高阶齐次线性微分方程
- 格式:pdf
- 大小:870.24 KB
- 文档页数:21
高阶线性微分方程高阶线性微分方程是微积分中的重要概念,它在各个领域都有广泛的应用。
本文将对高阶线性微分方程的定义、解法以及应用进行探讨。
一、高阶线性微分方程的定义高阶线性微分方程是指形如 $y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y'+a_0y=f(x)$ 的微分方程,其中 $y^{(n)}$ 表示 $y$ 的$n$ 阶导数,$a_i(i=0,1,\cdots,n-1)$ 为常数项,$f(x)$ 为已知函数。
二、高阶线性微分方程的解法1. 齐次线性微分方程的解法对于齐次线性微分方程 $y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y'+a_0y=0$,我们可以先求其特征方程 $r^n+a_{n-1}r^{n-1}+\cdots+a_1r+a_0=0$ 的根 $r_1,r_2,\cdots,r_n$,然后根据根的性质得到通解 $y=C_1e^{r_1x}+C_2e^{r_2x}+\cdots+C_ne^{r_nx}$,其中 $C_1,C_2,\cdots,C_n$ 为待定常数。
2. 非齐次线性微分方程的解法对于非齐次线性微分方程 $y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y'+a_0y=f(x)$,我们首先求其对应的齐次线性微分方程的通解 $y=C_1e^{r_1x}+C_2e^{r_2x}+\cdots+C_ne^{r_nx}$。
然后,我们需要根据待定系数法,假设特解形式为 $y^*=P(x)e^{mx}$,其中$P(x)$ 为多项式,$m$ 为特征方程的根的重数。
将特解 $y^*$ 代入原方程,确定多项式的系数,进而求得特解。
最后,将齐次解和非齐次解相加,即得到原方程的通解。
三、高阶线性微分方程的应用高阶线性微分方程在物理学、工程学等领域有着广泛的应用。
举例来说,振动系统可以通过高阶线性微分方程进行建模。
高阶常系数齐次线性微分方程的解法
高阶常系数齐次线性微分方程(HCCLDE)是一类常见的微分方程,由一个高次项和多个常系数组成。
它可以用来描述许多物理系统的运动规律,如波动方程,动力学系统,电磁学系统等。
因此,解决高阶常系数齐次线性微分方程是一件重要而又复杂的工作。
首先,为了解决HCCLDE,需要根据给定的方程确定一
个基本的解,可以使用求解基本解的常用方法,如解析法、拉普拉斯变换、Fourier级数展开等。
其次,要求出方程的通解,需要对基本解进行叠加,也就是找到该方程的特解,可以采用求解特解的常用方法,如换元法、拉普拉斯变换、Laplace变
换等。
最后,将基本解和特解叠加,就可以得到高阶常系数齐次线性微分方程的通解。
为了求解HCCLDE,必须了解其特性,并利用相应的数
学方法。
根据HCCLDE的特性,可以把HCCLDE的解分为基本解和特解,并通过叠加这两类解得到它的通解。
此外,可以利用常用的方法求解基本解和特解,例如解析法、拉普拉斯变换、Fourier级数展开、换元法、Laplace变换等。
总之,解决高阶常系数齐次线性微分方程是一项复杂的任务,需要结合相关知识和技术,并利用一些常用的数学方法来解决。
通过了解HCCLDE的特性,可以将它的解分为基本解
和特解,并将它们叠加,最终得到HCCLDE的通解。
高数微分方程公式大全微分方程是数学中的重要概念,包含了许多公式和方法。
下面我将从不同角度介绍一些常见的高等数学微分方程公式。
1. 一阶微分方程:可分离变量方程公式,dy/dx = f(x)g(y),可通过分离变量并积分求解。
齐次方程公式,dy/dx = f(x)/g(y),可通过变量代换或分离变量求解。
线性方程公式,dy/dx + P(x)y = Q(x),可通过积分因子法或常数变易法求解。
2. 二阶微分方程:齐次线性方程公式,d²y/dx² + P(x)dy/dx + Q(x)y = 0,可通过特征方程法求解。
非齐次线性方程公式,d²y/dx² + P(x)dy/dx + Q(x)y = f(x),可通过常数变易法或待定系数法求解。
欧拉方程公式,x²d²y/dx² + pxdy/dx + qy = 0,可通过变量代换或特征方程法求解。
3. 高阶微分方程:常系数线性齐次方程公式,andⁿy/dxⁿ +an⁻¹dⁿ⁻¹y/dxⁿ⁻¹ + ... + a1dy/dx + a0y = 0,可通过特征方程法求解。
常系数线性非齐次方程公式,andⁿy/dxⁿ +an⁻¹dⁿ⁻¹y/dxⁿ⁻¹ + ... + a1dy/dx + a0y = f(x),可通过常数变易法或待定系数法求解。
常系数二阶齐次方程公式,d²y/dx² + py' + qy = 0,可通过特征方程法求解。
4. 常见的变换和公式:指数函数变换,对于形如y = e^(kx)的方程,可通过变量代换进行求解。
对数函数变换,对于形如y = ln(x)的方程,可通过变量代换进行求解。
三角函数变换,对于形如y = sin(kx)或y = cos(kx)的方程,可通过变量代换进行求解。
常用公式,如指数函数的导数公式、对数函数的导数公式、三角函数的导数公式等。
齐次高阶线性微分方程是微积分学中的一类重要问题,其解析式和性质深受学者们的关注和研究。
本文将对进行探讨,首先从概念及其特点入手,然后介绍的求解方法以及一些特殊情况下的性质。
一、概念及其特点是指形如以下形式的微分方程:$$L[y]=\frac{d^n y}{dx^n}+a_{n-1}\frac{d^{n-1} y}{dx^{n-1}}+\cdots+a_1\frac{dy}{dx}+a_0y=0$$其中$n$为正整数,$y$是$x$的函数,$a_i(i=0,1,2,\cdots,n-1)$是常数。
如果方程中$a_i$皆为零,则该微分方程为常系数齐次线性微分方程。
有以下几个特点:1、是线性微分方程。
即方程中只包含$y$及其各阶导数的线性组合。
2、是高阶微分方程。
即方程中最高阶导数的阶数为$n$。
3、是齐次微分方程。
即方程右侧为零。
二、求解方法的求解可以按照如下步骤进行:1、先求出方程的特征方程。
特征方程形如:$$L(\lambda)=\lambda^n+a_{n-1}\lambda^{n-1}+\cdots+a_1\lambda+a_0=0$$2、根据特征方程求得特征根$\lambda_1,\lambda_2,\cdots,\lambda_n$。
这个步骤可以使用求根公式解决。
3、根据特征根求解的通解。
通解可以表示为:$$y=c_1e^{\lambda_1 x}+c_2e^{\lambda_2x}+\cdots+c_ne^{\lambda_n x}$$其中$c_1,c_2,\cdots,c_n$是常数。
三、特殊情况下的性质1、相等特征根的情况:如果特征方程$L(\lambda)$存在$k$个相等的特征根,比如$\lambda_1=\lambda_2=\cdots=\lambda_k=\lambda$,那么相应的$k$个方程通解中,必然包含$k$个线性无关的解:$$y_1=e^{\lambda x},y_2=xe^{\lambda x},\cdots,y_k=x^{k-1}e^{\lambda x}$$也就是说,一个$n$阶的,如果其特征方程有$k$个相等的特征根,那么其对应的$k$个线性无关的解中,必定有$k$个函数及其前$n-k$阶导数的线性组合能够满足方程的要求。
高阶线性微分方程与特殊解线性微分方程是微分方程中重要的一类方程,常见的一类线性微分方程是高阶线性微分方程。
高阶线性微分方程是指最高阶导数是关于自变量的线性函数的微分方程。
解高阶线性微分方程需要找到其特殊解和通解。
一、特殊解特殊解是高阶线性微分方程的一种特殊解形式,它满足原方程,但不包含任何常数。
特殊解的求解方法因方程的类型而异,下面以几种常见的高阶线性微分方程为例进行讲解。
1. 齐次线性微分方程齐次线性微分方程的特殊解通常通过代入形式解得。
对于形如$y'' + py' + qy = 0$的二阶齐次线性微分方程,设特殊解为$y = e^{mx}$,其中m为常数,则有:$(m^2 + pm + q)e^{mx} = 0$由指数函数的性质可知,$e^{mx} \neq 0$,因此上式成立的充要条件为$m^2 + pm + q = 0$,即特征方程的根$m_1$和$m_2$。
因此,特殊解为$y = C_1e^{m_1x} + C_2e^{m_2x}$,其中$C_1$和$C_2$为任意常数。
2. 非齐次线性微分方程对于形如$y'' + py' + qy = f(x)$的非齐次线性微分方程,先求解对应的齐次线性微分方程得到通解$y_h$,再通过待定系数法求解特殊解$y_p$。
待定系数法根据右侧非齐次项的形式选择特定的试探函数,然后将其代入原方程,确定待定系数的值。
例如,当右侧非齐次项为多项式$P(x)$时,可以设特殊解为$y_p = Q(x)$,其中$Q(x)$为与$P(x)$同次数的多项式。
将$y_p$代入方程,确定$Q(x)$的系数。
同样地,当右侧非齐次项为三角函数、指数函数或其线性组合时,可以通过设定不同的试探函数形式求解特殊解。
二、通解除特殊解外,高阶线性微分方程还存在通解。
通解是由特殊解和齐次线性微分方程的通解组成的。
对于齐次线性微分方程,其通解可以表示为$y_h = C_1y_1 +C_2y_2$,其中$C_1$和$C_2$为任意常数,$y_1$和$y_2$为满足方程的线性无关函数。
推导微分方程的高阶线性微分方程与常系数齐次线性微分方程的解法微分方程(Differential Equation)是描述自然界中变化规律的重要数学工具。
在微分方程的研究中,高阶线性微分方程与常系数齐次线性微分方程是常见且具有重要意义的两个类型。
本文将介绍这两种微分方程的解法,并进行推导。
一、高阶线性微分方程高阶线性微分方程(High-order Linear Differential Equation)是指方程中包含高于一阶的导数的线性微分方程。
一般形式可以表示为:\[ a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \cdots + a_1(x)y'(x) + a_0(x)y(x) = 0 \]其中,$y^{(n)}(x)$表示导数的$n$次导数,$a_n(x), a_{n-1}(x),\cdots, a_1(x), a_0(x)$为已知的函数。
解法如下:1. 设方程的$n$个线性无关的特解为$y_1(x), y_2(x), \cdots, y_n(x)$2. 利用特解组合构造齐次线性微分方程的解\[ y(x) = C_1 y_1(x) + C_2 y_2(x) + \cdots + C_n y_n(x) \]其中,$C_1, C_2, \cdots,C_n$为常数。
3. 求解常数$C_1, C_2, \cdots, C_n$的值,得到齐次线性微分方程的通解。
二、常系数齐次线性微分方程常系数齐次线性微分方程(Homogeneous Linear Differential Equation with Constant Coefficients)是指系数为常数的齐次线性微分方程。
一般形式可以表示为:\[ a_ny^{(n)}(x) + a_{n-1}y^{(n-1)}(x) + \cdots + a_1y'(x) + a_0y(x) =0 \]其中,$a_n, a_{n-1}, \cdots, a_1, a_0$为已知的常数。
第七章常微分方程7.8 高阶齐次线性微分方程数学与统计学院赵小艳1 2 高阶线性微分方程的概念1主要内容3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关高阶齐次线性微分方程通解的结构1 2 高阶线性微分方程的概念1主要内容3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关高阶齐次线性微分方程通解的结构解 受力分析 1 高阶线性微分方程的概念 例1 (弹簧的机械振动)如图,弹簧下挂一物体.设在垂直方向有一随时间变化的外力作用在物体上,物体将受外力驱使而上下振动,求物体的振动规律.pt H t f sin )(1= 以物体的平衡位置为坐标原点,x 轴的方向垂直向下. x xo )(1t f ;sin )()1(1pt H t f =外力;)2(kx f -=弹性力v f μ-=0)3(介质阻力,ma F =由x kx t f x m d d μ--=)(2可得.t x d d μ-= 设振动开始时刻为0,t 时刻物体离开平衡位置的位移为x (t ).,ma F =由x kx t f x m d d μ--=)(2可得t t 2d d 物体自由振动的微分方程.0,000====t t t x x d d 还应满足初始条件:一般地,称 )()()(2122t F x t P t x t P t x =++d d d d 为二阶线性微分方程, ,0)(时当≡t F 称为二阶齐次线性微分方程,,0)(时当≠t F 称为二阶非齐次线性微分方程. )()()()()()()()(1)1(1)(t F t x t P t x t P t x t P t x n n n n =++++-- n 阶线性(微分)方程 ,0)(时当≡t F n 阶齐次线性微分方程,t t 2d d .0,000====t t t x x d d 还应满足初始条件:物体自由振动的微分方程)1()()()()()()()()(1)1(1)(t F t x t P t x t P t x t P t x n n n n =++++-- n 阶线性(微分)方程,0)(时当≡t F n 阶齐次线性微分方程, ,0)(时当≠t F n 阶非齐次线性微分方程.其初始条件的一般形式为 )2(.)(,,)(,)()1(00)1(0000--===n n x t x x t x x t x 解的存在唯一性定理].,[,),()2()1(,],[)()(,),(),()1(021b a t t t x b a t F t P t P t P n ∈的解件存在唯一的满足初始条则方程上连续均在区间及中的系数若1 2 高阶线性微分方程的概念1主要内容3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关高阶齐次线性微分方程通解的结构为线性微分算子. ),()()()()(1111t x t P t x t P t x t P t x x L n n n n n n ++++=---d d d d d d 记 称 )()()()(1111t P t t P t t P t L n n n n n n ++++=---d d d d d d 性质;0)0()1(=L ;),()()2(为任一常数C x CL Cx L =,x L C x L C x L C x C x C x C L n n n n )()()()()3(22112211+++=+++ .,,,为任意常数其中C C C 2 高阶齐次线性微分方程解的性质 )3(0)()()()()()()(1)1(1)(=++++--t x t P t x t P t xt P t x n n n n 0)(=x L定理1(解的叠和性) ,)3(,,,21的解均是齐次线性方程若n x x x ,)3(2211的解也是齐次线性方程则n n x C x C x C x +++= 问题: 例如 ,0=+x x,sin 1t x =t x sin 22=都是它的解, 也是它的解, 2211x C x C x +=.sin )2(21t C C x +=这是因为但不是该方程的通解. )3(0)()()()()()()(1)1(1)(=++++--t x t P t x t P t x t P t x n n n n .,,,21为任意常数其中n C C C 不一定! 的通解呢?情况下才是方程个任意常数的解在什么具有)3(n 的通解?是否是)3(2211n n x C x C x C x +++=1 2 高阶线性微分方程的概念1主要内容3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关高阶齐次线性微分方程通解的结构定义1(线性相关与线性无关) ,)(,),(),(21个函数内的为定义在区间设n I t f t f t f n 使得个不全为零的常数如果存在),,,2,1(n i C n i =0)()()(2211=+++t f C t f C t f C n n ),,2,1)((n i t f i =则称函数组,值均成立中任何对区间t I ,,,,21维向量是一组设n s ααα 的常数如果存在一组不全为零,02211=+++s s k k k ααα 使得,,,1s k k s ααα,,,21 则称.,则称它是线性无关的关一个向量组不是线性相.是线性相关的在区间 I 线性相关; ,),,2,1(全为零时成立若上式仅当n i C i =线性无关.I n i t f i 在区间则称函数组),,2,1)(( =定义1(线性相关与线性无关) ,)(,),(),(21个函数内的为定义在区间设n I t f t f t f n 使得个不全为零的常数如果存在),,,2,1(n i C n i =0)()()(2211=+++t f C t f C t f C n n ),,2,1)((n i t f i =则称函数组,值均成立中任何对区间t I 在区间 I 线性相关; ,),,2,1(全为零时成立若上式仅当n i C i =线性无关. I n i t f i 在区间则称函数组),,2,1)(( =例如 t t 22sin ,cos ,1线性相关; 一般地, ,)()(21常数上若在≠t y t y I 上在与则函数I t y t y )()(21线性无关. .,线性无关而te t例1 .,,,,112上线性无关在任何区间证明函数组I x x x n - 证 反证法. 零的常数 使得()0,1,2,,1,i C i n =-0112210=++++--n n x C x C x C C 对区间 I 上的所有x 都成立, 但以上n -1 次方程在实数范围内最多有n -1个根. .,,,,112上线性无关在任何区间所以,函数组I x x x n - 即方程有无穷多个根.例如 ,0=+x x,sin 1t x =t x sin 22=都是它的解, 是它的解, t C C x C x C x sin )2(212211+=+=但不是通解. 矛盾!.个线性无关的特解关键是求微分方程的n 则必存在n 个不全为 假设这n 个函数线性相关, ,要求微分方程的通解t t t e e e 2,,-是否线性无关?,),(时当∞+-∞∈t 例2 解 两边同时关于变量t 求一阶和二阶导数, 得:假设 02321=++-t t t e C e C e C 042321=++-t t t e C e C e C 022321=+--t t t e C e C e C 联立, t t t t t t t t t e e e e e e e e e D 22242----=4112111112-=t e ,0≠t e 26-=().,+∞∞-∈t 因此 ,0321===C C C 即tt t e e e 2,,-线性无关. ,),(时当∞+-∞∈t 321,,C C C 关于变量的线性方程组的系数行列式为1 2 高阶线性微分方程的概念1主要内容3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关高阶齐次线性微分方程通解的结构定理2(解的线性无关判别法) 线性无关则)(,),(),(21t x t x t x n 0)()()()()()()()()()(0)1(0)1(20)1(100201002010≠=---t x t x t x t x t x t x t x t x t x t w n n n n n n使得中存在一点在,0t I ,)3()(,),(),(21的解的定义于区间是方程若I t x t x t x n 4 高阶齐次线性微分方程通解的结构)3(0)()()()()()()(1)1(1)(=++++--t x t P t x t P t x t P t x n n n n 行列式Wronski .)3(个线性无关的特解的关键是求n ,)3(的通解要求微分方程定理3(齐次线性微分方程通解的结构)个线性无关的解,的是微分方程若n t x t x t x n )3()(,),(),(21 )()()()(2211t x C t x C t x C t x n n +++= .,,,21为任意常数其中n C C C 证明 下证任一解 x (t ) 具有以上形式.由齐次方程解的叠加性质,可知上式中的 x (t ) 是(3)的解.任取(3)的解 x (t ) ,且满足初值条件.)(,,)(,)()1(00)1(0000--===n n x t x x t x x t x )3(0)()()()()()()(1)1(1)(=++++--t x t P t x t P t x t P t x n n n n 均可表示为则它的任一解x任取(3)的解 x (t ) ,且满足初值条件.)(,,)(,)()1(00)1(0000--===n n x t x x t x x t x 构造方程组 由于Wronski 行列式不等于零,所以以上方程组关于变量 n C C C ,,,21 且满足初值条件. )()()()(0202101t x C t x C t x C t x n n+++= 于是 .,,,00201nC C C )()()()(2211t x C t x C t x C t x n n +++= ⎪⎪⎩⎪⎪⎨⎧)()()()(00220110t x C t x C t x C t x n n +++= )()()()(00220110t x C t x C t x C t x n n +++=)()()(0)1(0)1(110)1(t x C t x C t xn n n n n ---++=存在唯一一组解定理3(齐次线性微分方程通解的结构) )()()()(2211t x C t x C t x C t x n n +++= .,,,21为任意常数其中n C C C 均可表示为则它的任一解x .,0)(')(",21求其通解的解是方程已知=++y x a y x a y e x x 例1 解 ,011110)0(≠-==w 由于.,线性无关所以x e x ,21x e C x C y +=该方程的通解为.,21为任意常数其中C C 个线性无关的解,的是微分方程若n t x t x t x n )3()(,),(),(21 )3(0)()()()()()()(1)1(1)(=++++--t x t P t x t P t x t P t x n n n n。