为( )A. 3B.± 3C.-33D.- 3 5.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3 L ,下面3节的容积共4 L ,则第5节的容积 A.1 L B.6766 LC.4744 LD.3733L6.将正偶数集合{2,4,6,…}从小到大按第n 组有2n 个偶数进行分组,第一组:{2,4},第二组{6,8,10,12},第三组:{14,16,18,20,22,24},则2 010位于第( ) A.30组 B.31组 C.32组 D.33组7.已知方程22(2)(2)x x m x x n -+-+=0的四个根组成一个首项为14的等差数列,则|m -n |=( )A.1B.34C.12D.388.在等差数列{}n a 中,若18152a a a ++=96,则9102a a -=( )A.24B.22C.20D.-8 9.已知等差数列{}n a 中有两项m a 和k a 满足m a =1k,k a =1m,则该数列前mk 项之和是( ) A.2m k + B.12mk + C.2m k + D.21mk +10.若动点P 的横坐标x 、纵坐标y 使得lg lg y x ,, lg 2y x-成等差数列,则点P 所表示的图形是( )二、填空题(每小题4分,共16分)11.设等差数列{}n a 的公差为正数,若123a a a ++=15,123a a a =105,则111213a a a ++=________. 12.将正偶数按下表排成5列: 第1列 第2列 第3列 第4列 第5列 第1行 2 4 6 8 第2行 16 14 12 10 第3行 18 20 22 24 ……2826那么2 014应该在第________行第________列. 13.若数列{}n x 满足1n n x x d --=(n ∈*N ,n ≥2),其中d 为常数,1220x x x +++=80,则516x x +=_____. 14.已知函数()sin tan f x x x =+,项数为27的等差数列{}n a 满足ππ,22n a ⎛⎫∈- ⎪⎝⎭,且公差d ≠0.若1()f a +227()()f a f a ++=0,则当k =_____时,()k f a =0.三、解答题(共54分)15.(12分)求等差数列8,5,2,…的第20项. 16.(14分)已知等差数列{}n a 前三项的和为-3,前三项的积为8.求等差数列{}n a 的通项公式.17.(14分)某市出租车的计价标准为1.2元/千米,起步价为10元,即最初的4千米(不含4千米)计费为10元,如果某人乘坐该市的出租车去往14千米处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?18.(14分)数列{}n a 满足14a =,144n n a a -=-(n ≥2),设n b =12n a -. (1)判断数列{}n b 是否为等差数列并试证明; (2)求数列{}n a 的通项公式.2.2 等差数列(人教A 版必修5)答题纸得分:一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题11. 12. 13. 14. 三、解答题 15.16.17.18.2.2 等差数列(人教A 版必修5)答案一、选择题1.B 解析:由等差数列的性质,得2104816a a a a +=+=,故选B .2.B 解析:由等差数列的性质知361013313610888()()22432a a a a a a a a a a a +++=+++=+==,∴ 88a =.∴ 8m =.3.D 解析:由2230x x <--及x ∈Z ,得x =0,1,2.故该数列可以为0,1,2,3或2,1,0,-1. ∴ 4a =3或4a =-1.故选D.4.D 解析:由题意可得734πa =,∴ 7a =4π3,∴ 2127tan()tan(2)a a a +==8πtan 3=2πtan 3=- 3. 5.B 解析:设该等差数列为{}n a ,公差为d ,则12347893,4,a a a a a a a +++=⎧⎨++=⎩即11463,3214,a d a d +=⎧⎨+=⎩解得113,227.66a d ⎧=⎪⎪⎨⎪=⎪⎩所以第5节的容积为514a a d =+=1322+766×4=6766. 6.C 解析:因为第n 组有2n 个正偶数,故前n 组共有2+4+6+…+2n =(2n +n )个正偶数.因为2 010是第1005个正偶数,若n =31,则2n +n =992,而第32组中有64个偶数,992+64=1 056,故2 010在第32组. 7.C 解析:设220x x m -+=的根为12x x ,且12x x <,220x x n -+=的根为34x x ,且34x x <,不妨设1x =14. ∵ 122x x +=,∴ 2x =74.又∵ 342x x +=,且1342x x x x ,,,成等差数列,∴ 公差d =171344⎛⎫⨯- ⎪⎝⎭=12,∴ 3x =34, 4x =54.∴|m n -|=17354444⨯-⨯=12,故选C.8.A 解析:因为1815296a a a ++=,所以8496a =,所以 8a =24.又因为91082a a a =+,所以9108224a a a -==.9.B 解析:设数列{}n a 的首项为1a ,公差为d ,则111(1),1(1),m k a a m d ka a k d m ⎧=+-=⎪⎪⎨⎪=+-=⎪⎩解得11,1.a mk d mk ⎧=⎪⎪⎨⎪=⎪⎩所以11111()(1)222mk mk mk mk mk S a a mk mk mk mk +⎡⎤=+=++-=⎢⎥⎣⎦. 10.C 解析:由题意可知2lg lg lg2y x x y -=+,即22y x x y -⎛⎫⎪⎝⎭=.整理,得222x y xy =-. 化简可知(2)()0x y x y -+=,即20x y -=或0x y +=,且满足0,0,0.2x y y x ⎧⎪≠⎪>⎨⎪-⎪>⎩二、填空题11.75 解析:∵ 12312315,105,a a a a a a ++=⎧⎨=⎩∴ 2135,21,a a a =⎧⎨=⎩∴ 1115,(2)21.a d a a d +=⎧⎨+=⎩∵ 0d >,∴ 13,2.a d =⎧⎨=⎩∴ 111213133375a a a a d ++=+=.12.252 2 解析:通项2n a n =,故2 014为第1007项.∵ 1 007=4×251+3,又251为奇数,因此2 014应排在第252行从右向左排第3个数,即第252行第2列.13.8 解析:由1n n x x d --=知{}n x 是公差为d 的等差数列,∴ 122080x x x +++=⇒12010()80x x +=⇒1208x x +=,∴ 5161208x x x x +=+=.14.14 解析:∵ ()sin tan f x x x =+为奇函数,且在0x =处有定义,∴ (0)0f =. ∵ {}n a 为等差数列且0d ≠,1227()()()0f a f a f a +++=,∴ *(127)n a n n ≤≤∈,N 对称分布在原点及原点两侧.∴ 14()0f a =,∴ k =14. 三、解答题15.解:由18a =,583d =-=-,20n =,得208(201)(3)49a =+-⨯-=-. 16.解:设等差数列{}n a 的公差为d ,则21312a a d a a d =+,=+.由题意得1111333,()(2)8,a d a a d a d +=-⎧⎨++=⎩解得12,3a d =⎧⎨=-⎩或14,3.a d =-⎧⎨=⎩所以由等差数列的通项公式可得23(1)35n a n n =--=-+或43(1)37n a n n =-+-=-. 故35n a n =-+或37n a n =-.17.解:可以抽象为等差数列的数学模型,4 千米处的车费记为111.2a =,公差 1.2d =. 当出租车行至目的地即14 千米处时,11n =,求11a .11a =11.2+(11-1)×1.2=23.2.答:需要支付车费23.2元. 18.解:(1)∵ 1112422n n n n n a b b a a +-=-=--,∴ 数列{}n b 是公差为12的等差数列. (2)∵ 111122b a ==-,11(1)222n n b n =+-⨯=,∴ 122n n a =-,∴ 2(1)n n a n +=.。
自我检测
基础达标
一、选择题
1.{a n }是首项a 1=1,公差d=3的等差数列,如果a n =2 005,则序号n 等于( )
A.667
B.668
C.669
D.670
答案:C
2.一个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差是
( )
A.-2
B.-3
C.-4
D.-6 解析:∵a n =23+(n-1)d,则⎩⎨
⎧<>,0,076a a 得-4.6<d<-36
5,且d ∈Z, ∴d=-4.故选C.
答案:C
3.若a,b,c 成等差数列,则二次函数y=ax 2+2bx+c 的图象与x 轴交点的个数是( )
A.0
B.1
C.2
D.1或2 解析:∵Δ=4b 2-4ac=(a+c)2-4ac=(a-c)2≥0,
故与x 轴有2个或1个交点.故选D.
答案:D
4.在等差数列1,4,7,…中,5 995是它的( )
A.第2 005项
B.第2 003项
C.第2 001项
D.第1 999项
解析:已知首项a 1=1,公差d=3,可运用通项公式a n =a 1+(n-1)d 求n.
令1+(n-1)·3=5 995,得n=1 999.
答案:D
5.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为( )
A.49
B.50
C.51
D.52
解析:由已知得a n+1-a n =
2
1, 所以{a n }是公差为2
1的等差数列. 又a 1=2,所以a 101=2+100×21=52. 答案:D
6.等差数列{a n }的公差d ≠0,若n>2,则下列关系成立的是( )
A.a 1a n >a 2a n-1
B.a 1a n <a 2a n-1
C.a 1a n =a 2a n-1
D.a 1a n ≥a 2a n-1
解析:a 1a n -a 2a n-1=a 2[a 1+(n-1)d ]-(a 1+d)[a 1+(n-2)d ]=-(n-2)d 2<0.故应选B.
答案:B
7.如果△ABC 的三边长a,b,c 的倒数成等差数列,则b 所对的角为( )
A.锐角
B.直角
C.钝角
D.不能确定
解析:∵
a 1,
b 1,c
1成等差数列, ∴a 1≤b 1≤c 1或c 1≤b 1≤a 1. ∴a ≤b ≤c 或c ≤b ≤a.
∴b 所对的角为锐角.故选A.
答案:A
8.若x 的方程x 2-x+a=0和x 2-x+b=0(a ≠b)的四个根可组成首项为
41的等差数列,则a+b 的值为( ) A.83 B.2411 C.2413 D.72
31 解析:x 2-x+a=0和x 2-x+b=0各有两根,且这两个方程的两根和都等于1,且四个根组成等差数列,
所以可设四个根为a 1,a 2,a 3,a 4.根据等差数列的性质,只能a 1+a 4=a 2+a 3=1,设公差为d, 则a 1+a 4=2a 1+3d=2×
41+3d=1. ∴d=6
1. 从而a 2=
12
5,a 3=127,a 4=129, 于是a+b=41×129+125×127=7231. 故选D.
答案:D
二、填空题
9.公差不为零的等差数列{a n }中,a 1和a 2为方程x 2-a 3x+a 4=0的两根,则通项公式a n =________. 解析:设{a n }的公差为d,
∵⎩⎨⎧=∙=+,
,421321a a a a a a 即⎩⎨⎧+=++=++,3)(,211
1111d a d a a d a d a a 解得⎩⎨⎧==.2,21a d ∴a n =2+(n-1)×2=2n.
答案:2n
10.已知数列{a n }中,a 1=3,n a 1-1
1-n a =5(n ≥2),则a n =____________________. 答案:14
1513-n 三、解答题
11.已知{a n }是等差数列,a 1=2,a 2=3,若在每相邻两项之间插入3个数,使它和原数列的数构成一个新的等差数列,
(1)原数列的第12项是新数列的第几项?
(2)新数列的第29项是原数列的第几项?
解:数列的通项公式是研究数列问题的重要工具.能否由条件找到两个数列的通项公式是解决此题的关键.
∵数列{a n }中a 1=2,d=a 2-a 1=3-2=1,
∴a n =a 1+(n-1)d=2+(n-1)×1=n+1.
设新数列为{b n },公差为d ′,据题意知b 1=2,b 5=3,
则d ′=
1515--b b =423-=4
1, ∴b n =2+(n-1)×41=4n +4
7. (1)a 12=12+1=13,令4n +4
7=13,得n=45,故原数列的第12项是新数列的第45项. (2)b 29=429+47=9,令n+1=9,得n=8,故新数列的第29项是原数列的第8项. 12.在数列{a n }中,a n =lg 1235
+n ,判断该数列是否为等差数列.
解:∵a n+1-a n =lg 1)1(235
++n -lg 1235+n =lg(212335
∙+n ×531
2+n )=lg 31=常数, ∴数列{a n }是等差数列.
更上一层
1.已知5个数成等差数列,它们的和为5,平方和为9
85,求这5个数. 解:根据等差数列的特点,对称设出这5个数,然后由条件列方程组求解.
设第三个数是a,公差为d,由已知得
⎪⎩
⎪⎨⎧=+++++-+-=+++++-+-,985)2()()()2(,5)2()()()2(22222d a d a a d a d a d a d a a d a d a 化简,得⎪⎩⎪⎨⎧=+=,985105,5522d a a ,即⎪⎩
⎪⎨⎧±==.32,1d a 所以这5个数依次是-
31,31,1,35,37或37,35,1,31,-3
1. 2.已知a 1,b 1,c 1成等差数列,则a c b +,b
c a +,c b a +是否也成等差数列?并说明你的理由. 解法一:∵a 1,b 1,c 1成等差数列,
∴
a 1+c 1=b
2,即2ac=b(a+c). ∴a c b ++c b a +=ac b a a c b c )()(+++ =ac c a b c a )(22+++=)
()(22c a b c a ++=b c a )(2+. ∴
a c
b +,b
c a +,c b a +也是等差数列. 解法二:∵a 1,b 1,c
1成等差数列, ∴a c b a ++,b c b a ++,c
c b a ++也成等差数列, 即a c b ++1,b
c a ++1,c b a ++1也成等差数列. 故a c b +,b c a +,c b a +也是等差数列. 3.已知函数f(x)=-412+x
(x>0),数列{a n }中,a 1=1,11+n a =-f(a n ),求数列{a n }的通项公式. 解:∵1
1+n a =-f(a n ), ∴11+n a =-412+n
x . ∴211
+n a =21n
a +4. ∴211+n a -
21n a =4. 则{21n
a }是以211a =1为首项,4为公差的等差数列. ∴21n
a =1+4(n-1)=4n-3. ∴a n 2=
341-n . ∵a n >0,
∴a n =3
41-n .。