角平分线的性质定理及判定定理
- 格式:doc
- 大小:290.26 KB
- 文档页数:4
4321N M A B O D P P CA B M N M N AB DC P ED A BC 角平分线的性质与判定一、知识梳理:1.角平分线的性质定理:角平分线上的点到角两边的距离相等.2.角平分线的判定定理:角的内角到角两边距离相等的点在这个角的平分线上.3.有角平分线时常常通过下列几种情况构造全等三角形.二、典型例题:例1、如图,已知OD 平分∠AOB ,在OA 、OB 边上截取OA =OB ,PM ⊥BD ,PN ⊥AD .求证:PM =PN及时练习:1.如图,CP 、BP 分别平分△ABC 的外角∠BCM 、∠CBN .求证:点P 在∠BAC 的平分线上.2.如图,BD 平分∠ABC ,AB =BC ,点P 是BD 延长线上的一点,PM ⊥AD ,PN ⊥CD .求证:PM =PN例2、如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB +AD ),如果 ∠D =120°,求∠B 的度数.及时练习:D CA B D F E BA CD E C A B1.如图,在△ABC 中,CD 平分∠ACB ,AC =5,BC =3.求ACD CBD S S ∆∆.2.在四边形ABCD 中,已知AB =a ,AD =b .且BC =DC ,对角线AC 平分∠BAD ,问a 与b 的大小符合什么条件时,有∠B +∠D =180°,请画图并证明你的结论.例3、如图,在△ABC 中,∠BAC =90°,AB =AC ,BE 平分∠ABC ,CE ⊥BE .求证:CE =12BD.及时练习:1.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 、∠DBA ,CD 过点E ,求证:AB =AC +BD .2.如图,在△ABC 中,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .⑴请你判断FE 和FD 之间的数量关系,并说明理由; ⑵求证:AE +CD =AC .第1题图D C B A第2题图D B C A E P 第3题图Q S R P B A C 第4题图E F B D A C 第5题图E B C A第6题图F E D P A B C 第7题图P A B C E F 第8题图D A B C E 第9题图E D C AB 第10题图K N M QC B A三、课堂练习:1.如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于D ,若CD =n ,AB =m ,则△ABD 的面积是( ) A .13mn B .12mn C . mn D .2 mn2.如图,已知AB =AC ,BE =CE ,下面四个结论:①BP =CP ;②AD ⊥BC ;③AE 平分∠BAC ;④∠PBC =∠PCB .其中正确的结论个数有( )个A . 1B .2C .3D .43.如图,在△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S .若AQ =PQ ,PR =PS ,下列结论:①AS =AR ;②PQ ∥AR ;③△BRP ≌△CSP .其中正确的是( )A . ①③B .②③C .①②D .①②③4.如图,△ABC 中,AB =AC ,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,则下列四个结论中:①AD 上任意一点到B 、C 的距离相等;②AD 上任意一点到AB 、AC 的距离相等;③AD ⊥BC 且BD =CD ;④∠BDE =∠CDF .其中正确的是( )A .②③B .②④C .②③④D .①②③④5.如图,在Rt △ABC 中,∠ACB =90°,∠CAB =30°,∠ACB 的平分线与∠ABC 的外角平分线交于E 点,则∠AEB 的度数为( )A .50°B .45°C .40°D .35°6.如图,P 是△ABC 内一点,PD ⊥AB 于D ,PE ⊥BC 于E ,PF ⊥AC 于F ,且PD =PE =PF ,给出下列结论:①AD =AF ;②AB +EC =AC +BE ;③BC +CF =AB +AF ;④点P 是△ABC 三条角平分线的交点.其中正确的序号是( )A .①②③④B .①②③C .①②④D .②③④7.如图,点P 是△ABC 两个外角平分线的交点,则下列说法中不正确的是( )A .点P 到△ABC 三边的距离相等B .点P 在∠ABC 的平分线上 C .∠P 与∠B 的关系是:∠P +12∠B =90°D .∠P 与∠B 的关系是:∠B =12∠P8.如图,BD 平分∠ABC ,CD 平分∠ACE ,BD 与CD 相交于D .给出下列结论:①点D 到AB 、AC 的距离相等;②∠BAC =2∠BDC ;③DA =DC ;④DB 平分∠ADC .其中正确的个数是( )A .1个B .2个C .3个D .4个9.如图,△ABC 中,∠C =90°,AD 是△ABC 的角平分线,DE ⊥AB 于E ,下列结论中:①AD 平分∠CDE ;②∠BAC =∠BDE ;③ DE 平分∠ADB ;④AB =AC +BE .其中正确的个数有( )A .3个B .2个C .1个D .4个10.如图,已知BQ 是△ABC 的内角平分线,CQ 是△ACB 的外角平分线,由Q 出发,作点Q 到BC 、AC 和AB 的垂线QM 、QN 和QK ,垂足分别为M 、N 、K ,则QM 、QN 、QK 的关系是_________F B D EC A O F ED A B C l 1l 2l 3第1题图第3题图D C A B P 第4题图F GE P A B C D 第5题图E O D B A C GP F E D C B A 11.如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC .求证:BE =CF .12.如图,在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD ⊥EF .四、巩固提高:1.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A .一处B .二处C .三处D .四处2.已知Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD :CD =9:7,则D 到AB 边的距离为( )A .18B .16C .14D .123.如图,△ABC 中,∠C =90°,AD 是△ABC 的平分线,有一个动点P 从A 向B 运动.已知:DC =3cm ,DB =4cm ,AD =8cm .DP 的长为x (cm ),那么x 的范围是__________4.如图,已知AB ∥CD ,PE ⊥AB ,PF ⊥BD ,PG ⊥CD ,垂足分别为E 、F 、G ,且PF =PG =PE ,则∠BPD =__________5.如图,已知AB ∥CD ,O 为∠CAB 、∠ACD 的平分线的交点,OE ⊥AC ,且OE =2,则两平行线AB 、CD 间的距离等于__________6.如图,AD 平分∠BAC ,EF ⊥AD ,垂足为P ,EF 的延长线于BC 的延长线相交于点G .求证:∠G =12(∠ACB -∠B )QP C B A 7.如图,在△ABC 中,AB >AC ,AD 是∠BAC 的平分线,P 为AC 上任意一点.求证:AB -AC >P B -P C.8.如图,在△ABC 中,∠BAC =60°,∠ACB =40°,P 、Q 分别在BC 、AC 上,并且AP 、BQ 分别为∠BAC 、∠ABC 的角平分线上.求证:BQ +AQ =AB +BP。
第一部分:知识点回顾1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上第二部分:例题剖析例1. 已知:在等腰Rt Rt△△ABC 中,AC=BC AC=BC,,∠C=90°,AD 平分∠平分∠BAC BAC BAC,,DE DE⊥⊥AB 于点E ,AB=15cm AB=15cm,,(1)求证:)求证:BD+DE=AC BD+DE=AC BD+DE=AC..(2)求△)求△DBE DBE 的周长.的周长.例2. 如图,∠如图,∠B=B=B=∠C=90°,∠C=90°,∠C=90°,M M 是BC 中点,中点,DM DM 平分∠平分∠ADC ADC ADC,求证:,求证:,求证:AM AM 平分∠平分∠DAB DAB DAB..例3. 如图,已知△如图,已知△ABC ABC 的周长是2222,,OB OB、、OC 分别平分∠分别平分∠ABC ABC 和∠和∠ACB ACB ACB,,OD OD⊥⊥BC 于D ,且OD=3OD=3,△,△,△ABC ABC 的面积是多少?的面积是多少?角平分线的性质定理和判定第三部分:典型例题例1、已知:如图所示,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE 、CD 交于点O ,且AO 平分∠BAC ,求证:OB=OC .【变式练习】如图,已知∠1=∠2,如图,已知∠1=∠2,P P 为BN 上的一点,PF⊥BC 于F ,PA=PC PA=PC,求证:∠PCB+∠BAP=180º,求证:∠PCB+∠BAP=180º,求证:∠PCB+∠BAP=180º例2、已知:如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC . (1)若连接AM ,则AM 是否平分∠BAD ?请你证明你的结论;?请你证明你的结论; (2)线段DM 与AM 有怎样的位置关系?请说明理由.有怎样的位置关系?请说明理由.(3)CD 、AB 、AD 间?直接写出结果【变式练习】如图,△如图,△ABC ABC 中,中,P P 是角平分线AD AD,,BE 的交点.的交点. 求证:点P 在∠在∠C C 的平分线上.21NPF CBA【变式练习】如图,D 、E 、F 分别是△ABC 的三条边上的点,CE=BF ,△DCE 和△DBF 的面积相等.求证:AD 平分∠BAC .例3.如图,在△ABC 中,BD 为∠ABC 的平分线,DE ⊥AB 于点E ,且DE=2cm ,AB=9cm ,BC=6cm ,求△ABC 的面积.的面积.第四部分:思维误区第五部分:方法规律第七部分:巩固练习DAD M A B C N P E D B C A E F ADP7.如图,如图,已知在△已知在△ABC 中,90C Ð=,点D 是斜边AB 的中点,2AB BC =,DE AB ^ 交AC 于E .求证:BE 平分ABC Ð.8、如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:AM 平分∠DAB. 9.如图,在∠AOB 的两边OA ,OB 上分别取OM=ON ,OD=OE ,DN 和EM 相交于点C . 求证:点C 在∠AOB 的平分线上.上.第八部分:中考体验BDAECA . 1B . 2C . 3D . 4A . 11 B . 5.5 C . 7D . 3.5 3.(2010•鄂州)如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △=7,A . 4B .3 C .6 D .5 间的距离为间的距离为 _________ .2.(2011•恩施州)如图,AD △ABC DF AB F DE=DG △ADG △AED。
角平分线的性质内容1.角平分线性质定理:已知:如图,点P 在AOB ∠的平分线上, , 。
求证:PD PE =证明:即:角平分线上的点到 的距离相等.总结:该定理为我们提供了证明两条垂线段 的一个新思路.[例1 ] 如图所示,AD 是BAC ∠的平分线,DE AB ⊥于E ,DF AC ⊥于F,且BD CD =.求证:BE CF =. 对应训练:1.如图,BD 是ABC ∠的平分线,DE AB ⊥于E ,236m ABCS =△,18cm AB =,12cm BC =,则DE 的长是。
2.如图,ABC △中,90C ∠=,AC BC =,AD 平分BAC ∠交BC 于D ,DE AB ⊥于E ,且10cm AB =,则DEB △的周长是。
2.判定定理(即角平分线性质定理的逆定理): 已知:点P 在AOB ∠的 ,PDOA ⊥于D ,PE OB ⊥于E ,且PD PE =求证:点P 在AOB ∠的平分线上。
证明:即:在一个角的内部, 的点,在这个角的角平分线上。
总结:该定理为我们提供了证明两个角 的一个新思路。
[例2]PB 、PC 分别是△ABC 的外角平分线且相交于P 。
求证:P 在A ∠的平分线上。
A BC DEPOAB EG C HPA B CD E PO对应训练: 如图,已知在△ABC 中,90C ∠= ,点D 是斜边AB 的中点,2AB BC =,DE AB ⊥交AC 于E . 求证:BE 平分ABC ∠.3. 如图5,已知等腰三角形ABC △中,90A ︒∠=,B ∠的平分线交AC 于点D , 过点C 作BD 的垂线交BD 的延长线于点E .求证:BD =点拨:“角平分线 + 垂线”构造全等三角形或等腰三角形课堂练习1..如图,在ABC △中,AB AC =,AD 是ABC∠的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F ,则下列四个结论:①AD 上任意一点到点C ,点B 的距离相等; ②AD 上任意一点到AB ,AC 的距离相等; ③BD CD =,AD BC ⊥; ④BDE CDF ∠=∠.其中,正确的是2.如图,在△ABC 中,∠BAC ,∠BCA 的平分线相交于点O ,过点O 作DE ∥AC ,分别交AB ,BC 于点D ,E .试猜想线段AD ,CE ,DE 的数量关系, 并说明你的猜想理由。
角平分线的性质和判定一、基础知识回顾。
角平分线的性质: 角平分线的判定:一、分线的判定定理角平分线的判定:到角两边距离相等的点在 。
如图:∵P D ⊥OA,PF ⊥OB ,PD=PE ,∴P 在∠AOB 的平分线上,或(∠AOP=∠BOP )1、如图,90C ∠=︒,AD 平分CAB ∠,BD=2CD ,BC=9,求点D 到AB 的距离。
D C BA2、如图,求作到三条直线距离相等的所有点。
3、如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,求证:AM 平分DAB ∠。
MDCBA4. 如图所示,已知BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 相交于点D ,若BD =CD . 求证:AD 平分∠BAC .5、如图,DE AB ⊥,DF AC ⊥,DE=DF ,求证:GE=GF 。
FGDCBAE6、如图,CD AB ⊥,BE AC ⊥,OB OC =,求证12∠=∠。
O21A B CDE7、如图,90C ∠=︒,AD 是BAC ∠的平分线,DE AB ⊥,BD=DF ,求证:CF=EB 。
FD C BAE8 如图,BE=CF ,BE ⊥AC 于F ,CE ⊥AB 于E,BF 和CE 交于点D ,求证:AD 平分∠BAC.9.如图在△ABC 中,∠B=∠C ,D 是BC 的中点,D E ⊥AB 于E ,DF ⊥AC 于F ,求证:AD 平分∠BACCFABC10.如图BE⊥AC于E,CF⊥AB于F,BE,CF相交于点D,且CE=BF,求证:点D在∠BAC的平分线上11,在Rt△ABC中,∠C=90。
,AC=BC,AD为∠BAC的平分线,AE=BC,DE⊥AB,垂足为E,求证△DBE的周长等于AB.12,在△ABC中,外角∠CBE和∠BCG的平分线相交于点F,求证:点F在∠BAC的平分线上13,已知∠B=∠C=90。
,DM平分∠ADC,AM平分∠DAB,探究线段BM与CM的关系,说明理由。
一、角的平分线性质定理1.角平分线上的点到这个角的两边的距离相等。
2.到一个角的两边距离相等的点在这个角的平分线上。
3.三角形的三条角平分线交于一点,称作内心。
内心到三角形三边的距离相等;4.三角形一个角的平分线,把对边所分成的两条线段与这个角的两邻边对应成比例。
判定:角的内部到角的两边距离相等的点,都在这个角的平分线上。
二、角平分线画法方法11、以点O为圆心,以任意长为半径画弧,两弧交角AOB两边于点M、N。
2、分别以点M、N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。
3、作射线OP。
射线OP即为角平分线。
方法21、在两边OA、OB上分别截取OM、OC和ON、OD,使OM=ON,OC=OD。
2、连接CN与DM,相交于P。
3、作射线OP。
射线OP即为角平分线。
三、角平分线定义1、从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。
2、三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线)。
三角形的角平分线是一条线段。
由于三角形有三个内角,所以三角形有三条角平分线。
三角形的角平分线交点一定在三角形内部。
三角形三条角平分线的交点叫做三角形的内心。
三角形的内心到三边的距离相等,是该三角形内切圆的圆心。
四、角的平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
1、角的平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
五、角平分线的性质:角平分线上的点,到角两边的距离相等定理:角平分线上的任意一点,到角两边的距离相等。
垂直于两边为最短距离。
角平分线能得到相同的两个角。
三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
逆定理:到角两边的距离相等的点在角平分线上。
流
河
路公
北
M 区
C
B A 角平分线(线段垂直平分线,等腰三角形) 角平分线的性质定理:角平分线上的点到角的两边的距离相等 用数学符号可表示:
∵点P 在∠AOB 的平分线上(或OP 平分∠AOB ) ∴ 角平分线的判定定理:
角的内部到角的两边距离相等的点在这个角的平分线上 用数学符号可表示:
∵
∴点P 在∠AOB 的平分线上(或OP 平分∠AOB )
基础闯关
1.在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =5㎝,BD =3㎝,则点D 到AB 的距离为
2.∠AOB 的平分线上一点M ,M 到OA 的距离为1.5㎝,则M 到OB 的距离为 ㎝。
3.如图,∠A =90°,BD 是△ABC 的角平分线,AC =8㎝,DC =3DA ,则点D 到BC 的距离为 。
4.如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( ) A 、PD =PE B 、OD =OE C 、∠DPO =∠EPO D 、PD =OD
5.三角形中到三边距离相等的点是( )
A 、三条边的垂直平分线的交点
B 、三条高的交点
C 、三条中线的交点
D 、三条角平分线的交点
6.到一个角的两边距离相等的点在 .
7.如图,要在河流的南边,公路的左侧M 处建一个工厂,位置选在到河流和公路的距离相等,并且到河流
与公路交叉A 点处的距离为1cm (指图上距离),则图中工厂的位置应在 ,理由是 .
8.三角形中,到三边距离相等的点是
(A )三条高线交点.(B )三条中线交点.(C )三条角平分线交点.(D )三边垂直平分线交点.
9.如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是 O
D
P
E
B
A 第3题图
D A
B
C
2
1D A
P
O
E B
第4题图
F
E
D
C
B
A
F E D
C
B
A
(A )直角三角形.(B )等腰三角形.(C )等边三角形.(D )等腰直角三角形 10.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC
于F ,M 为AD 上任意一点,则下列结论错误的是 (A )DE =DF . (B )ME =MF . (C )AE =AF . (D )BD =DC .
二.解答题:
1.如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC , 求证:BE =CF 。
2.已知,如图BD 为∠ABC 的平分线,AB =BC ,点P 在BD 上,PM ⊥AD 于M ,PN ⊥CD 于D. 求证:PM =PN 。
3.如图,BD =CD ,BF ⊥AC ,CE ⊥AB .求证:D 在∠BAC 的角平分线上.
4.如图,在△ABC 中,∠B =∠C ,点D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E ,F 为垂足,求证:D 在∠BAC 的
角平分线上.
(第10题)
M
F E D
C
B
A
F
C
D
A
B
E
第6题图
C
N P
M
D
B
A
O
N
M
P
C
B
A
A
B
C
D
E
5.已知:如图,Rt △ABC 中,∠C =90o
,AC =BC,AD 为∠BAC 的平分线,AE =BC ,DE ⊥AB 垂足为E ,求证△
DBE 的周长等于AB .
6.如图,已知PA ⊥ON 于A ,PB ⊥OM 于B ,且PA =PB .∠MON =50o
,∠OPC =30o
,求∠PCA 的大小.
7、已知:如图,△ABC 是等边三角形,BD 是AC 边上的高,延长BC 到E ,使CE=CD. 求证:DB=DE
8、如图,AD 是△ABC 的角平分线,DE 、DF 分别是△ABD 和△ACD 的高. 求证:AD 垂直平分EF.
9.已知:如图,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC .求证:OB =OC .
10、阅读下题及其证明过程:
已知:如图,D 是△ABC 中BC 边上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE. 证明:在△AEB 和△AEC 中,
⎪⎩
⎪
⎨⎧=∠=∠=AE AE ACE ABE EC EB ∴△AEB ≌△AEC(第一步) ∴∠BAE=∠CAE(第二步)
问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程。