常系数非齐次高阶线性微分方程
- 格式:ppt
- 大小:1.28 MB
- 文档页数:35
高阶常系数非齐次线性微分方程在工程、物理、金融等领域都有广泛应用。
它是一个非齐次方程,其中存在一个常系数,其次数为高阶的微分方程,求解这个微分方程是理解和应用这些领域的重要基础。
一、概述在微积分的学习过程中,学生们常常会遇到求解常系数非齐次线性微分方程的问题。
它也被称为高阶非齐次微分方程。
其中的“常系数”指的是微分方程中所有的系数都是常数,而“非齐次”则表示方程中存在非零项。
假设我们有一个高阶常系数非齐次微分方程:$$\frac{d^ny}{dx^n}+a_{n-1}\frac{d^{n-1}y}{dx^{n-1}}+...+a_1\frac{dy}{dx}+a_0y=f(x)$$其中 $a_0,a_1,...,a_{n-1}$ 是常数,$f(x)$ 是一个已知函数。
为了解决该微分方程,我们需要找到一个解 $y(x)$。
二、齐次微分方程的求解首先,我们需要解决由齐次微分方程所得到的通解。
齐次微分方程是指 $f(x)$ 的项为 $0$,即$$\frac{d^ny}{dx^n}+a_{n-1}\frac{d^{n-1}y}{dx^{n-1}}+...+a_1\frac{dy}{dx}+a_0y=0$$这个微分方程可以通过假设 $y(x)=e^{\lambda x}$ 为通解进行求解,得到特征值方程:$$\lambda ^n+a_{n-1}\lambda ^{n-1}+...+a_1\lambda+a_0=0$$特征值方程的解称为特征根$\lambda_1,\lambda_2,...,\lambda_n$,它们也称为系统的固有值。
特征根决定了系统的动态性质。
找到特征根后,我们可以得到齐次微分方程的通解:$$y(x)=c_1e^{\lambda_1 x}+c_2e^{\lambda_2x}+...+c_ne^{\lambda_n x}$$其中 $c_1, c_2,...,c_n$ 是常数。
三、非齐次微分方程的求解在解决了齐次微分方程的通解后,我们可以将非齐次微分方程转化为齐次微分方程。
高阶常系数非齐次线性微分方程的算子法
高阶常系数非齐次线性微分方程的算子法是一种特殊的数值解法,用于求解高阶常系数非齐次线性微分方程。
它利用算子方法(operator method)来求解这类方程,即将微分方程转化为
一个算子方程,然后再使用数值方法求解算子方程。
首先,将高阶常系数非齐次线性微分方程转化为算子方程,即:
$\mathcal{L}y=f$
其中,$\mathcal{L}$是一个算子,$y$是待求解的函数,$f$是
方程的右端项。
接下来,使用数值方法求解算子方程。
常用的方法有有限差分法(finite difference method)和有限元法(finite element method)等。
有限差分法是将算子方程转化为一组线性方程组,然后使用数值解法(如Gauss-Seidel法)求解。
有限元法是将空间上的算子方程转化为一组有限元方程,然后使用数值解法(如Galerkin法)求解。
最后,根据求解的结果,得到算子方程的解,即高阶常系数非齐次线性微分方程的解。
常系数非齐次线性微分方程
常系数非齐次线性微分方程是一类常见的微分方程,在数学和物理
学等领域有着广泛的应用。
那么,常系数非齐次线性微分方程是什么呢?它的一般形式是什么样的?它的解法有哪些呢?下面我们来一一
探讨。
首先,常系数非齐次线性微分方程是指一类满足以下形式的微分方程:a1(x)y'' + a2(x)y' + a3(x)y = f(x)
其中,a1(x)、a2(x)、a3(x)是常数系数,y是未知函数,f(x)是给定的函数。
这类微分方程的特点是:未知函数的阶数不超过二阶,并且常数
系数都是常数。
其次,常系数非齐次线性微分方程的解法有多种。
对于没有特殊限制
的常系数非齐次线性微分方程,通常采用牛顿迭代法来求解。
牛顿迭
代法是利用牛顿近似定理,通过不断迭代来逼近方程的解的一种求解
方法。
但是,如果该方程具有特殊的性质,则可以使用其它方法来求解。
例如,如果该方程具有对称性,则可以使用对称法求解;如果该
方程具有线性特征,则可以使用线性特征法求解。
最后,常系数非齐次线性微分方程在数学和物理学等领域有着广泛的
应用。
在数学中,它常用于描述各种数学模型;在物理学中,它常用
于描述各种物理现象,如电学、力学、热学等。
因此,掌握常系数非
齐次线性微分方程的求解方法,对于理解和研究这些领域的知识具有
十分重要的意义。
常系数非齐次微分方程的特解怎么设常系数非齐次微分方程的特解怎么设一、引言在微积分学中,微分方程是研究变量之间关系的重要工具。
其中,常系数非齐次微分方程是一类特殊且常见的微分方程,其解法具有一定的规律性。
本文将对常系数非齐次微分方程的特解设定进行探讨,并分析其中的原理和应用。
二、常系数非齐次微分方程的定义和特点常系数非齐次微分方程是指微分方程中的系数都是常数,且方程右端有非零的常数项。
其一般形式可以表示为:```a_n*y^(n) + a_(n-1)*y^(n-1) + ... + a_1*y' + a_0*y = f(x)```其中,n为微分方程的阶数,`a_n, a_(n-1), ..., a_1, a_0`为常数,`y^(n)`表示y的n次导数,f(x)为非零的常数项。
常系数非齐次微分方程的求解主要有两个步骤:先求解对应的齐次线性微分方程,再求解非齐次线性微分方程。
其中,对于齐次线性微分方程,我们可以利用特征方程的方法求解得到其通解。
而对于非齐次线性微分方程,则需要设定特解,并将特解与齐次方程的通解相加。
三、设定特解的方法设定特解的方法主要有待定系数法和常数变易法两种。
1. 待定系数法待定系数法是常用的一种设定特解的方法,其基本思想是通过设定未知函数的形式,将特解代入微分方程,进而确定未知函数的系数。
常见的设定特解的函数形式有多项式、幂函数、指数函数、三角函数等。
以常见的一阶非齐次线性微分方程为例,形式如下:```a_1*y' + a_0*y = f(x)```我们可以设定特解的函数形式为`y_p = C`,其中C为待定常数。
将特解代入方程,得到:```a_1*0 + a_0*C = f(x)```从上式可以解得待定常数C的值,进而求得此时的特解。
对于高阶非齐次线性微分方程,设定特解的方法类似。
不同的是,在设定特解的函数形式时,需要根据方程右端的f(x)的形式选择相应的函数。
高阶常系数线性非齐次微分方程特解几种非常规解法
高阶常系数线性非齐次微分方程的解法比一般的非齐次微分方程复杂的多,而采用正规的分步法或积分复原法来求解,效率低下易出现错误,所以需要采用非常规的解法来加快求解的效率,提高解的准确性。
经过一系列的研究,目前已经形成了三种主要的非常规解法:
一是拉格朗日多元展开法。
该法是将微分方程展开成多元多项式求解,计算结果精确,但计算比较复杂,不适合大规模计算。
二是Kowalewsky-Trunov展开法。
该法是通过对称性质对“元胞”或者“子空间”进行展开,以求解非齐次线性微分方程,这一方法有很强的鲁棒性,同时可以有效避免数值计算错误。
三是Padé拆分法。
该法将线性常系数微分方程根据代数特性进行拆解和重新组合,从而达到快速精确求解的目的。
这三种非常规解法都具有自身独特的优点,以及不同的应用场景,有效的提高了求解高阶常系数线性非齐次微分方程的效率,也为科学研究提供了更好的解决方案。
高阶常系数非齐次微分方程特解的求法1 微分方程概述微分方程是表示具有时间和空间性质的模型系统的改变过程的数学方程。
它是建立在微分学基础上的一种数学描述,用来描述函数的时间变化的过程的数学工具,表达了可变量之间有关性的数学隐喻。
2 高阶常系数非齐次微分方程高阶常系数非齐次微分方程是在数学领域中一般称之为线性微分方程,其中微分阶次大于一,而系数都是常数。
高阶常系数非齐次线性微分方程是指右端为0,且其系数常数都不等于0的非齐次线性微分方程。
它与一阶常系数非齐次线性微分方程最大的不同是,一阶线性微分方程只含有一阶导数,而高阶常系数非齐次线性微分方程含有多个阶导数。
3 高阶常系数非齐次微分方程具体求法高阶常系数非齐次微分方程的求法是由一般解来确定特解。
通常可以采用欧拉法,即将微分方程化为一组常微分方程,再给出一组解析解,最后对解析解合成得到一般解,因而求得特解。
例如,考虑非齐次微分方程:y''(t)+cosx(t)y'(t)+sinx (t)=te(t)将此方程化为一组常微分方程:y'(t)=v(t)v'(t)=-cosx(t)v(t)-sinx(t)+te(t)解得解析解:y(t)=M1·te(t)+M2·tsinx(t)+M3·tcosx(t)+M4·sin²x(t)+M5·sinxcosx(t)+M6·cos²x(t)其中,M1,M2,M3,M4,M5,M6均为常数,合成出一般解,最后得到特解:y(t)=te(t)+A·tsinx(t)+B·tcosx(t)+C·sin²x(t)+D·sinxcosx(t)+E·cos²x(t)以上就是求高阶常系数非齐次微分方程特解的求法。
它是比较常用的一种求法,可以用来求解高阶常系数非齐次微分方程。
高等数学——微分方程高阶 常系数 非齐次 线性方程 的特解2010年8月~10月 解读《2010版考研数学复习指南(理工类,文登考研培训特供版)》P160,表6-6------------------------------------------------------------------------------------------------------------------------ 1.原方程为()()()12121n n n kx n n y Py P yP y P y e ---'+++++=L ............................................................ 1 1.1. k 是()0F D =的m 重根,0n m ≥≥ ............................................................................... 1 1.2. 原方程为kx y py qy e '''++= ............................................................................................... 6 2.微分算子对三角函数的若干性质 .............................................................................................. 7 2.1. 正弦函数 ............................................................................................................................ 7 2.2. 余弦函数 ............................................................................................................................ 7 2.3. 正弦函数+余弦函数 . (8)3.原方程为()()()12121sin n n n n n y Py P yP y P y x ω---'+++++=L ...................................................... 8 3.1. i ω±是()0F D =的m 重根,0k m ≥≥ ........................................................................... 8 3.2. i ω±不是()0F D =的根 .................................................................................................. 20 4.原方程为()()()111n n kx n n y P yP y P y e h x --'++++=L .................................................................. 27 4.1. 微分算子法的结论 .......................................................................................................... 28 4.2. 位移定理()()()()kx kx F D e u x e F D k u x =+ ................................................................... 28 5.原方程为()()()111n n n n y P y P y P y v x --'++++=L ,其中()v x 为关于x 的m 阶多项式 .......... 29 5.1. 对于幂函数的微积分用排列数统一表示 ...................................................................... 29 5.2. 待定系数法,0不是特征根,即0n P ≠ ........................................................................ 29 5.3. 微分算子法,0不是特征根,即0n P ≠ ........................................................................ 34 5.4. 待定系数法,0是(){0n F D =阶的k 重根,k n ≤且k m ≤ (38)5.5. 微分算子法,0是(){0n F D =阶的k 重根,k n ≤且k m ≤ (42)6. 原方程为()()()()12cos sin F D y x h x F D iy i x h x ωω=⋅⎧⎪⎨=⋅⎪⎩,其中()10011n n n n F D P D PD P D P D --=++++L ......... 46 7.原方程为一般形式()()F D y f x =,其中()10011n n n n F D P D PD P D P D --=++++L (47)7.1. 方法一 .............................................................................................................................. 47 7.2. 方法二:指数函数穿梭法 .............................................................................................. 48 8. 齐次方程的特解,原方程为()()()121210n n n n n y Py P y P y P y ---'+++++=L ............................ 49 9. 后记 .. (50)1. 原方程为()()()12121n n n kx n n y Py P y P y P y e ---'+++++=L原方程用微分算子表示为()12121n n n kx n nD PD P D P D P y e ---+++++=L 令()12121n n n n n F D D PD P D P D P ---=+++++L ,则原方程为()kx F D y e = 特征方程为121210n n n n n P P P P λλλλ---+++++=L ,即()0F λ=,即()0F D = 1.1. k 是()0F D =的m 重根,0n m ≥≥试证:若k 是()0F D =的m 重根,0n m ≥≥,则原方程()kx F D y e =的特解为()()*1m kx m y x e Fk =,其中()()()()()m m m mD kD kdF D Fk F D dD ==== 证明:若k 是()0F D =的m 重根,0n m ≥≥,则()()()()()()()100000m m F k F k F k F k F k -=⎧⎪'=⎪⎪''=⎪⎨⎪⎪=⎪⎪≠⎩L (特征方程对特征变量λ求导,或者说对微分算子D 求导。