Comparative study f norm on linear space
- 格式:pdf
- 大小:201.71 KB
- 文档页数:15
中美肢体语言差异英语作文题目:Cultural Nuances in Gestures: A Comparative Studyof Chinese and American Body LanguageIn the intricate dance of human interaction, bodylanguage plays a pivotal role, silently conveying what wordsoften leave unsaid. A fascinating exploration lies in thedisparities between Chinese and American nonverbal cues,shaped by their unique cultural milieus and historical contexts.This essay delves into these divergences, underscoring theimportance of cultural sensitivity in global communication.At its core, Chinese body language tends to be morereserved and subtle. Respect for hierarchy and collectivismdeeply influences gestures. For instance, nodding the headslightly instead of a vigorous nod signifies agreement,reflecting a preference for humility. During conversations,maintaining eye contact can be misconstrued as aggression orlack of respect, especially with elders or authority figures. Incontrast, physical contact such as backslapping or hugs,common in Western cultures, is infrequent amongacquaintances in China, preserving personal space anddecorum.On the American front, body language is characterized byopenness and expressiveness. A firm handshake accompanied by direct eye contact is the norm upon meeting, symbolizing confidence and sincerity. Americans tend to use expansive gestures and animated facial expressions to emphasize points, reflecting a culture that values assertiveness and individuality. The "thumbs up" sign, while universal for approval, might carry a more casual or even playful connotation in the U.S., differing from its more formal usage in some Asian contexts.One notable difference lies in personal space. Americans generally prefer more personal space, with an arm's length distance considered comfortable in social settings. In contrast, Chinese individuals may stand closer during conversations, reflecting a culture that values proximity and intimacy in relationships. This can lead to misunderstandings if not recognized and respected.Another intriguing contrast emerges in the interpretation of certain gestures. While smiling is a universal sign of friendliness, constant smiling in the U.S. can be seen as polite and encouraging, whereas in China, excessive smiling during serious discussions might be misinterpreted as insincerity or lack of professionalism.It is crucial to remember that within both cultures, thereexists a spectrum of individual variation. Nevertheless, awareness of these broad patterns fosters effective communication. As we navigate the globalized world, recognizing and adapting to these cultural nuances becomes imperative. Misreading body language can inadvertently cause offense or confusion; conversely, appropriate usage fosters rapport and mutual understanding.the disparities in body language between China and America underscore the richness of cultural diversity. By acknowledging these differences and striving to understand their roots, we equip ourselves with a powerful tool for bridging cultural gaps. Whether in business negotiations or casual encounters, the ability to decode and respond appropriately to nonverbal cues serves as a passport to smoother international interactions.。
高二年级英语心理学初探单选题50题1. The state of being extremely sad and losing interest in life is often related to ______.A. AnxietyB. DepressionC. ObsessionD. Hallucination答案:B。
解析:A选项Anxiety是焦虑的意思,通常表现为过度担忧、不安;B选项Depression是抑郁,其特征包括极度悲伤、对生活失去兴趣等,符合题意;C选项Obsession是痴迷、困扰的意思,与悲伤和对生活失去兴趣无关;D选项Hallucination是幻觉,与题干所描述的心理状态无关。
2. A person who has an unreasonable fear of a particular thing is said to have ______.A. PhobiaB. ParanoiaC. AmnesiaD. Dementia答案:A。
解析:A选项Phobia指恐惧症,即对特定事物有不合理的恐惧;B选项Paranoia是偏执狂,主要表现为过度猜疑等,与对特定事物的恐惧无关;C选项Amnesia是失忆症,与恐惧无关;D选项Dementia是痴呆,与题干描述的对特定事物的恐惧不相关。
3. Which term refers to the ability to understand and share the feelings of others?A. EmpathyB. SympathyC. ApathyD. Antipathy答案:A。
解析:A选项Empathy是同理心,强调理解并分享他人的感受;B选项Sympathy更多是同情,只是表示对他人的不幸表示怜悯,并不一定理解和分享感受;C选项Apathy是冷漠,与理解和分享感受相反;D选项Antipathy是反感,与题干表达的意思完全不同。
2020,56(10)1引言形式概念分析[1]是一种进行数据分析的有效数学工具,其核心概念为形式背景、形式概念与概念格。
通过概念格所展现出的概念之间的特化与泛化关系,揭示了数据表的内在结构,刻画了对象与属性之间的依赖关系。
近年来,一个有趣的研究方向是将多粒度计算的思想融入到形式概念分析之中,由此产生了不同的多粒度形式概念分析模型[2-16]。
形式概念分析的粒计算方法包括形式背景的对象粒化[2]、属性粒化[3-8]、关系粒化[9-11]等,这些方法除了可以缓解庞大的概念个数之外,还可以获两种多粒度形式概念分析模型的比较研究折延宏1,胡梦婷2,贺晓丽1,曾望林21.西安石油大学理学院,西安7100652.西安石油大学计算机学院,西安710065摘要:多粒度形式概念分析是近年来形式概念分析领域的一个热点方向。
基于属性聚类与属性粒化是两种典型的方法。
围绕Wille形式概念分析模型以及面向对象概念分析模型对这两种方法进行了深入的对比研究。
首先引入了基于属性聚类的Wille概念分析模型,证明了已有的基于属性粒化的形式概念分析模型是该模型的一种特殊情形。
将已有的基于属性粒化的面向对象概念分析模型拓展至基于属性聚类的情形,研究了聚类前后外延集的变化规律,证明了聚类前后外延集仍然保持不变的充分必要条件,所得结果进一步推广了已有文献中的结论。
关键词:属性粒化;属性聚类;Wille概念格;面向对象概念格文献标志码:A中图分类号:TP18doi:10.3778/j.issn.1002-8331.1905-0089折延宏,胡梦婷,贺晓丽,等.两种多粒度形式概念分析模型的比较研究.计算机工程与应用,2020,56(10):51-55. SHE Yanhong,HU Mengting,HE Xiaoli,et parative study between two multigranulation formal concept analysis puter Engineering and Applications,2020,56(10):51-55.Comparative Study Between Two Multigranulation Formal Concept Analysis ModelsSHE Yanhong1,HU Mengting2,HE Xiaoli1,ZENG Wanglin21.College of Science,Xi’an Shiyou University,Xi’an710065,China2.College of Computer Science,Xi’an Shiyou University,Xi’an710065,ChinaAbstract:Multigranulation formal concept analysis is one hot topic in the research area of formal concept analysis, among others,attribute clustering and attribute granulation are two representative methods.This paper performs a compar-ative study between these two methods based on Wille formal concept analysis.A type of Wille concept analysis model has been introduced based on attribute clustering,and then it has been shown that the model based on attribute granulation is a particular case based on attribute clustering.Furthermore,this paper extends object-oriented formal concept analysis model based on attribute granulation to that based on attribute clustering,and studies the changing law of extents and pro-vides a necessary and sufficient condition for the fact that the extents remain unchanged after clustering,the obtained results further generalize the existing results.Key words:attribute granulation;attribute clustering;Wille concept lattice;object-oriented concept lattice基金项目:国家自然科学基金(No.61976244,No.61472471);陕西省创新人才推进计划-青年科技新星项目(No.2017KJXX60);陕西省教育厅科研计划项目(No.18JK0625)。
•absolute universals 绝对共性[廖328] absolute case 通格[廖204]abstract construct 抽象结构[廖235]accessibility hierachy 辨认度[廖27]acceptability 可接受性[廖373]accommodation 让步,适应[陶]accompaniment adverb 交与副词[吕239]accomplishment 结束[陈147 159]accusative 受事格[廖346]accusative object 受事宾语[吕240]achievement 成就[陈147]act 行为[廖236]act sequence 信息内容与形式[陶]actional predicate 动作谓语[吕240]activated 被激发的[廖396 402]active 主动格[陈108]activity 活动[陈147 157]actual 实际[廖375]adequacy 切应性[陈51]adjacency 邻接关系[吕240]adjacency pairs 语对[陶]adjective 形容词[吕240]adjunct string 附加语符列[陈45]adjuncts 修饰语[廖27]adjusment model 调整模式[陈41]adposition 介词[吕240]advanced 高等[陶]adverb 副词[吕240]adverb-fronting 副词前移[吕240]adverb-lowering 副词下降[吕240]affective 表情<作用>[陈9]affix 词缀[吕240]Afrikanns 阿富堪斯[陶]age grading 年龄级差[陶]agent 施事[吕240]agglutinating 粘着型[廖331]agglutinative 粘着型[陈107]agreement 一致[吕240]agreement maxim 同意的准则[廖369]AI<artificial intelligence> 人工智能[廖235]allocation of function 功能的分配[陶]allocation of use 用途的分配[陶]ambiguity 歧义[吕240]ambiguity maxim 歧义准则[廖370]American Council on Teaching Foreign Languages <ACTFL> 美国外语教学委员会[陶] American Institutes of Research 美国研究所[陶]analogues 模拟词[廖408]analytic 分析型[陈107]analytic causative 分析式使成式[廖345]anaphor 回指对象[陈182]anaphora 指称替代[廖236] 回指形式[陈182]anaphoric reference 回指[陈121 181][吕240]animacy 生命度[廖326 332 347 352]antecedent 先行词[陈182] 被代词[吕240]anterior 先事时[陈173]anterior future 先事将来时[陈174]anterior past 先事过去时[陈174]anterior present 先事现在时[陈174]anthropological 人类学的[廖235]anthropology 人类学[陶]Antigua 西印度群岛上的安梯瓜[陶]antipodals 对跖词[廖413]antonym 两极词[廖412]antonymy 两极关系[廖417]apparent time 显象时间[陶]appositive clause 同位小句[吕240]approbation maxim 表扬的准则[廖369]appropriateness 合适性[廖374]得体性[陶]arbitrary 任意的[陶]archiphoneme 原音位[陈10]argument 论元[陈84 196] 参与者[吕240]argument position 论元位[陈104]argumentation 论辩体[廖124]argumentative 论证[廖236]argumentative structure 论证结构[廖237] Aroucanians 智利的阿劳卡尼人[陶]article 冠词[吕240]aspect 时态[陈143] 态[吕240] 体[陶]assert 肯定[吕240]assertion 肯定[吕240]assertive 断言的[廖425]assign 分配[吕240]associated typology 关联类型学[廖331]atomic structure of sentences 句子的原始结构[吕240] attach to 系附于[吕240]attenuated 较单薄的[廖61]attributes 属性[廖435 449]attributive relative clause 修饰性关系小句[吕240] audience design 听众设计[陶]augmented transition network 扩展的转移网络[廖379] authentic 真实材料[陶]automatic translation 自动翻译[陈96] autonomous syntax 自主的句法[廖236] Autosegmental Phonology 自分音系理论[陶] auxiliary verb 助动词[吕240]BBaby Talk娃娃腔 [陶]back-channel 衬托型反馈形式[陶]backgrounding 抑退[吕240]Bahasa Indonesia 巴萨印度尼西亚话[陶]ballooning<of rules> <规则>膨胀[吕240]banter principle 逗乐原则[廖369]bare noun 光杆名词[陈129]basic level 基本层次[廖417]basic level terms 典型层次词[廖436]Basque 巴斯克语[陶]Bazaar Malay 集市马来话[陶]begging 乞求[陶]behavioral norm 行为规范[陈106]Berber 柏柏尔语[陶]beyond sentence grammar 超句语法[廖234]bi-cultural 双文化[陶]bidialectalism 双方言[陶]bilingual 说双语的人[陶]bilingualism 双语[陶]biunique 一一对应[陈11]bounded 有界的[陈168]boundedness 封闭性[廖438]bracketing 加括[吕241]brand new 全新的[廖399]bundle of features 特征束[陈10]Ccamaraderie 同志式的[陶]cardinal reference-point 主要元音参考点[廖318] case-marker 格标记[吕241]case marking 格标记[廖340]Catalan 加泰窿语[陶]cataphoric reference 反指[陈206] catastrophic change 剧变,灾变[陶] catastrophism 剧变说,灾变说[陶]categorize 类化[陈103]categorization 范畴化[廖449]category 范畴[廖449][吕241]causal 因果性[陈117]causative construction 使成结构[廖326 344] cause adverb 原因副词[吕241]causee 使成者[廖345]causer 肇事者[廖345]center string 中心语符列[陈45]change in progress 进行中的变化[陶]chunk 信息块[陈89]circumstantial role 附带成分[陈183] circumstantials 随遇成分[廖27]citation 引用[廖359]clarity principle 清楚原则[廖370]class 类[陈128]classical 古语[陶]class-inclusion 类包括[吕241]classes of words 词类[吕241]classification 分类体[廖124]clause 小句[廖236][吕241]clause-internal rules 小句内部规则[吕241]cleft sentence 分裂句[陈240]clefting 分裂[吕241]closed network 封闭网络[陶]cluster 词群[廖408]code 代码[吕241]code norm 代码规范[陈105]code-switching 语码转换[陶]codification 标准的健全[陶]coding 表现[陈163]coding device 编码手段[吕241]cognitive content 认识内容[吕241]cognitive correspondence 认知对应原则[陈104] cognitive function 认识功能[吕241]cognitive information 认知信息[陶]cognitive representation theory 认知表现理论[陈104] cognitive science 认知科学[廖380]cognitive synonymy 认知同义关系[廖406] coherence 意义连贯[廖373]cohesion 形式连贯[廖373]cohesive relationship 连贯关系[廖399] collaborative finish 合作完成式[陶]collocational restrictions 习惯性搭配限制[廖408] command 统御[陈68]comment 论述,陈述[廖333 396][陈187] 说明[吕241]commissives 承诺[廖423]common focus 共喻圈[吕242]common knowledge 共同知识[吕242]communication 传信[廖379]communication accommodation theory, CAT 交际适应理论[陶] communicative competence 交际能力[廖278] communicative force 实际用义[廖357]communicative language teaching 交际语言教学[陶] compactness 简洁[吕242]comparative 比较[吕242]compatibility 并存关系[廖407]competence 语言能力[陈18] 能耐[吕242] complementaries 互补词[廖411]complements 补足成分[廖27] 补语[吕242] complementizer 成形剂[吕242]complex change 复变[陈160]complex-NP-shift 复杂NP移位[吕242]complex sentence 复杂句[吕242]componentialist 要素分析者[廖438]compound interdependent 合成型[陶]compression rules 压缩规则[吕242]conative function 使动功能[廖313]conceptual dependency 概念从属<语法>[陈101]concord 一致[吕242]conditional adverb 条件副词[吕242]conditional coherence 条件连贯[陈83]configuration 构型[廖438]configurationality 组合性[陈108]congruence relations 一致关系[廖406]congruent 一致性[陶]congruent meronym 一致部件[廖407]conjoinability 可连接性[廖27]conjunction 连词/联合[吕242]conjunction-reduction 省并[吕242]connectivers 连接成分[廖451]constituency rules 组成成分规则[廖314]constituent class 成分类别[陈41]constituent ellipsis 成分省略[廖14]constituent insertion 成分插入[陶]constituent order 结构成分顺序[廖334]constitutive principles 构成原则[廖373]constant 常量[吕242]constraints 限制[廖328] 约束[吕242]construction grammar 结构语法[廖281]containment 包含[廖483]contemporary 当代[陶]content form 内容形式[陈9]content mode 内容表达式[廖359]content substance 内容实体[陈9]context 语境,上文[廖236 395]context of situation 言语情景;情景的上下文[陶]context-dependent structure/system 依靠语境的结构/系统[廖236] context-free rule 不受上下文约束的规则[吕242]context of situation 语境[廖319]context-sensitive rule 受上下文约束的规则[吕242]contextual relations 语境关系[廖404]contextual style 场合语体[陶]contextualization cues 语境线索[陶]continuity 连续性[陈187]continuous variable 连续变量[陶]continuum 连续体[陈64 162]contraction 语音省缩[吕242]contrary 指反[陈217]contrastive prominence 对比重音[吕242]control 自控力[廖332]convergence 靠近[陶]conversation 会话[廖236]conversational analysis,CA 对话分析[廖235] 会话分析[陶] conversational implicatures 话语蕴含[陶]conversational postulates 对话原则[廖361]converse 逆反词[廖413]co-occurrence constraint 共现约束[吕242]cooperative principle 合作原则[廖179 357]co-ordinate independent 并存型[陶] coordinate structure 并列结构[吕242]copula verb 系词[吕242]coreference 同一性关系[陈182]corpus planning 语型规划[陶]corrected mean 修正均值[陶] correspondence 对应[廖365]co-taxonyms 同类分类词[廖409] counteractive 反动关系[廖412]counterparts 对应词[廖413]covert prestige 隐威信[陶]creole 克里奥语,混合语[陶]criterial 判别性的[廖404]cross-cultural communication 跨文化的交际[陶] crossover 超越[陶]cultivation 培养[陶]current 邻接的[廖399]cycle 轮转[吕243]cyclic application 循环使用[廖317]contrastive features 区别特征[陶]Ddata 数据[廖236]dative 与格[廖346]Davidian 达罗毗荼[陶]declaratives 宣告句[廖420]declarative sentence 陈述句[吕243]de-creolization 克里奥尔脱化[陶]de-creolization continuum 克里奥尔脱化连续体[陶] deep structure 深层结构[吕243]default 常规选择[廖373]deferent 敬重[陶]Deficit Hypothesis 语言缺陷论[陶]definite 有定[廖40]definiteness 定指度[廖342]definiteness of subject and object 主语和宾语的限定[廖237] degree-terms 程度词[廖411]deictic 指示词[吕243]deixis 指示词[廖195]deletion rules 消除规则[吕243]delicacy 精细度[廖319]demonstrative structure 论证结构[廖451]deontic modality 义务情态[廖419]dependency relation 依赖关系[吕243]derivational morphology 衍生构词[廖316] 构词形态[吕243] derived sentence 派生句[吕243]derived structure 派生结构[吕243]description 描写体[廖124]descriptive structuer 描写结构[廖237]descriptivists 描写学派[廖308 322][陈11 35]design features 图案成分[廖309]destressing 轻音化[吕243]determiner 区别词[吕243]deviation 偏离[陶]diachronic derivability 历时可导性[陈116]diagram 图解[吕243]dialect 方言[陶]dialect geography 方言地理学[廖264]dialectology 方言学[廖262]dialogic 对话性[陶]dialogue 对话[廖234 236]differentiable 可区分的[廖408]diglossia 双言制[陶]dimension 标度[廖211]dimensional model 层面模式[陈109]direct illocutions 直接表达式[廖361]direct object 直接宾语[吕243]directional adverb 趋向副词[吕243]directives 指令[廖423]direct speech 直接句[廖360]discourse 对话[廖379] 言谈[吕243]discourse analysis 篇章分析[廖181 234 310][陈25 55] discourse connectedness 篇章连贯[廖236]discourse connectives 篇章连接[廖236 237] discourse for special occasions 特别场合的篇章[廖236] discourse-functional syntax 篇章-功能句法[廖236] discourse-functionally motivated structure/system有篇章-功能理据的结构/系统[廖237]discourse genres 篇章类型[廖236]discourse intonation 篇章语调[廖236]discourse organization 篇章结构[廖236]discourse particles 篇章词[廖236]discourse perspective on syntax 篇章观点看句法[廖237] discourse predicate 篇章谓词[廖236 237]discourse scope 篇章管界[廖236 237]discourse units 篇章单位[廖236]discovery procedure 发现过程[廖309] 发现程序[陈11 43] discrete 离散的[廖332]displaced 间隔的[廖399]dissonance 不和谐[廖416]distant 距离,保持距离[陶]distinctive features 区别成分[廖317]distinctive feature theory 区别成分理论[廖313] distributionalists 分布学派[陈11]distribution universals 分布共性[廖338]divergence 分离[陶]Document Design Project, DDP 文献设计计划[陶]doing 做事[陶]domain 认知领域[廖438]domain of predication 表述界域[吕243]domain of transformations 转换界域[吕243]domain theory 语域理论[陶]dominances 处理中心[廖373]dominant 显性[陈115]double articulation 双重分节[陈113]doublet 词对[廖408]dummy filler 傀儡成分[吕244]durative 持续[陈152]dynamic process 动态过程[陈64]Eearly modern 现代早期[陶]ease of processing 循索的便利[吕244]eclectic 折中调和[陈70]economy principle 简练原则[廖370]effectiveness 有效性[廖374]efficiency 简易性[廖373]efficient 高效性[陈40]elaborated code 复杂语码[陶]elaboration 标准的扩建[陶]elementary sentence 初级句[陈45]ellipsis 省略[廖14 236]ellipsis of arguments and frams 主目和框架的省略[廖237] embed sentence 嵌入句[吕244]embedded construction 嵌套结构[陶]empirical evidence 立论依据[陈16]empty category 空语类[陈17]encode 表现[陈22]end-focus maxim 焦点在尾准则[廖359 370] endocentric 内中心[吕244]endoglossic 本土的[陶]endonym 被包含词[廖408]ends 目标与效果[陶]end-scope maxim 辖域在尾准则[廖370]end-weight maxim 重心在尾准则[廖359 370]entail 包含[廖194]entailment 包含关系[廖404]entity 实体[廖435][陈120]episodic memory 情节记忆[廖376]epistemic modality 知识情态[廖419]equi-NP-deletion 等名消除[吕244]equipollent antonyms 均等词[廖412]ergative-absolutive system 施-受格系统[廖333] ergative case 作格[廖204][陈108]ergativity 作格格局[廖196]ethnicity 民族[陶]ethno- 民族,民俗[陶]ethnographical 人群学的[廖235]ethnography of communication 交际民族志学[陶] ethnography of speaking 言语民族志学;交际人种志学[陶] ethnomethodological 民族学的[廖235] ethnomethodology 民俗方法论[陶]European Community 欧洲共同体[陶]evaluated participation, EP 参与估价[陶]evaluation 评价体[廖124] 评价[陶]evaluatives 评价[廖423]event 事件[廖236]evidence 验证[吕244]evoked 激发的[廖399 402]exchange 交换[廖236]excluded 排斥的[廖404]exemplar 样本[廖435]existential sentence 存在句,呈现句[吕244]exocentric 外中心[吕244]exoglossic 外来的[陶]exonym 包含词[廖408]expansion rule 扩展规则[吕244]expected 预期的[廖404]experiencer 感受者[廖332]expert category 专业范畴[廖437]explicit 明确[陈37]expository 说明,说明体[124 236]exposition 说明体[廖124]expression form 表达形式[陈9]expression substance 表达实体[陈9]expressive discourse 抒情体[廖124]expressive function 表情功能[廖313]expressity principle 表达力原则[廖370]extended performative hypothesis 扩展表述句式假说[廖361] extraposition 外位[吕244]Ffactive 叙实[吕244]factivity 实事性[吕244]falsification 证伪[陈26]family resemblance 家庭成员相似性[廖434]family resemblance category 家庭成员相似范畴[廖439] family tree theory 家族树理论[陈5]feature 特征[廖449]feature norm 特征规范[陈106]feedback 反馈[陶]field 场域[陈79] 范围[陶]figure 人物[廖161]finished product 成品[陈86]finite-state grammar 有限状态语法[陈49]first pair part 上联[陶]flagged 插旗式,标记性[陶]flectional 融合性[廖331]Flemish 荷兰语的佛来米语[陶]focus 焦点[廖332][陈65]focus of information 信息焦点[陈235]focusing rules 聚焦规则[吕244]folk category 通俗范畴[廖437]folk taxonomy 民俗分类结构[廖409]force 动力,用意[廖332 357 360]foregrounding 突出[吕244]Foreign Service Institute美国外交学院[陶]foreigner talk 外国人腔[陶]formalism 形式主义[廖452]formalist 形式主义学派[陈14]formalist functionalism 形式功能主义[廖357]formal universals 形式共性[廖327]formation rules 成形规则[吕244]formulaic 套语性[陈112]forms of communication 交际形式[陶]forms of speech 言语形式[陶]fossilize 僵化[陶]frame 框架[廖400 438 451][陈82] 交际框架[陶]framing 框架[陶]frequency adverb 频次副词[吕245]fronting 前化[陈6]fronting rules 移前规则[吕245]full turn 正式的话轮[陶]function assignment 功能分配[陈96]function of communication 交际功能[陶]functional coherence 功能连贯[廖236][陈83]functional communicative activities 功能性交流活动[陶] functionalism 功能主义[廖452]functionalist 功能主义学派[陈14]functional sentence perspective 功能的句子透视[廖374][陈56] function yield 功能值[廖313]functor-content hierarchy 虚-实词等级[廖338]future 将来时[陈173]Ggapping 缺略[吕245]gender 性[吕245]general 普遍性[陈40]general linguistics 普通语言学[廖274 320]general linguistic theory 普通/遍语言理论[廖275]general pragmatis 普通语用法[廖365]Generalized Phrase Structure Grammar 普遍短语结构语法[陈14] generate 概括,定义,规范[廖314 322] 生成[吕245] generation difference 代差[陶]generative grammar 生成语法[廖322]generative phonology 生成音系学[廖318]generative sementics 生成语义学[廖345][陈19 59]generative syntax 生成句法学[廖318]genres 言语体裁[陶]generic 通指[陈119 167]generic level 属层[廖409]generosity maxim 宽宏的准则[廖369]genetic 起源性[陈116]genetic linguistics 谱系语言学[陈109]gerund formation 动名词形成[吕245] gerundivization 动名词化[吕245]given information 已知信息[陈78 187 234] global coherence 总体连贯[陈83]globally 总的[廖359]glossematics 语符学[廖316 322]glosseme 语符[陈9]goal 对象[吕245]Government and Binding 支配与约束理论[陈14] grade-terms 渐变词/成分[廖411][陈162] gradualism 均变说[陶]grammar 语法[廖357 371]grammaticality 合乎语法[廖314] grammaticality judgement 语法判别能力[陶] grammaticalization 语法化[陈23] grammaticalness 合语法性[吕245]Great Vowel Shift 元音大换位[陶]HHausa 豪萨语[陶]head 中心语[陈45]hearsay 听说[廖421]heavier element principle 大块头原则[吕245] hedge 模棱话[陶]hedges 边界词[廖437]heterogeneity 复杂性或异质性[陶] heterogeneous 异质的[陈152]hierarchical structure 层次构造/结构[陈28 39]hierarchy 等级结构[廖328 408]hierarchy of accessibility to relativization关系子句化的可即度等级[廖343]hierarchy of individuation 个体化等级[廖348] hierarchy of saliency 显著性等级[廖348]high key 高音[廖441]high variety 高变体[陶]higher mental function 高级智力功能[陶] higher-order predicate 高次位词[陈196] Hindi 印地语[陶]historical linguistics 历史语言学[廖349] holistic typology 整体类型[廖331] homogeneous 均质的[陈152] 同质的[陶] hortatory 规劝/诱导体[廖124 236] hypercorrection 矫枉过正[陶] hypoconverse 下逆反词[廖407]hyponymy 下义关系[廖406]IICAO 国际民航组织[陶]idea unit 思想单位[陈102]ideal speaker 理想的说话人[廖308] ideational 表义部分[廖358] 意念成分[陈78] ideational function 表义功能[廖364] identical deletion 承前删除[廖14] identifiable 定指[陈119]identifying function 鉴别功能[吕246] idiolect 个人语言[陈26]idiomaticity 惯用性质[陈111]ill-formed 非完美形式[陈48] 不协调[吕246] illocutions 行事作用[陈96]immediate constituents 直接成分[陈36] imperative sentence 命令句[吕246] imperfective 不完全态[陈177] 未完成态[吕246] Implementation 标准的实施[陶]implicate 蕴含[陶]implicational hierarchy 蕴含层级[廖433] implicational universals 蕴含共性[廖327 328][陈108] implicature 会话蕴含,含义,蕴含义[廖195 365 395][陈65] improbability 不可能[廖416]inappropriateness 不合适[廖408]inceptive 始事态[吕246]inclusive 包容性[陈40]incompatibility 排斥关系[廖407]incongruence 不调合[廖408]incongruent非一致性[陶]incoroporating 聚合型[廖331]incrementation 增长[吕246]indefinite-agent-deletion 无定施事消除[吕246] indefinite article 无定冠词[吕246]indefinite-NP-deletion 无定名词短语消除[吕246]in-depth 深探式[陈27]index 指标[陶]index of fusion 融合度[廖331]index of status characteristics, ISC地位特征指数[陶] index of synthesis 合成度[廖331]indexical information 特征信息[陶]indexical meaning 检索意义[陶]indexicality of sign 符号的引得属性[陶]indicative 直陈语气[吕246]indicator 指示项[陶]indirect converse 间接逆反词[廖413]indirect illocutions 间接表达式[廖361]indirect speech 间接句[廖360]indirect speech act 间接讲话行为[廖361]individual 单指[陈119] 个体[陈128]inference 推论[廖395]inferrable 可推导的[廖399]inflected 曲折型[陈107]inflection 构形变化[吕246]inflectional morphology 构形形态[吕246]information structure 信息结构[陈66] information theory 信息论[陶] information unit 信息单位[陈66 78] informativity 信息度[廖373]inherent 固有的[陶]inner city 内城[陶]innateness 天赋论[廖328]insertion rules 插入规则[吕246] instantiate 例示[廖435]instrumental adverb 工具副词[吕246] instrumentalities 交际工具[陶] instantiation 体现[陈77]intellectual revolution 知识革命[陶] intelligibility 可懂度[陶]intensifier 强度副词[吕246]intensional verb 愿望副词[吕246] intention 意图[吕246]intentionality 有目的性[廖373] interaction 相互影响[廖236] 交流,互动[陶] interactional 相互作用的[廖394] 交流大纲[陶] interactive 互动关系[廖412]interest principle 有趣原则[廖369] interjection 叹词[吕246]interlanguage 中介语[陶]interlinguistics 语际语言学[陈96] intermediate 中等[陶]interpersonal 人际成分[陈78] interpersonal rhetoric 人际修辞[廖358 363] inter-personal variation 个人之间的变异[陶] interpretive semanticists 解释语义学派[陈19] interrogatives 询问句[廖420] intertextuality 章际性[廖373]intonation contour 调形[陈78]intonation unit 语调单位[陈102] intransitive 不及物[吕246]intra-personal variation 个人内部的变异[陶]intra-sentential code-switching 句内语码转换[陶] introspection 内省[陈24]introspective judgement 内省的判断[廖314]inversion 倒转[吕246]in-width 博采式[陈27]irony maxim 讽刺准则[廖357]irony principle 讽刺原则[廖369]irreversible 不可逆的[廖209]isogloss 等言线,等语线[陶]isolating 孤立型[廖331]item and arrangement 单元和排列[廖316][陈41]item and process 单元和过程[廖316][陈41]iterative 多次态[陈171]Jjourney 历程[廖438]jussives 命令句[廖420]Kkernel sentence 核心句[吕247]key 传递信息的方式、风格[陶]knowing 获取知识[陶]knowledge schema 知识框架,知识脚本[陶]Llandmark 参照点[廖440]language 语言[陶]language contact 语言的接触[陶]language death 语言死亡[陶]language faculty 语言官能[廖277]language imposition 语言上加,语言强加[陶]language of wider communication, LWC 交际面广泛的语言[陶] language policy 语言政策[陶]language politics 语言政治[陶]language shift 语言转移[廖389] 语言替换[陶] language socialization 语言社会化过程[陶]language spread 语言扩散[陶]language typology 语言类型[廖330 331]language universal 语言共性成份[廖313 326 329] [陈13] langue 语言[陶]leakage of rules 规则的遗漏[吕247]lexeme 词目[廖405]lexical causative 词汇使成式[廖345]lexical diffusion 词汇扩散[陶]lexical form 词形[廖405]lexical functional grammar 词汇-功能语法[陈14 100] lexical interpretivists 词汇解释学派[陈59]lexical mophemes 实词素[廖353]lexical phonology 词汇音系学[陈101]lexical semantics 词汇语义学[陈101]lexical siblings 兄弟词[廖408]lexical substitution 词语替代[廖236 237]lexical unit 词义单元[廖403]lexicalgrammar 词汇语法[陈77]lexicalist hypothesis 词汇假说[陈100]lexicalization 词汇化[吕247]lexicon 词库[吕247]linear order 线性顺序[陈28]lingua franca 交际语[陶]linguistic context 语言环境[陈23 124]linguistic competence 语言能力[廖308]linguistic description 语言描写[廖274]linguistic insecurity 语言不安全感[陶]linguistic performance 语言表现[廖308]linguistic polarity 语言极化[廖414]linguistic proper 纯语言学[陈55]linguistic relativity 语言相对论[廖322]linguistic typology 语言类型[廖332]linguistic universal<s> 语言共性[廖329]linguistics theories 语言理论[廖274]linguistic theory 语言理论[廖274]literary discourse 文学体[廖124]live conversation 正在使用的交谈[廖234]loanwords 借词[陶]local coherence 局部连贯[陈83]locative adverb 处所副词[吕247]locutive verbs 表达动词[廖360]logic polarity 逻辑极化[廖414]logic-pragmatic mapping 逻辑-语用映像[廖361]logical sense 字义[廖361]loop 闭合循环[陈50]low variety 低变体[陶]lowering rules 下降规则[吕247]Mmacro continuity 宏观连续性[陈187]macro-sociolinguistics宏观社会语言学[陶]macrostructure 宏观结构[陈83]macrosyntactic conjunctions 超句子的连词[廖85]macrosyntactic use of conjunctions 连词的超句子用法[廖90] maintenance 维持,保持[陶]major language 主要语言[陶]manner adverb 状态副词[吕248]map 地图式,静止定位式[廖161]mapping 映射[廖365]marked 有标记的,不自然的[廖317]markedness 不自然性[317]marker 标志项[陶]market segmentation 市场分割[陶]Martha's Vineyard, Massachusetts〔美国马萨诸塞州马萨葡萄园岛,马岛[陶] matched guise technique 配对变语法[陶]maxim 准则[廖357 363]maximization 最广泛的解释[廖417]means adverb 手段副词[吕248]means-end analysis 手段-目的分析[廖366]mental model 内心模型[廖400]mental representation 心灵表象[廖436]merger rules 融合规则[吕248]meronymy 部件结构,部件关系[廖410]message 信息[吕248] 内容[陶]metalanguage 高一层次的语言[廖359]metaphor 隐喻[廖432 439]metaphorical extension 比喻引申[吕248] metaphorical switching 喻义性转换[陶] metareference 自指[廖359]mrtareferential constituent 自指成分[廖359]method 方法[廖236]metonymy 转喻[廖432 439]micro continuity 微观连续性[陈187]micro-sociolinguistics 微观社会语言学, 小社会语言学[陶] microanalysis 微观分析[陶]minor language 次要语言[陶]missing link 欠缺的环节[廖401]modality 情态[廖430]mode 方式[陈79]modal-lowering 语气下降[吕248]modality 语气[吕248]model-theoretic 模型论[廖359]mode 方式[陶]mode of action 行为方式[廖319]mode of mention 表达方式[廖359]modesty maxim 谦虚的准则[廖369]modern 现代[陶]modifier 修饰语[吕248]modularity 模块性[陈96]modumonogenesis 单一祖语论[廖328]monologue 独白[廖234 236]mood 语气[廖420 430]morphological case 词形格[廖332]morphological causative 形态使成式[廖345] morphophonemic rule 语素音位规则[陈42]motherese 母亲式语型[陶]motivating 制导[陈75]move 语步[陈76]movement rules 移动规则[吕248]multi-dimensional 多向/多维[吕248]multilingualism 多语[陶]multiple-clause rules 多小句规则[吕248]Nnarrative 记叙体[廖124 236]national language 国语[陶]national official language 本国官方语言[陶]native speaker 讲本族语人[陈24]Natural Communicative Concentration 自然交际聚合体[陶] natural phonology 自然语音系统学[廖318]natural taxonomy 自然分类结构[廖409]near universals 近似共性[廖352]Nederlands 荷兰语的奈德兰兹语[陶]negation operator 否定因子[吕248]negative face 消极面子[陶]negative-fronting 否定移前[吕248]negative-lowering 否定下降[吕249]negligibility 可忽略性[廖27]Neogrammarian principle 规则性原理[陶] neogrammarians 新语法学派[陈6]neo-linguistics 新语言学派[廖305]Network Analysis 网络分析[陶]neutralization 消失[廖315]new 新的[廖399]new information 新的信息[陈78 187 234]node 结[吕249]nominal anaphora 名词性回指[陈181]nominal kind 名义上的类[廖409] nominalization 名词化[吕249]nomination theory 命名理论[陈95]nominative 主格[陈108]nominative-accussative system 主-宾格系统[廖333] nonce borrowing 一次借词[陶]non-assertive 非断言的[廖425]non-existence 述无[陈217]non-factive 非事实[廖425]non-factuality 非事实性[廖419]non-finite 非定[廖424]non-focus 非焦点[廖332]nonidentifiable 不定指[陈119]non-implicational universals 非蕴含共性[廖328] non-linguistic context 非语言环境[陈23 125]non-referential 无所指[廖42][陈119 167] nonspecific 虚指[陈119]norm 规范[陈105]norms 交流中的行为规范[陶]norm selection 标准的选择[陶]notation system 符号系统[廖314]novice 初等[陶]NP accessbility hierarchy 名词的优先级[廖197] nucleus 调核[陈235]number agreement 数的一致Nynorsk 新挪威语[陶]Oobject-fronting 宾语移前[吕249]oblique clauses 修饰小句[廖426]oblique object 其它间接宾语[廖346]official language 官方,正式语言[陶]officially absent 出入意外[陶]onomasiology 专名学[陈95]onomatopoetic 拟声词[陈96]open-endedness 敞开性[吕249]open network 开放网络[陶]operand 操作数[廖336]operator 操作符[廖336] 因子[吕249]operation 操作[陈45]operational definition 操作定义[陶]ordered heterogeneity 有序异质性[陶] orthography 正字法[吕249]overlap 同时发话[陶]overlapping antonyms 重迭两极词[廖412]Ppair 话对[廖188 236]pairwise 语对式的[陶]pane 棂[廖451]paradigm<atic> 范式[陈112] 聚合/门法,模式[吕249] paradingmatic system 平行系统[廖307]paradox 自相矛盾[廖408]paragraph 段落[廖236]parameter 参量/参项[陈13 108]paraphrase 换说[吕250]para-relation 伴随关系[廖407]parataxis 意合并列结构[廖427]parole 言语[陶]parsing 语法分析[陈88]participant continuity 主题连续性[陈22]participant role 参与成分[陈183]participants 参与者[廖27][吕250]particle 助词[吕250]partitial relation 局部关系[廖407]past 过去时[陈173]patient 受事[吕250]perceptual strategy 辨认策略[吕250]perfective 完全态[陈177] 完成态[吕250] performance 语言应用/语言行为[陈18 63] 表演[吕250]performance errors 表现错误[陶]performative hypothesis 言行句假设[廖360 426] performative 言行句[廖426 363 360] performative verbs 表述动词[廖360] 实践动词[吕250] peripherals 外围成分[廖27]permutation 交换[吕250]personal interaction 个人间交际[陶]persuasive dicourse 劝说体,诱导体[廖124] pervasiveness 广泛性[陶]phase 时相[陈143]phatic maxim 套话的准则[廖369]philosophical 哲学的[廖235]phonetic change 语音变化[陶]phonological feature 音系特征[陈10]phrase structure grammar 短语结构语法[陈49] phrase-structure rules 语句结构规则[吕250] phrasing 分段[吕250]Pidgin 洋泾语,皮钦语[陶]pleonasm 冗余[廖416]plesionyms 近义词[廖415]plot 情节结构,情结[廖130 189]point time adverb 时点副词[吕250]polar antonyms 极化两极词[廖412]polarity 极化[414]politeness 文雅[廖362]polite principle 礼貌原则[廖368]Pollyanism 波利安现象[廖231]pollyanna principle 乐观原则[廖369 371] polysynthetic 聚合型[廖331]polysystemic 多系统论[廖319]pop back 弹回[陈203]population 全域[陶]positive face 积极面子[陶]possible 可能的[廖404]post-Bloomfieldians 布龙菲尔德之后学派[陈12 36] post-diglossia 后双言制[陶]post-imperial states 后帝制时代国家[陶]posterior 后事时[陈173]posterior future 后事将来时[陈174]posterior past 后事过去时[陈174]posterior present 后事现在时[陈174] postposition 后介词[吕250]postulate 假设[廖365]power 权势,权势量[陶]powerless language 无势力的语言[陶]pragma-linguistics 语用语言学[廖366]pragmatic force 用意[廖361]pragmatic role 语用角色[廖332]pragmatics 语用法,语用学[廖363]pragmatic space 语用空间[廖361 362] precategorize 类化前[陈103]precedence 先后关系[吕250]predicate-lowering 谓语下降[吕251]predication 述谓[陈42] 表述[吕251] predictability 可预测性[廖27]preferred argument structure 偏爱的论元结构[廖196] pre-literate 没有书面传统的[陶]prepatterned 预制性[陈112]prescribed 规定的[陶]present 现在时[陈173]presentative sentence 呈现句[吕251] presupposition 预设[廖395][陈65] presupposition pool 共有的预设[廖396] preteritization 过去时构成[陈42]previous mention 前文提及[吕251]primary tense 初级时制[陈173]primitive 原始[陶]principle 原则[廖363]principle-controlled 原则控制的[廖365]principle governed 原则制约的[廖356]principle of analogy 类推的原则[廖395]principle of local interpretation 局部理解原则[廖395]probability 盖然性[廖19] 可能性,概率[陶] problem-solving 解题[廖366]procedural 过程体[廖124 236] procedural semantics 程序语义学[陈64] process 过程[廖379][陈78 86] processibility principle 可处理原则[廖370] productive 活的<手段>[廖345] 能产性[陈40] proficiency 能力,熟练程度[陶]profile 突出[廖438]prominent syllable 强读音节[陈80] promoted 提倡的[陶]pronominal anaphora 代词性回指[陈181] pronominalization 代名化[吕251] pronouns substitution 代词替代[廖237] proper noun 固有名词/专名[吕251] proportional series 比例系列[廖408] propositional content 命题内容[吕251] prosodic 音律[陶]prosodic intonation节律语音[陶]prosody 超音段成分[廖319]prototype 典型/原型[廖449][陈193] prototypicality 典型性[廖218 435]pseudo-linguistic 假语言[陶]pseudo-opposite 表面对立词[廖413] pseudo-problem 假问题[陈107] psychographics 心理风貌[陶] psycholinguistics 心理语言学[陈96] psychological reality 心理现实性[陈100] public texts 公共文书[陶]purpose adverb 目的副词[吕251]push down 压进[陈204]Qquantification 数量化[吕251]quantifier 数量词[吕251]quantum 语义量[廖405]quasi-negative 准否定词[陈219]quasi-relation 准关系[廖407]quasi-superordinate 准上义词[廖407]Quecha 哥查语[陶]questionnaire 问卷[陶]quotation 引话[廖359]quotative 引用[廖421]Rrace 种族[陶]raising rule 提升规则[吕251]raising-to-object 提升为宾语[吕252]raising-to-subject 提升为主语[吕252]rank 级别[廖319]rank-shifting 调级[吕252]rank-terms 等级词[廖411]reactive expression 起应对作用的惯用表达式[陶] reactive token 反馈形式,反应词语[陶]real 真[廖427]real time 真实时间[陶]Received Pronunciation <RP> 〔英语的标准发音[陶] recessive 隐性[陈115]reciprocal construction 相互结构[吕252] recover 找回[廖 ]recursive 递归[陈196]recycle 话题重提[陶]reduced main clauses 弱化了的主句[廖85] reductionist 简化式[陈112]reference 指称[廖395]reference discourse 事实体[廖124]referent 所指对象[陈22 120 182]referential 有所指[廖40][陈119 168]referential identity 指同[廖451]referential opacity 所指不明确性[廖359]。
文章编号:1671-7872(2024)01-0065-09面向无人机航拍图像小目标检测方法吴海斌 ,张 亚 ,胡 鹏(安徽理工大学 人工智能学院, 安徽 淮南 232001)摘要:针对航拍图像目标检测中小目标特征模糊问题,提出一种改进YOLO_v5x 的目标检测算法。
通过在YOLO_v5x 的主干和颈部网络中添加空间到深度(space-to-depth ,SPD)模块来减少细粒度信息丢失;在检测输出端添加1个小目标预测头,提高算法学习低分辨率特征的效率;引入协调注意力(coordinate attention ,CA)机制,将横向和纵向的位置信息编码到通道注意中,增强网络对不同维度特征的提取能力;在完整交并比 (complete-intersection over union ,CIOU)损失函数的基础上引入Alpha 交并比(α−IOU)损失函数,获得更准确的边界框回归,实现图像中目标更精确的定位。
通过在Visdrone 数据集上对改进YOLO_v5x 算法进行训练和对比实验,结果表明:相比于原YOLO_v5x ,改进目标检测算法的平均检测精度提升了7.8%,小目标检测的平均精度达23.9%,能够有效识别无人机航拍图中的小目标;相比于RetinaNet 、YOLOX-S 、Grid-RCNN 等目标检测算法,改进目标检测算法的小目标检测平均精度最高,在当前主流检测小目标算法中达到先进水平。
关键词:无人机;目标检测;航拍图像;注意力机制中图分类号:TP 391.4 文献标志码:A doi :10.12415/j.issn.1671−7872.23087A Small Target Detection Method for Unmanned Aerial Vehicle AerialPhotography ImagesWU Haibin, ZHANG Ya, HU Peng(School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China)Abstract :Aiming at the problem of fuzzy features of small targets in aerial image detection, an improved YOLO_v5x target detection method was proposed. A space-to-depth (SPD) module was added to the backbone and neck network of YOLO_v5x to reduce the loss of fine-grained information, and a small target prediction head was added to the detection output to improve the efficiency of the algorithm in learning low-resolution features. At the same time, the coordinate attention (CA) mechanism was introduced to encode the horizontal and vertical position information into the channel attention to enhance the ability of the network to extract different dimensional features.In order to improve the target positioning accuracy, the Alpha intersection over union (α−IOU) loss function was introduced based on the complete-intersection over union (CIOU) loss function. To obtain more accurate bounding box regression, to achieve more accurate target positioning in the image. Through training and comparative experiments on the improved YOLO_v5x algorithm on the Visdrone datasets. The results show that compared with收稿日期:2023-05-29基金项目:安徽省高校自然科学基金项目(2022AH050801);淮南市科技计划项目(2021005);安徽理工大学校级重点项目(QNZD2021–02)作者简介:吴海斌(1997—),男,安徽安庆人,硕士生,主要研究方向为计算机视觉。
苏广权,鞠琳,郑翔宇,等.不同亚铁矿物对As (Ⅲ)和As (Ⅴ)的表面吸附特征及机制比较研究[J].农业环境科学学报,2023,42(7):1495-1504.SU G Q,JU L,ZHENG X Y,et parative study on the surface adsorption characteristics of different ferrous minerals for As (Ⅲ)and As (Ⅴ)and their mechanisms[J].Journal of Agro-Environment Science ,2023,42(7):1495-1504.不同亚铁矿物对As (Ⅲ)和As (Ⅴ)的表面吸附特征及机制比较研究苏广权1,鞠琳1,郑翔宇1,姚爱军1*,杨晶柳1,赵曼2,王诗忠2,汤叶涛2,仇荣亮2,3,4(1.中山大学地理科学与规划学院,广州510006;2.中山大学环境科学与工程学院,广东省环境污染控制与修复技术重点实验室,广州510006;3.岭南现代农业科学与技术广东省实验室,广州510642;4.华南农业大学资源环境学院,广东省农业农村污染治理与环境安全重点实验室,广州510642)Comparative study on the surface adsorption characteristics of different ferrous minerals for As (Ⅲ)andAs (Ⅴ)and their mechanismsSU Guangquan 1,JU Lin 1,ZHENG Xiangyu 1,YAO Aijun 1*,YANG Jingliu 1,ZHAO Man 2,WANG Shizhong 2,TANG Yetao 2,QIU Rongliang 2,3,4(1.School of Geography and Planning,Sun Yat-sen University,Guangzhou 510006,China;2.School of Environmental Science and Engineering,Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology,Sun Yat-sen University,Guangzhou 510006,China;3.Guangdong Laboratory for Lingnan Modern Agriculture,South China Agricultural University,Guangzhou 510642,China;4.Guangdong Provincial Key Laboratory of Agricultural &Rural Pollution Abatement and Environmental Safety,College of Natural Resources and Environment,South China Agricultural University,Guangzhou 510642,China )收稿日期:2023-01-01录用日期:2023-03-29作者简介:苏广权(1998—),男,广东揭阳人,硕士研究生,研究方向为农田重金属污染修复。
0 引言近年来,几大搜索引擎公司为进一步方便学术用户获取学术资源,纷纷在其原有搜索引擎的基础上推出了学术搜索引擎。
学术搜索引擎通过科学组织、管理和维护网络中的学术信息,使用户通过一个检索入口快速获取网络学术信息[1]。
目前,该类型的搜索引擎主要有Google Scholar、Microsoft Academic Search以及百度学术搜索。
同时,随着Google Scholar 学术搜索的榜样效应,元数据索引服务开始进入图书馆界的视野,基于元数据仓储的资源发现系统面世,并在国内外图书馆中得到迅速而广泛的应用。
资源发现系统是通过抽取、映射、收割、导入等手段对海量的来自异构资源的元数据和部分对象数据进行预收集,并通过归并映射到一个标准的表达式进行预聚合,形成统一的元数据索引,通过单一但功能强大的搜索引擎向终端用户提供基于本地分布或者远程中心平台的统一检索和服务的系统[2]。
资源发现系统自2009年面世以后,发展很快,其中在国内被广泛应用的系统主要有ProQuest公司的Summon和Primo Central、EBSCO公司的EBSCO Discovery Service (EDS)以及超星发现系统。
目前,国内学者对学术搜索引擎以及资源发现系统分别做了大量的研究,也有少量的研究是分析摘 要 比较资源发现系统和学术搜索引擎的功能异同,有助于优化图书馆发现服务。
本文选取EDS和百度学术搜索为研究对象,通过文献述评与实验方法,从资源收录范围、数据来源与组织方式、检索功能、检索结果运用以及个性化服务等方面比较了两者异同。
结果显示,在具体的功能上,两个系统各有优点。
最后,本文从资源整合、信息素养教育、知识发现服务三个方面提出图书馆发现服务优化建议。
关键词 发现服务 资源发现系统 学术搜索 图书馆分类号 G252.7DOI 10.16810/ki.1672-514X.2019.09.015李慧芳Li HuifangComparative Study on the Functions of Resource Discovery System and Academic Search Engine: Taking EDS and Baidu Academic Search as an ExampleAbstract Comparing the functional similarities and differences between the resource discovery system and academicsearch engine willoptimize the library discovery service. EDS and Baidu Academic Search are selected as research objects in this paper. Through literature review and experimental methods, this paper compares them from the view of resource types, data source and organization mode, search function, search result application and personalized service.The results show that the two systems have their own advantages in specific functions. Finally, it puts forward optimization suggestions for library discovery service from three aspects: resource integration, information literacy education and knowledge discovery service.Keywords Discovery service. Resource discovery system. Academic search. Library.*本文系江苏省教育厅高校哲学社会科学基金项目“基于资源发现系统的高校图书馆用户行为模式挖掘与服务优化研究”(项目编号:2017SJB0021) 研究成果之一。
PPV/PVA复合纳米纤维的制备*张 文1,黄宗浩1,汪 成1,闫尔云1,孙海珠1,陈 莉1,李永舫2,杨春和2 (1.东北师范大学化学学院,吉林长春130024;2.中国科学院化学所有机固体重点实验室,北京100101)摘 要: 用静电纺丝法制备电子聚合物聚对苯乙炔(PPV)与非共轭聚合物聚乙烯醇(PVA)的复合纳米纤维。
对复合纳米纤维的发光性质和形态进行了表征。
与PPV薄膜相比,复合纳米纤维的发射光谱在PPV 含量较高时(如1 1(质量比)时)变化不明显;而含量较低时(如1 4(质量比)时)有明显的蓝移现象;当PPV的含量非常低时(如1 99(质量比)时),光谱的蓝移值趋于确定。
关键词: 电子聚合物;聚对苯乙炔(PPV)/聚乙烯醇(PVA)纳米纤维;静电纺丝;复合材料中图分类号: TG171文献标识码:A 文章编号:1001 9731(2006)04 0567 031 引 言静电纺丝(electr ospinning)是上世纪30年代发现的制备高分子超细纤维的方法[1,2]。
近年来,Reneker 等人对静电纺丝工艺及应用作了较深入的研究,已制得20多种聚合物纤维并部分实现产业化[3]。
2002年,M acDiarm id等人报道了采用静电纺丝法制备出的电子聚合物聚苯胺纳米电纺纤维[4]。
当前,静电纺丝作为一种简单而通用的制备纳米纤维的方法,已引起了越来越多的关注。
聚对苯乙炔[po ly(phenylene v inylene),PPV]具有优良的发光[5]、光伏转换[6]、光学非线性[7]及掺杂导电[8]等功能特性,同时具有常温下空气中稳定、制备工艺简单、成本低廉并易提纯和前聚物易溶、易加工等优点,是一种具有光电多功能特性的代表性电子聚合物;但PPV本身不溶于常见的溶剂,因此需在前聚物时加工成型。
聚乙烯醇[poly(viny l alcohol) PV A]具有良好的化学和热稳定性[9],并能与不同的溶剂形成物理凝胶,适于独立或作为基础材料与其它材料共混加工成型。
比较类英语专四作文模板Comparative Analysis of Traditional and Modern Education。
Introduction。
Education is an essential part of human life, and it has been evolving over the years. Traditional education, which involves face-to-face interaction in a physical classroom, has been the norm for centuries. However, with the advancement of technology, modern education, which includes online learning and virtual classrooms, has gained popularity. In this essay, we will compare and analyze the differences between traditional and modern education, and discuss the advantages and disadvantages of each.Traditional Education。
Traditional education has been the primary mode of learning for centuries. It involves students physically attending classes in a school or university, where they interact with teachers and peers. This form of education is based on a structured curriculum and is delivered through lectures, discussions, and practical exercises. Traditional education emphasizes discipline, punctuality, and face-to-face interaction, and it provides a structured environment for learning.One of the main advantages of traditional education is the opportunity for students to interact with their teachers and peers in person. This allows for immediate feedback and clarification of doubts, and it promotes social skills and teamwork. Additionally, traditional education provides a structured and disciplined learning environment, which is essential for the overall development of students.However, traditional education also has its limitations. It is often rigid and inflexible, with a one-size-fits-all approach to learning. This can be detrimental to students who have different learning styles and abilities. Moreover, traditional education can be expensive and inaccessible to those who live in remote areas or have physical disabilities.Modern Education。
Fuzzy Sets and Systems159(2008)670–684/locate/fssA comparative study of fuzzy norms on a linear spaceଁT.Bag,S.K.Samanta∗Department of Mathematics,Visva-Bharati University,Santiniketan731235,West Bengal,IndiaReceived4September2006;received in revised form17September2007;accepted20September2007Available online25September2007AbstractIn this paper,a comparative study among several types of fuzzy norms on a linear space defined by various authors has been made and it is shown that,broadly,they may be classified into two types,one of which is Katsaras’s type and the other is Felbin’s type.©2007Elsevier B.V.All rights reserved.Keywords:Fuzzy norm;Fuzzy antinorm;Fuzzy normed linear space1.IntroductionThe concept of a fuzzy norm on a linear space is of comparatively recent origin.It was Katsaras[12],who while studying fuzzy topological vector spaces,was thefirst to introduce in1984the idea of fuzzy norm on a linear space. Following his pioneering work,Felbin[10]offered in1992an alternative definition of a fuzzy norm on a linear space with an associated metric of the Kaleva and Seikkala type[11].A further development along this line of inquiry took place when in1994,Cheng and Mordeson[8]evolved the definition of a further type of fuzzy norm having a corresponding metric of the Kramosil and Michalek type[13].It is in the context of such an evolution of the concept of a fuzzy norm on a linear space that the present au-thors undertook their joint study of the issues involved with a view to exploring the possibilities of arriving at yet another definition of the norm that might prove to be capable of more effective application in appropriatefields. The novelty of this definition is the validity of a decomposition theorem for this type of fuzzy norm and using this decomposition theorem it has been possible to establish many important results of fuzzy functional analysis(for references please see[2–5]).Some results are also obtained in Felbin’s type fuzzy normed linear spaces(for refer-ences please see[6,7,10]).Since these results apparently also constitute various types of fuzzy norms,the further line of inquiry that obviously suggests itself pertains to the determination of relations,if any,among these fuzzy norms.In this paper,an attempt is made tofind such relation by making a comparative study of the fuzzy norms defined by Katsaras[12],Felbin[10]and Bag and Samanta[1].It has been observed that the fuzzy norm defined by us[1]ଁWork is partially supported by Special Assistance Programme(SAP)of UGC,New Delhi,India[Grant no.F.510/8/DRS/2004(SAP-I)].∗Corresponding author.Tel.:+91346352751;fax:+91346352672.E-mail address:syamal_123@yahoo.co.in(S.K.Samanta).0165-0114/$-see front matter©2007Elsevier B.V.All rights reserved.doi:10.1016/j.fss.2007.09.011T.Bag,S.K.Samanta/Fuzzy Sets and Systems159(2008)670–684671 is similar to that of Katsaras[12]who defined it in a different way.On the other hand,Felbin’s type[10]fuzzy norm corresponds to a pair of which one is a fuzzy norm in our sense and the other is a fuzzy antinorm.The organization of the paper is as follows:Section2comprises some preliminary results.In Section3,we study some properties of fuzzy norm as defined by us and introduce a concept of fuzzy antinorm.Section4is devoted to study the relations between Felbin’s type fuzzy norm and the fuzzy norm defined by us.Finally in Section5,it is shown that Katsaras’s type fuzzy norm and the fuzzy norm as defined by us are of similar type but defined from two different perspectives.Section6comprises some concluding remarks about this paper.2.Some preliminary resultsAccording to Mizumoto and Tanaka[14],a fuzzy number is a mapping x:R→[0,1]over the set R of all real numbers.A fuzzy number x is convex if x(t) min{x(s),x(r)}where s t r.If there exists a t0∈R such that x(t0)=1,then x is called normal.For0< 1, -level set of an upper semi continuous convex normal fuzzy number (denoted by[ ] )is a closed interval[a ,b ],where a =−∞and b =+∞are admissible.When a =−∞,for instance,then[a ,b ]means the interval(−∞,b ].Similar is the case when b =+∞.A fuzzy number x is called non-negative if x(t)=0∀t<0.Felbin[10]denoted the set of all convex,normal,upper semicontinuous fuzzy real numbers by R(I)and the set of all non-negative,convex,normal,upper semicontinuous fuzzy real numbers by R∗(I). Since for each r∈R one can consider a fuzzy number¯r defined by¯r(t)=1if t=r, 0if t=r.R can be embedded in R(I).As -level sets of a convex fuzzy number is an interval,there is a debate in the nomenclature of fuzzy numbers/fuzzy real numbers.In[9],Dubois and Prade suggested to call this as fuzzy interval.They developed a different notion of a fuzzy real number by considering it as a fuzzy element of the real line,each -cut of which a real number.From now on “fuzzy real numbers”are renamed as“fuzzy intervals”.While referring to previous results involving fuzzy real number, the term fuzzy interval is written within brackets after fuzzy real number to avoid any confusion;otherwise the new nomenclature i.e.fuzzy interval is used.A partial ordering“ ”in R(I)is defined by if and only if a1 a2 and b1 b2 for all ∈(0,1]where [ ] =[a1 ,b1 ]and[ ] =[a2 ,b2 ].The strict inequality in R(I)is defined by ≺ if and only if a1 <a2 and b1 <b2 for each ∈(0,1].For k>0,k is defined as(k )(t)= (t/k)and0 is defined to be¯0.Lemma2.1(Kaleva and Seikkala[11]).Let[a ,b ],0< 1,be a given family of non-empty intervals.If,(i)[a1,b1]⊇[a2,b2]for all0< 1 2.(ii)[lim k→∞a k,lim k→∞b k]=[a ,b ]whenever{ k}is an increasing sequence in(0,1]converging to . Then the family[a ,b ]represents the -level sets of a fuzzy number(fuzzy interval).Conversely,if[a ,b ],0< 1,are the -level sets of a fuzzy number(fuzzy interval)then the conditions(i)and (ii)are satisfied.According to Mizumoto and Tanaka[14],the arithmetic operations⊕, , on E×E are defined by (x⊕y)(t)=Sups∈Rmin{x(s),y(t−s)},t∈R,(x y)(t)=Sups∈Rmin{x(s),y(s−t)},t∈R,(x y)(t)=Sups∈R,s=0minx(s),yt,t∈R.We are now going to recall the definitions of fuzzy norms and fuzzy normed linear spaces which were introduced by various authors in the literature.672T.Bag,S.K.Samanta /Fuzzy Sets and Systems 159(2008)670–684The definition of a fuzzy norm on a linear space as introduced by C .Felbin is given below:Definition 2.1(Felbin [10]).Let X be a vector space over R .Let :X →R ∗(I)be a mapping and let the mappingsL,U :[0,1]×[0,1]→[0,1]be symmetric,non-decreasing in both arguments and satisfying L(0,0)=0and U(1,1)=1.Write [ x ] =[ x 1 , x 2 ]for x ∈X,0< 1and suppose for all x ∈X ,x =0,there exists 0∈(0,1]independent of x such that for all 0,(A) x 2 <∞,(B)inf x 1 >0.The quadruple (X, ,L,U)is called a Felbin-fuzzy normed linear space and is a Felbin-fuzzy norm if(i) x =¯0if and only if x =0(the null vector),(ii) rx =|r |x ,x ∈X ,r ∈R,(iii)for all x,y ∈X,(a)whenever s x 11,t y 11and s +t x +y 11,x +y (s +t) L( x (s), y (t)).(b)whenever s x 11,t y 11and s +t x +y 11, x +y (s +t) U( x (s), y (t)).Remark 2.1(Felbin [10]).If L =(Min )and U = (Max )then the triangle inequality (iii)in the Definition 2.1isequivalent tox +y x y .Further i ;i =1,2are crisp norms on X for each ∈(0,1].Definition of a fuzzy norm as introduced by us is as follows:Definition 2.2(Bag and Samanta [1]).Let X be a linear space over F (field of real/complex numbers).A fuzzy subset N of X ×R (R —the set of all real numbers)will be called a B-S-fuzzy norm on X if and only if ∀x,u ∈U and c ∈F (N1)∀t ∈R with t 0,N(x,t)=0,(N2)(∀t ∈R,t >0,N(x,t)=1)iff x =0,(N3)∀t ∈R ,t >0,N(cx,t)=N(x,t/|c |)if c =0,(N4)∀s,t ∈R ,x,u ∈XN(x +u,s +t) min {N(x,s),N(u,t)},(N5)N(x,.)is a non-decreasing function of R and lim t →∞N(x,t)=1.The pair (X,N)will be referred to as a B-S-fuzzy normed linear space .Theorem 2.1(Bag and Samanta [1]).Let (X,N)be a B-S-fuzzy normed linear space .Assume further that(N6)N(x,t)>0∀t >0implies x =0.Define x = {t :N(x,t) }, ∈(0,1).Then { : ∈(0,1)}is an ascending family of norms on X.We call these norms as -norms on X corresponding to the B-S-fuzzy norm N on X.T.Bag,S.K.Samanta /Fuzzy Sets and Systems 159(2008)670–684673Theorem 2.2(Bag and Samanta [1]).Let { : ∈(0,1)}be an ascending family of norms on a linear space X.Define a functionN :U ×R →[0,1]asN (x,t)= { ∈(0,1): x t }when (x,t)=(0,0)=0when (x,t)=(0,0).Then N is a B-S-fuzzy norm on X.Let V be a linear space and , be two fuzzy sets in V .I.e.,two maps from V to [0,1]and t be any scalar.Then the fuzzy sets + and t are defined by (i)( + )x = x =x 1+x 2{ (x 1)∧ (x 2)},(ii)(t )(x)=⎧⎪⎪⎨⎪⎪⎩ x t if t =0,0if t =0,x =0, y ∈E(y)if t =0,x =0.Definition 2.3(Katsaras [12]).Let V be a linear space.A fuzzy set in Vi.e.,a mapping :V →[0,1]is called:(i)convex if t +(1−t) for each t ∈[0,1],(ii)balanced if t for each scalar t with |t | 1,(iii)absolutely convex if is convex and balanced,(iv)absorbing if t>0t =1.Definition 2.4(Katsaras [12]).A fuzzy seminorm on a linear space V is a fuzzy set in V which is absolutely convex and absorbing .If in addition t>0(t )(x)=0,for x =0,then is called a Katsaras-fuzzy norm .3.Some properties of B-S -fuzzy norm and B-S -fuzzy antinormIn this section we propose to study some properties of B-S-fuzzy norm and introduce an idea of B-S-fuzzy antinorm .In Theorem 3.1,given below,we show that if the index set (0,1)of the family of crisp norms { : ∈(0,1)}of Theorem 2.2is extended to (0,1]then a B-S-fuzzy norm N is generated,satisfying an additional property that N(x,.)attains the value 1at some finite value t .Theorem 3.1.Let { : ∈(0,1]}be an ascending family of norms on a linear space X.Define a function N :X ×R →[0,1]as N(x,t)= { ∈(0,1]: x t }when (x,t)=(0,0),0when (x,t)=(0,0).Then(a)N is a B-S-fuzzy norm on X ,(b)for each x ∈X ,∃t =t(x)>0such that N(x,s)=1∀s t.Proof.(a)First we prove that N is a fuzzy norm on X .(i)∀t ∈R with t <0we haveN(x,t)= { ∈(0,1]: x t }=0∀x ∈X.Similarly for t =0and x =0,N(x,t)=0.When x =0and t =0then from definition N(x,t)=0.Thus ∀t ∈R with t 0,N(x,t)=0∀x ∈X.So (N1)holds.674T.Bag,S.K.Samanta /Fuzzy Sets and Systems 159(2008)670–684(ii)Let ∀t(>0)∈R,N(x,t)=1.Choose ∈(0,1].Then for any t >0,∃ t ∈( ,1]such that x t t,and hence x t.Since t >0is arbitrary,this implies that x =0.Hence x =0.Conversely,if x =0then for t >0,N(0,t)= { : 0 t }= { ∈(0,1]: ∈(0,1]}=1.Thus (∀t(>0)∈R,N(x,t)=1)iff x =0.So (N2)follows.(iii)(N3)condition can be easily verified.(iv)We have to show that ∀s ,t ∈R,N(x +y,s +t) min {N(x,s),N(y,t)}.If(a)s +t <0,(b)s =t =0,(c)s +t >0:s >0,t <0;s <0,t >0,then in these cases the relation is obvious.If(d)s >0,t >0,let p =N(x,s),q =N(y,t)and p q.If p =0,q =0then obviously (N4)holds.Let 0<r <p q.Then ∃ >r such that x s and ∃ >r such that y t.Let = ∧ >r.Therefore x x s and y |y t.So x +y x + y s +t.Therefore N(x +y,s +t) >r.Since 0<r <p is arbitrary thus N(x +y,s +t) p =min {N(x,s),N(y,t)}.Similarly,if p q,then the relation also holds.Hence (N4)follows.(v)Let x ∈X, ∈(0,1].Now t > x ⇒N(x,t)= { : x t } .So lim t →∞N(x,t)=1.Next we verify that N(x,.)is a non-decreasing function of R .If t 1<t 2 0,then N(x,t 1)=N(x,t 2)=0∀x ∈U.If t 2>t 1 0then { : x t 1}⊂{ : x t 2}⇒ { : x t 1} { : x t 2}⇒N(x,t 1) N(x,t 2).Thus N(x,.)is a non-decreasing function of R and so (N5)is satisfied.Hence N is a B-S-fuzzy norm on X .(b)For each x ∈X, x 1is defined and hence ∃t =t(x)>0such that x 1 t.So,N 1(x,t)= { ∈(0,1]: x 1 t }=1.Remark 3.1.Let N 1be a B-S-fuzzy norm on a linear space X satisfying(i)(N6)condition,(ii)for each x ∈U ,∃t =t(x)>0such that N 1(x,s)=1∀s t.If we definex = {t >0:N 1(x,t) }, ∈(0,1],T.Bag,S.K.Samanta /Fuzzy Sets and Systems 159(2008)670–684675then as in Theorem 2.1,it can be shown that { : ∈(0,1]}is an ascending family of norms on X .Further,if we define a function N from X ×R to [0,1]by N(x,t)= { ∈(0,1]: x t }when (x,t)=(0,0),0when (x,t)=(0,0),then N 1=N.Definition 3.1.Let X be a linear space over F (field of real/complex numbers).Let N ∗be a fuzzy subset of X such that for all x,u ∈X and c ∈F(N ∗1)∀t ∈R with t 0,N ∗(x,t)=1,(N ∗2)(∀t ∈R,t >0,N ∗(x,t)=0)iff x =0,(N ∗3)∀t ∈R ,t >0,N ∗(cx,t)=N ∗(x,t/|c |)if c =0,(N ∗4)∀s,t ∈R,x,u ∈X,N ∗(x +u,s +t) max {N ∗(x,s),N ∗(u,t)},(N ∗5)N ∗(x,.)is a non-increasing function of R and lim t →∞N ∗(x,t)=0.Then N ∗is called a B-S-fuzzy antinorm on X .Remark 3.2.N ∗is a B-S-fuzzy antinorm on X iff 1−N ∗is a B-S-fuzzy norm on U .We assume that(N ∗6)∀t >0,N ∗(x,t)<1implies x =0.Theorem 3.2.Let N ∗be a B-S-fuzzy antinorm on a linear space X satisfying (N ∗6).Define x ∗ = {t >0:N ∗(x,t)< }, ∈(0,1].Then { ∗ : ∈(0,1]}is a decreasing family of norms on X.Proof.It can be easily verified that(i) x ∗ 0∀ ∈(0,1],∀x ∈X,(ii) x ∗ =0iff x =0,(iii) cx ∗ =|c |x ∗ ,∀ ∈(0,1]and for any scalar c.(iv)We have to show thatx +y ∗ x ∗ + y ∗ ∀ ∈(0,1].Now x ∗ + y ∗ = {s >0:N ∗(x,s)< }+ {t >0:N ∗(y,t)< }= {s +t >0:N ∗(x,s)< ,N ∗(y,t)< } {s +t >0:N ∗(x +y,s +t)< }= x +y ∗ .Obviously, x ∗ 1 x ∗ 2for 2> 1.Thus { ∗ : ∈(0,1]}is a descending family of norms on X .Theorem 3.3.Let { ∗ : ∈(0,1]}be a descending family of norms on a linear space X .Define a function N :X ×R →[0,1]by N (x,t)= { ∈(0,1]: x ∗ t }if (x,t)=(0,0),1if (x,t)=(0,0).Then N is a B-S-fuzzy antinorm on X.Proof.It can be easily verified that(i)∀x ∈X ,N (x,t)=1∀t 0,(ii)(∀t >0,N (x,t)=0)iff x =0,676T.Bag,S.K.Samanta /Fuzzy Sets and Systems 159(2008)670–684(iii)∀t ∈R ,t >0,N (cx,t)=N (x,t/|c |)if c =0.(iv)We now show that ∀s,t ∈R,x,u ∈XN (x +u,s +t) max {N (x,s),N (u,t)}.If possible,suppose that N (x +u,s +t)>max {N (x,s),N (u,t)}.Choose k such that N (x +u,s +t)>k >max {N (x,s),N (u,t)}.Now N (x +u,s +t)>k ⇒ { ∈(0,1]: x +u ∗ s +t }>k ⇒ x +u ∗k >s +t ⇒ x ∗k + u ∗k >s +t.Again k >max {N (x,s),N (u,t)}⇒k >N (x,s)and k >N (u,t)⇒ x ∗k s and u ∗k t ⇒ x ∗k + u ∗k s +t.Thus s +t < x ∗k + u ∗k s +t,a contradiction.Hence N (x +u,s +t) max {N (x,s),N (u,t)}.(v)From definition,it follows that N (x,.)is a decreasing function of R and lim t →∞N (x,t)=0.Hence N is a B-S-fuzzy antinorm on X .Remark 3.3.For each x =0, x ∗1>0.Thus ∃t =t(x)>0such that x ∗1>t(x)>0.i.e. x ∗ >t(x)∀ ∈(0,1]⇒N (x,t)=1.parative study between Felbin-fuzzy norm and B-S -fuzzy normIn this section an investigation is made to find the relation between Felbin-fuzzy norm and the B-S-fuzzy norm .It is shown that corresponding to a Felbin-fuzzy norm there is a pair (N,N ∗)where N and N ∗are B-S-fuzzy norm and B-S-fuzzy antinorm ,respectively.Proposition 4.1.Let (X, )be a Felbin-fuzzy normed linear space and [ x ] =[ x 1 , x 2 ], ∈(0,1].Let N and N ∗be two functions in X ×R defined byN(x,t)= { ∈(0,1]: x 1 t }when (x,t)=(0,0),0when (x,t)=(0,0),andN ∗(x,t)= { ∈(0,1]: x 2 t }when (x,t)=(0,0),1when (x,t)=(0,0).Then N is a B-S-fuzzy norm and N ∗is a B-S-fuzzy antinorm and they satisfy the following conditions :(i)N satisfies (N6)condition ,(ii)N ∗satisfies (N ∗6)condition ,(iii)for each x =0,∃r =r(x)>0such that N(x,t)=1∀t r,(iv)for each x =0,∃t 1=t 1(x)>0such that N(x,t 1)=0,(v)N ∗(x,t)<1⇒N(x,t +)=1,where N(x,t +)=lim s ↓t N(x,s).Proof.It follows from Theorems 3.1and 3.3that N is a B-S-fuzzy norm and N ∗is a B-S-fuzzy antinorm on X .T.Bag,S.K.Samanta /Fuzzy Sets and Systems 159(2008)670–684677Next(i)∀t >0,N(x,t)>0⇒∀t >0, { ∈(0,1]: x 1 t }>0⇒∀t >0,∃ = (t)∈(0,1]such that x 1 t ⇒Inf ∈(0,1] x 1 =0⇒x =0(by using the condition (B)of Felbin-fuzzy norm).Hence N satisfies (N6)condition.(ii)∀t >0,N ∗(x,t)<1⇒∀t >0, { ∈(0,1]: x 2 t }<1⇒∀t >0,∃ = (t)∈(0,1]such that x 2 t ⇒∀t >0,∃ = (t)∈(0,1]such that x 1 t ⇒ ∈(0,1] x 1 =0⇒x =0(by using the condition (B)of Felbin-fuzzy norm ).Hence N ∗satisfies (N ∗6)condition.(iii)This condition follows easily.(iv)For each x =0,we have by condition (B)of Felbin-fuzzy norm ∈(0,1] x 1 >0.So ∃t 1=t 1(x)>0such that x 1 >t 1∀ ∈(0,1]⇒∃t 1=t 1(x)>0such that N(x,t 1) ∀ ∈(0,1]⇒∃t 1=t 1(x)>0such that N(x,t 1)=0.(v)N ∗(x,t)<1⇒ { ∈(0,1]: x 2 t }<1⇒∃ 0∈(0,1)such that x 2 0 t ⇒ x 21 x 2 0 t ⇒ x 1 x 11 x 21 t ∀ ∈(0,1]⇒N(x,t)=1⇒N(x,t +)=1.Proposition 4.2.Let N be a B-S-fuzzy norm and N ∗be a B-S-fuzzy antinorm on a linear space X satisfying the conditions (i)–(v)of Proposition 4.1.Then ∃a Felbin-fuzzy norm on X.Proof.Let,for ∈(0,1], x = {t >0:N(x,t) },and x = {t >0:N ∗(x,t)< }.Then ( , )is a pair of crisp norms for each ∈(0,1].From Remark 3.1,it follows that { : ∈(0,1]}is an ascending family of norms on X .Again,it follows from Theorem 3.2that { : ∈(0,1]}is a descending family of norms on X .Next we show that x x ∀ ∈(0,1].From the definition of x 1,∃a sequence {t n }of positive real numbers such that N ∗(x,t n )<1and t n → x 1.Then by the condition (v)of Proposition 4.1,it follows that N(x,t n +1n )=1∀n =1,2,....So x 1 t n +(1/n)∀n =1,2,...⇒ x 1 x 1.Hence x x 1 x 1 x ∀ ∈(0,1].Hence {[ x , x ]: ∈(0,1]}is a family of nested intervals.Let { n }be an increasing sequence in (0,1]such that n → ∈(0,1].We have to show that,lim n →∞ x n = x and lim n →∞ x n = x .678T.Bag,S.K.Samanta /Fuzzy Sets and Systems 159(2008)670–684We have x n x ∀n =1,2,...⇒lim n →∞ x n x .If possible,suppose that lim n →∞ x n < x .Choose k such that lim n →∞ x n <k < x .Now lim n →∞ x n <k ⇒ x n <k ∀n =1,2,...⇒ {t >0:N(x,t) n }<k ∀n =1,2,...⇒N(x,k) n ∀n =1,2,...⇒N(x,k) ⇒ {t >0:N(x,t) } k ⇒k < x k —a contradiction.So lim n →∞ x n = x .Similarly,it can be shown that lim n →∞ x n = x .Thus [ x , x ], ∈(0,1]is the -level set of a fuzzy interval,which we denoted by x ∗.Then,clearly,[ x ∗] =[ x , x ], ∈(0,1].(2)Now we shall show that ∗is a Felbin-fuzzy norm on X .From (iv),for each x =0,∃t 1=t 1(x)>0such that N(x,t 1)=0.i.e.N(x,t 1)=0< ∀ ∈(0,1]⇒ x t 1∀ ∈(0,1]⇒Inf ∈(0,1] x t 1>0.Thus (B)condition of Felbin-fuzzy norm is satisfied.Since is a norm for each ∈(0,1]we have x <∞.i.e.(A)condition of Felbin-fuzzy norm is satisfied.Since and are crisp norms on X for each ∈(0,1],it can be easily verified thatI. x ∗=¯0iff x =0,II. rx ∗=|r |x ∗for any scalar r ,III. x +y ∗ x ∗⊕ y ∗∀x,y ∈X.Hence ∗is a Felbin-fuzzy norm on X .Proposition 4.3.Let (X, )be a Felbin-fuzzy normed linear space and [ x ] =[ x 1 , x 2 ], ∈(0,1].Define N 1(x,t)= { ∈(0,1]: x 1 t }when (x,t)=(0,0),0when (x,t)=(0,0).(1)Then N 1is a B-S-fuzzy norm satisfying (N6).Again ,if we define x = {t >0:N 1(x,t) }, ∈(0,1],(2)then x is a norm on X and x 1 = x ∀ ∈(0,1].Proof.From the Proposition 4.1,it follows that N 1is a B-S-fuzzy norm on X satisfying (N6)condition and from Remark3.1, is a norm on X for each ∈(0,1].Now we shall show that x 1 = x ∀ ∈(0,1].If x =0then x 1 = x ∀ ∈(0,1].Next we suppose x =0.Let 0∈(0,1]and put x 1 0=t 0.Then t 0>0.From (1)we get N 1(x,t 0) 0.Now from (2)we get x 0 t 0= x 1 0.Thus x 0 x 1 0.(3)Next r > x 0⇒∃t 1<r such that N 1(x,t 1) 0T.Bag,S.K.Samanta /Fuzzy Sets and Systems 159(2008)670–684679⇒ { ∈(0,1]: x 1 t 1} 0.If { ∈(0,1]: x 1 t 1}= 0,then ∃an increasing sequence { n }in (0,1]such that n ↑ 0and x 1 n t 1.So lim n →∞ x 1 n t 1.i.e. x 1 0 t 1<r.If { ∈(0,1]: x 1 t 1}> 0,then x 1 0 t 1<r.Thus,considering both the cases we have x 0 x 1 0.(4)From (3)and (4)we get x 0= x 1 0.Since 0∈(0,1]is arbitrary,we have x = x 1 ∀ ∈(0,1].Proposition 4.4.Let (X, )be a Felbin-fuzzy normed linear space and [ x ] =[ x 1 , x 2 ], ∈(0,1].Further assume that(C)For any sequence { k }in (0,1]such that k ↓ ∈(0,1]implies that x 2 k ↑ x 2 .DefineN 2(x,t)= { ∈(0,1]: x 2 t }when (x,t)=(0,0),1when (x,t)=(0,0),(1)and x = {t >0:N 2(x,t)< }, ∈(0,1].(2).Then x is a norm on X and x 2 = x ∀ ∈(0,1].Proof.From Propositions 4.1and 4.2,it follows that N 2is a B-S-fuzzy antinorm satisfying (N ∗6)and also that { : ∈(0,1]}is a descending family of norms on X .Now we shall show that x 2 = x ∀ ∈(0,1].If x =0,then x 2 = x ∀ ∈(0,1].Next we suppose x =0.Let 0∈(0,1].Choose t 0such that x 2 0>t 0>0.Now x 2 0>t 0⇒N 2(x,t 0) 0by (1)⇒ x 0 t 0by (2)⇒ x 0 x 2 0.(3)Again,for x =0, x 0>r ⇒N 2(x,r) 0.But N 2(x,r)= 0.For,otherwise { ∈(0,1]: x 2 r }= 0⇒∃a sequence { k }in (0,1]such that k ↓ 0and x 2 k r⇒ x 2 0 r (by (C)).(4)Again,as { ∈(0,1]: x 2 r }= 0>0,∃a sequence { n }in (0,1]such that n ↑ 0and x 2 n >r ∀n =1,2,...i.e.lim n →∞ x 2n r i.e. x 2 0 r.(5)(By the property (ii)of Lemma 2.1).So, x 2 0=r (by (4)and (5)).As 0is fixed and r is chosen arbitrarily satisfying x 0>r,without loss of generality,we may assume that N 2(x,r)> 0.Then x 2 0>r.So x 2 0 x 0.(6)From (3)and (6)we get x 2 0= x 0.Since 0is any member of (0,1],we have x 2 = x ∀ ∈(0,1].Theorem 4.1.Let (X, )be a Felbin-fuzzy normed linear space satisfying the condition (C)of Proposition 4.4and let [ x ] =[ x 1 , x 2 ], ∈(0,1].Let N 1and N 2be two functions from X ×R to [0,1]defined byN 1(x,t)= { ∈(0,1]: x 1 t }when (x,t)=(0,0),0when (x,t)=(0,0),andN 2(x,t)= { ∈(0,1]: x 2 t }when (x,t)=(0,0),1when (x,t)=(0,0).Then N 1is a B-S-fuzzy norm and N 2is a B-S-fuzzy antinorm on X.If further x = {t >0:N 1(x,t) }, ∈(0,1],and x = {t >0:N 2(x,t)< }, ∈(0,1],then the fuzzy interval x ∗generated by the family {[ x , x ], ∈(0,1]}is a Felbin-fuzzy norm such that x = x ∗∀x ∈X.Proof.The proof of the theorem follows from Propositions 4.1–4.4.By applying the above relations,established between Felbin-fuzzy norm and B-S fuzzy norm ,transition of results from the one type of norm to the other can be derived.This is illustrated below by considering the completeness of finite dimensional fuzzy normed linear spaces.Before that,however,let us first recall the following definitions:Definition (Bag and Samanta [1]and Felbin [10]).Let (X, )((X,N))be a Felbin-fuzzy (B-S-fuzzy )normed linear space and {x n }be a sequence in X .Then {x n }is called Cauchy in (X, )((X,N))if x n −x m →¯0(N(x n −x m ,t)→1∀t >0)as m,n →∞.{x n }is said to be convergent in (X, )((X,N))if ∃x ∈X such that x n −x →¯0(N(x n −x,t)→1∀t >0)as n →∞.(X, )((X,N))is said to be complete if any Cauchy sequence in (X, )((X,N))is convergent.We are now in a position to present the following results:Proposition 4.5.Let (X, )be a Felbin-fuzzy normed linear space and N ∗be the fuzzy antinorm induced from the family { 2 } ∈(0,1]where [ x ] =[ x 1 , x 2 ], ∈(0,1].Then ˆN(=1−N ∗)is a B-S-fuzzy norm and the space (X, )is complete if (X,ˆN)is complete.Proof.By Proposition 4.1,N ∗is a B-S-fuzzy antinorm .Let {x n }be a Cauchy sequence in (X, ).Then x n −x m 2 →0as m,n →∞∀ ∈(0,1]⇒N ∗(x n −x m ,t)→0as m,n →∞∀t >0⇒ˆN(x n −x m ,t)→1as m,n →∞∀t >0.By completeness of (X,ˆN),∃x ∈X such that lim n →∞ˆN(x n −x,t)=1∀t >0.i.e.lim n →∞N ∗(x n −x,t)=1∀t >0⇒ x n −x 2 →0as n →∞∀ ∈(0,1]⇒lim n →∞ x n −x =¯0⇒(X, )is complete.Proposition 4.6.Let X be a linear space.If X is complete w.r.t.any Felbin-fuzzy norm then it is complete w.r.t.any B-S-fuzzy norm satisfying condition (i)of Proposition 4.1.Proof.Let N be a B-S-fuzzy norm on X satisfying (i)of Proposition 4.1.Then by Remark 3.2,it follows that N ∗(=1−N)is a fuzzy antinorm on X satisfying the condition (ii)of Proposition 4.1.Let for 0< 1,x ∗ = {t >0:N ∗(x,t)< }.(A )and x 1 = x ∗1.DefineN (x,t)= { ∈(0,1]: x 1 t }if (x,t)=(0,0),0if (x,t)=(0,0).Then by Theorem 2.2[1],N is a B-S-fuzzy norm on X .Also it can easily be shown that N satisfy (i),(iii)and (iv)of Proposition 4.1.Also by the construction of N ∗and N ,condition (v)of Proposition 4.1is satisfied.Let x = {t >0:N (x,t) }, ∈(0,1].Then x = x 1 = x ∗1∀ ∈(0,1].Therefore by Proposition 4.2,∃a Felbin-fuzzy norm say on X such that [ x ] =[ x , x ∗ ],x ∈X, ∈(0,1].Let {x n }be a Cauchy sequence in (X,N).Then N(x m −x n ,t)→1as m,n →∞,∀t >0.i.e.N ∗(x m −x n ,t)→0as m,n →∞,∀t >0.⇒ x m −x n ∗ →0as m,n →∞,∀ ∈(0,1]⇒{x n }is a Cauchy sequence w.r.t. ∗ ⇒{x n }is a Cauchy sequence in the Felbin-fuzzy normed linear space (X, ).By assumption of completeness of (X, ),∃x ∈X such that, x n −x →¯0as n →∞.i.e. x n −x ∗ →0as n →∞,∀ ∈(0,1]⇒N ∗(x n −x,t)→0as n →∞,∀t >0⇒N(x n −x,t)→1as n →∞,∀t >0⇒(X,N)is complete.Theorem 4.2.Let X be a finite dimensional linear space.Then “X is complete with respect to B-S-fuzzy norm ”implies “X is complete with respect to Felbin’s-fuzzy norm ”.The converse holds when the B-S-fuzzy norm satisfies conditions (i)of Proposition 4.1.Proof.Proof follows from Propositions 4.5and 4.6.parative study between Katsaras-fuzzy norm and B-S -fuzzy normIn this section a comparative study is made between Katsaras-fuzzy norm and the B-S-fuzzy norm .It is shown that,though the definitions are given from two different perspectives,there is some sort of equivalence between them.Proposition 5.1.Let U be a linear space and N be a B-S-fuzzy norm such that N(x,.)is upper semicontinuous at t =0for x =0.Then the function :U →[0,1]defined by (x)=N(x,1)∀x ∈U,is a Katsaras-fuzzy norm.Proof.Note that for a scalar t ,t is defined by(t )(x)=⎧⎪⎨⎪⎩ x t if t =0,0if t =0,x =0, y ∈X (y)if t =0,x =0.For two fuzzy subsets 1and 2of U, 1+ 2is defined by( 1+ 2)(x)=Sup x=x1+x2min{ 1(x1), 2(x2)}.We observe that,by(N2)condition, (0)=N(0,1)=1. Next,1.t>0(t )(x)=t>0xt=t>0Nxt,1=t>0N(x,t)=1(by N(5)).2.For x=0,t>0(t )(x)=t>0N(x,t)=0,since N(x,.)is upper semicontinuous at t=0for x=0.3.Now we show that t with|t| 1.For−1 t<0,t (x)= (x t)=N(x t,1)=N(x,|t|) N(x,1)= (x). For t=0,x=0,t (x)=0by the definition of t .i.e.t (x) (x).For t=0,x=0,t (x)=y∈U(y) 1=N(0,1)= (x).For0<t 1,t (x)=N(x,t) N(x,1)= (x).Thus for|t| 1,t (x) (x)∀x∈U.4.Now we shall show that t +(1−t) ∀t∈[0,1].We have[t +(1−t) ](x)=u+v=x{(t )(u)∧(1−t) (v)}.(i).If t=0,u=0then(t )(u)=0.Thus(t )(u)∧(1−t) (v)=0 (x).If t=0,u=0then(t )(u) 1.So(t )(u)∧(1−t) (v) 1∧ (v)= (v)= (x),where u+v=x,u=0. So for t=0,u+v=x{(t )(u)∧(1−t) (v)} (x).Similarly for t=1,above relation also holds.If0<t<1then[t +(1−t) ](x)=u+v=x{(t )(u)∧(1−t) (v)}=u+v=x {N(u,t)∧N(v,1−t)}u+v=x{N(u+v,1)}=N(x,1)= (x).Hence t +(1−t) ∀t∈[0,1].Thus if N(.,.)is a B-S-fuzzy norm[1]on U such that N(x,.)is upper semicontinuous at t=0for x=0,then (=N(.,1))is a Katsaras-fuzzy norm[12]on U.Proposition5.2.Let be a Katsaras-fuzzy norm[12]on a linear space U.Then the function N(.,.)as defined byN(x,t)=t (x)if t>0, 0if t 0,is a B-S-fuzzy norm[1],which is upper semicontinuous at t=0for x=0.Proof.From definition of N(x,t)we have1.N(x,t)=0∀t 0and ∀x ∈U.So (N1)holds.2.For all t >0,N(x,t)=1⇒∀t >0, (x t )=1⇒∀t >0, (x t )= (0).(i )Again,for x =0, t>0t (x)=0⇒ t>0(x t )=0⇒∃t >0such that (x t )<12= (0).(ii )Considering (i)and (ii),we deduce that(∀t >0,N(x,t)=1)⇒x =0.Next suppose that x =0.Then ∀t >0,N(x,t)=t (x)= (x t )= (0)=1.Hence (∀t >0,N(x,t)=1)iff x =0.So (N2)holds.3.Since is balanced we have t (x) (x)for |t | 1.So,for t =−1we get −1. (x) (x).Hence (−x) (x).(iii )Again, (x)= (−(−x)) (−x).(iv )From (iii)and (iv)we get (x)= (−x).For c =0we getN(cx,t)=t (cx)=t (|c |x)(Since (x)= (−x))=t |c | (x)=N(x,t |c |).Thus (N3)holds.4.If s =t =0;s <0,t <0;s >0,t <0;s <0,t >0;s =0or t =0then the relationN(x +y,s +t) min {N(x,s),N(y,t)}is obvious.Consider the case when s >0,t >0.Since is convex,we havet (x)+(1−t) (x) (x)∀t ∈[0,1],∀x ∈U.So for ∀t >0,∀s >0,∀x,y ∈U ⇒ (x +y s +t ) s s +t (x +y s +t )+t s +t (x +y s +t )⇒ (x +y s +t ) s (x +y)+t (x +y)⇒ (x +y s +t ) x 1+x 2=x +y{s (x 1)∧t (x 2)}⇒(s +t) (x +y) s (x)∧t (y)⇒N(x +y,s +t) min {N(x,s),N(y,t)}.Hence (N4)holds.5.To verify (N5)property,we see that if s t 0then from definitionN(x,t) N(x,s)∀x ∈U.So we consider the case when s >t >0.Then 0<t s <1.By the convexity property of ,we have ∀x ∈U,t s (x)+(1−t s ) (x) (x)⇒ (x s ) t s (x s )+(1−t s ) (x s )⇒ (x s ) (x t )+ (x s −t )⇒s (x) t (x)+(s −t) (x)⇒s (x) t (x)⇒N(x,s) N(x,t).Thus N(x,.)is non-decreasing in R .。