高一数学平面与平面垂直2
- 格式:pptx
- 大小:1.41 MB
- 文档页数:8
6.2 垂直关系的性质知识点一:直线和平面垂直的性质1.基本性质文字语言:一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线. 符号语言:,l m l m αα⊥⊂⇒⊥图形语言:2.性质定理文字语言:垂直于同一个平面的两条直线平行.符号语言:,//l m l m αα⊥⊥⇒图形语言:3.直线与平面垂直的其他性质(1)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若l α⊥于A ,AP l ⊥,则AP α⊂.(3)垂直于同一条直线的两个平面平行.(4)如果一条直线垂直于两个平行平面中的一个,则它必垂直于另一个平面.要点诠释:线面垂直关系是线线垂直、面面垂直关系的枢纽,通过线面垂直可以实现线线垂直和面面垂直关系的相互转化.知识点二、平面与平面垂直的性质1.性质定理文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符号语言:,,,m l l m l αβαββα⊥=⊂⊥⇒⊥图形语言:要点诠释:面面垂直的性质定理是作线面垂直的依据和方法,在解决二面角问题中作二面角的平面角经常用到.这种线面垂直与面面垂直间的相互转化,是我们立体几何中求解(证)问题的重要思想方法.2.平面与平面垂直性质定理的推论如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.知识点三、垂直关系的综合转化线线垂直、线面垂直、面面垂直是相互联系的,能够相互转化,转化的纽带是对应的定义、判定定理和性质定理,具体的转化关系如下图所示:在解决问题时,可以从条件入手,分析已有的垂直关系,早从结论探求所需的关系,从而架起条件与结论的桥梁.垂直间的关系可按下面的口诀记忆:线面垂直的关键,定义来证最常见,判定定理也常用,它的意义要记清.平面之内两直线,两线交于一个点,面外还有一条线,垂直两线是条件.面面垂直要证好,原有图中去寻找,若是这样还不好,辅助线面是个宝.先作交线的垂线,面面转为线和面,再证一步线和线,面面垂直即可见.借助辅助线和面,加的时候不能乱,以某性质为基础,不能主观凭臆断,判断线和面垂直,线垂面中两交线.两线垂直同一面,相互平行共伸展,两面垂直同一线,一面平行另一面.要让面和面垂直,面过另面一垂线,面面垂直成直角,线面垂直记心间.【典型例题】类型一:直线与平面垂直的性质例1.设a,b为异面直线,AB是它们的公垂线(与两异面直线都垂直且相交的直线).(1)若a,b都平行于平面α,求证:AB⊥α;αβ=,求证:AB∥c.(2)若a,b分别垂直于平面α,β,且c例2.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E 是PC的中点.(1)证明:AE⊥CD;(2)证明:PD⊥平面ABE.举一反三:【变式1】如图,已知矩形ABCD,过A作SA⊥平面AC,再过A作AE⊥SB交SB于E,过E 作EF⊥SC交SC于F.(1)求证:AF⊥SC;(2)若平面AEF交SD于G,求证:AG⊥SD.【变式2】如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF ⊥平面ACE。
2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质1.理解直线和平面垂直、平面与平面垂直的性质定理,并能用文字、符号和图形语言描述定理.(重点)2.能应用线面垂直、面面垂直的性质定理证明相关问题.(重点、难点) 3.理解“平行”与“垂直”之间的相互转化.(易错点)[基础·初探]教材整理1 直线与平面垂直的性质定理 阅读教材P 70的内容,完成下列问题.文字语言 垂直于同一个平面的两条直线平行符号语言⎭⎬⎫a ⊥αb ⊥α⇒a ∥b 图形语言判断(正确的打“√”,错误的打“×”)(1)垂直于同一条直线的两个平面互相平行.( ) (2)垂直于同一平面的两条直线互相平行.( )(3)一条直线在平面内,另一条直线与这个平面垂直,则这两条直线互相垂直.()【解析】由线面垂直的定义和性质可知(1)、(2)、(3)均正确.【答案】(1)√(2)√(3)√教材整理2平面与平面垂直的性质定理阅读教材P71“思考”以下至P72“例4”以上的内容,完成下列问题.文字语言两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符号语言⎭⎬⎫α⊥βα∩β=la⊂αa⊥l⇒a⊥β图形语言在长方体ABCD-A1B1C1D1的棱AB上任取一点E,作EF⊥A1B1于F,则EF 与平面A1B1C1D1的关系是()A.平行B.EF⊂平面A1B1C1D1C.相交但不垂直D.相交且垂直D[在长方体ABCD-A1B1C1D1中,平面A1ABB1⊥平面A1B1C1D1且平面A1ABB1∩平面A1B1C1D1=A1B1,又EF⊂面A1ABB1,EF⊥A1B1,∴EF⊥平面A1B1C1D1,答案D正确.][小组合作型]线面垂直性质定理的应用如图2-3-31所示,在正方体ABCD-A1B1C1D1中,M是AB上一点,N 是A1C的中点,MN⊥平面A1DC.图2-3-31求证:(1)MN∥AD1;(2)M是AB的中点.【精彩点拨】(1)要证线线平行,则先证线面垂直,即证AD1⊥平面A1DC.(2)可证ON=AM,ON=12AB.【自主解答】(1)∵ADD1A1为正方形,∴AD1⊥A1D.又∵CD⊥平面ADD1A1.∴CD⊥AD1.∵A1D∩CD=D,∴AD1⊥平面A1DC. 又∵MN⊥平面A1DC,∴MN∥AD1. (2)连接ON,在△A1DC中,A1O=OD,A1N=NC.∴ON綊12DC綊12AB,∴ON∥AM.又∵MN∥OA,∴四边形AMNO为平行四边形,∴ON=AM.∵ON=12AB,∴AM=12AB,∴M是AB的中点.1.直线与平面垂直的性质定理是线线、线面垂直以及线面、面面平行的相互转化的桥梁,因此必须熟练掌握这些定理,并能灵活地运用它们.2.当题中垂直条件很多,但又需证平行关系时,就要考虑垂直的性质定理,从而完成垂直向平行的转化.[再练一题]1.如图2-3-32,已知平面α∩平面β=l,EA⊥α,垂足为A,EB⊥β,垂足为B,直线a⊂β,a⊥AB.求证:a∥l.图2-3-32【证明】因为EA⊥α,α∩β=l,即l⊂α,所以l⊥EA.同理l⊥EB.又EA∩EB=E,所以l⊥平面EAB.因为EB⊥β,a⊂β,所以EB⊥a,又a⊥AB,EB∩AB=B,所以a⊥平面EAB.由线面垂直的性质定理,得a ∥l .面面垂直性质定理的应用如图2-3-33所示,P 是四边形ABCD 所在平面外的一点,四边形ABCD是边长为a 的菱形且∠DAB =60°,侧面PAD 为正三角形,其所在平面垂直于底面ABCD .图2-3-33(1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD ⊥PB .【精彩点拨】 (1)菱形ABCD ,∠DAB =60°―→△ABD 为正三角形―→BG ⊥AD ―――――――→面PAD ⊥底面ABCDBG ⊥平面PAD(2)要证AD ⊥PB ,只需证AD ⊥平面PBG 即可.【自主解答】 (1)如图,在菱形ABCD 中,连接BD ,由已知∠DAB =60°,∴△ABD 为正三角形, ∵G 是AD 的中点, ∴BG ⊥AD .∵平面PAD ⊥平面ABCD , 且平面PAD ∩平面ABCD =AD ,∴BG⊥平面PAD.(2)如图,连接PG.∵△PAD是正三角形,G是AD的中点,∴PG⊥AD,由(1)知BG⊥AD.又∵PG∩BG=G.∴AD⊥平面PBG.而PB⊂平面PBG.∴AD⊥PB.1.证明或判定线面垂直的常用方法(1)线面垂直的判定定理;(2)面面垂直的性质定理;(3)若a∥b,a⊥α,则b⊥α(a、b为直线,α为平面);(4)若a⊥α,α∥β,则a⊥β(a为直线,α,β为平面).2.两平面垂直的性质定理告诉我们要将面面垂直转化为线面垂直,方法是在其中一个面内作(找)与交线垂直的直线.[再练一题]2.如图2-3-34,四棱锥V-ABCD的底面是矩形,侧面VAB⊥底面ABCD,又VB⊥平面VAD.求证:平面VBC⊥平面VAC.图2-3-34【证明】∵平面VAB⊥底面ABCD,且BC⊥AB.∴BC⊥平面VAB,∴BC⊥VA,又VB⊥平面VAD,∴VB⊥VA,又VB∩BC=B,∴VA⊥平面VBC,∵VA⊂平面VAC.∴平面VBC⊥平面VAC.[探究共研型]垂直关系的综合应用探究1如图2-3-35,A,B,C,D为空间四点.在△ABC中,AB=2,AC =BC=2,等边△ADB以AB为轴转动.当平面ADB⊥平面ABC时,能否求CD的长度?图2-3-35【提示】取AB的中点E,连接DE,CE,因为△ADB是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC时,因为平面ADB∩平面ABC=AB,所以DE⊥平面ABC,可知DE⊥CE,由已知可得DE=3,EC=1,在Rt△DEC中,CD=DE2+EC2=2.探究2在上述问题中,当△ADB转动时,是否总有AB⊥CD?证明你的结论.【提示】①当D在平面ABC内时,因为AC=BC,AD=BD,所以C,D都在线段AB的垂直平分线上,即AB⊥CD.②当D不在平面ABC内时,由探究1知AB⊥DE.又因AC=BC,所以AB⊥CE.又DE,CE为相交直线,所以AB⊥平面CDE,由CD⊂平面CDE,得AB⊥CD.综上所述,总有AB⊥CD.探究3试总结线线垂直、线面垂直、面面垂直之间的转化关系.【提示】垂直问题转化关系如下所示:如图2-3-36,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点.求证:(1)PA ⊥底面ABCD;图2-3-36(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.【精彩点拨】(1)利用性质定理可得PA⊥底面ABCD;(2)可证BE∥AD,从而得BE∥平面PAD;(3)利用面面垂直的判定定理.【自主解答】(1)因为平面PAD⊥底面ABCD,且PA⊥AD,所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以四边形ABED为平行四边形.所以BE∥AD.又因为BE⊄平面PAD,AD⊂平面PAD,所以BE∥平面PAD.(3)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知PA⊥底面ABCD,所以PA⊥CD.又AD∩PA=A,所以CD⊥平面PAD.所以CD⊥PD.因为E和F分别是CD和PC的中点,所以PD∥EF.所以CD⊥EF.又EF∩BE=E,所以CD⊥平面BEF.又CD⊂平面PCD,所以平面BEF⊥平面PCD.1.证明线面垂直,一种方法是利用线面垂直的判定定理,另一种方法是利用面面垂直的性质定理.本题已知面面垂直,故可考虑面面垂直的性质定理.2.利用面面垂直的性质定理证明线面垂直的问题时,要注意以下三点:(1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线.[再练一题]3.如图2-3-37,在三棱锥P-ABC中,E,F分别为AC,BC的中点.(1)求证:EF∥平面PAB;(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°.求证:平面PEF⊥平面PBC.图2-3-37【证明】(1)∵E,F分别为AC,BC的中点,∴EF∥AB.又EF⊄平面PAB,AB⊂平面PAB,∴EF∥平面PAB.(2)∵PA=PC,E为AC的中点,∴PE⊥AC.又∵平面PAC⊥平面ABC,∴PE⊥平面ABC,∴PE⊥BC.又∵F为BC的中点,∴EF∥AB.∵∠ABC=90°,∴BC⊥EF.∵EF∩PE=E,∴BC⊥平面PEF.又∵BC⊂平面PBC,∴平面PBC⊥平面PEF.1.下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β【解析】如果平面α⊥平面β,那么平面α内垂直于交线的直线都垂直于平面β,其他与交线不垂直的直线均不与平面β垂直,故D项叙述是错误的.【答案】 D2.已知长方体ABCD-A1B1C1D1,在平面AB1上任取一点M,作ME⊥AB于E,则()A.ME⊥平面ACB.ME⊂平面ACC.ME∥平面ACD.以上都有可能【解析】由于ME⊂平面AB1,平面AB1∩平面AC=AB,且平面AB1⊥平面AC,ME⊥AB,则ME⊥平面AC.【答案】 A3.如图2-3-38,▱ADEF的边AF⊥平面ABCD,且AF=2,CD=3,则CE =________.图2-3-38【解析】因为AF⊥平面ABCD,所以ED⊥平面ABCD,所以△EDC为直角三角形,CE=ED2+CD2=13.【答案】134.如图2-3-39,空间四边形ABCD中,平面ABD⊥平面BCD,∠BAD=90°,且AB=AD,则AD与平面BCD所成的角是________.图2-3-39【解析】过A作AO⊥BD于O点,∵平面ABD⊥平面BCD,∴AO⊥平面BCD,则∠ADO即为AD与平面BCD所成的角.∵∠BAD=90°,AB=AD.∴∠ADO=45°.【答案】45°5.如图2-3-40,在四棱锥P-ABCD中,底面ABCD是矩形,平面PCD⊥平面ABCD.求证:AD⊥平面PCD.图2-3-40【证明】在矩形ABCD中,AD⊥CD,因为平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,AD⊂平面ABCD,所以AD⊥平面PCD.。