§10.4高阶线性微分方程
- 格式:ppt
- 大小:3.30 MB
- 文档页数:75
高阶线性微分方程常用解法简介关键词:高阶线性微分方程 求解方法在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。
下面对高阶线性微分方程解法做一些简单介绍.讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dtdt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程.1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。
形如111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n阶常系数齐次线性微分方程。
111111111111[]()()()n t n t tt tn n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dta a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式.()F λ为特征方程,它的根为特征根.1.1特征根是单根的情形设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,nc c c 为任意常数.如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根对应的,方程(3)有两个复值解()(cos sin ),i t t t t e e i αβαββ+=+()(cos sin ).i t t t t e e i αβαββ-=-对应于特征方程的一对共轭复根,i λαβ=±我们可求得方程(3)的两个实值解cos ,sin .t t t t e e αβαβ1.2特征根有重根的情形设特征方程有k 重根1,λλ=则易知知'(1)()1111()()()0,()0.k k F F F F λλλλ-====≠1.2.1先设10,λ=即特征方程有因子k λ,于是110,n n n k a a a --+====也就是特征根方程的形状为110.n n k n k a a λλλ--+++=而对应的方程(3)变为 1110,n n k n k n n k d x d x d x a a dt dt dt ---+++=易见它有k 个解211,,,k t t t -,且线性无关.特征方程的k 重零根就对应于方程(3)的k 个线性无关解211,,,k t t t -. 1.2.2当1k 重根10,λ≠对应于特征方程(4)的1k 重根1λ,方程(3)有1k 个解 1111112,,,,.t t t k t e te t e t e λλλλ-同样假设特征方程(4)的其他根2λ3,,λm λ的重数依次为2k 3k m k ;1i k ≥,且1k +2k ++m k =n,j i λλ≠(当i ≠j),对应方程(3)的解有2222212,,,,.t t t k t e te t e t e λλλλ-12,,,,m m m m m t t t k t e te t e t e λλλλ-。