初中数学试题15
- 格式:doc
- 大小:529.50 KB
- 文档页数:8
初中数学中学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是它本身的数是:A. 0B. 1C. -1D. 2答案:A3. 如果一个角是直角的一半,那么这个角是:A. 45°B. 90°C. 180°D. 360°答案:A4. 一个数的绝对值是它本身的数是:A. 负数B. 非负数C. 正数D. 零答案:B5. 一个数的平方等于它本身的数是:A. 0B. 1C. -1D. 2答案:A, B6. 下列哪个选项是方程2x - 3 = 7的解?A. x = 5B. x = 3C. x = 2D. x = 4答案:A7. 一个数的立方等于它本身的数是:A. 0B. 1C. -1D. 2答案:A, B, C8. 一个数的倒数是它本身的数是:A. 1B. -1C. 0D. 2答案:A, B9. 一个数的平方根是它本身的数是:A. 0B. 1C. -1D. 2答案:A, B10. 如果一个数的平方等于9,那么这个数是:A. 3B. -3C. 9D. -9答案:A, B二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是_________。
答案:±512. 如果一个角的补角是60°,那么这个角是_________。
答案:120°13. 一个数的立方根是它本身的数是_______。
答案:±1,014. 一个数的平方根是3,那么这个数是_______。
答案:9或-915. 一个数的倒数是2,那么这个数是_______。
答案:1/216. 方程3x + 5 = 20的解是_______。
答案:517. 如果一个数的平方等于16,那么这个数是_______。
答案:±418. 一个数的平方根是它本身的数是_______。
答案:0,119. 一个数的立方等于27,那么这个数是_______。
2015年重庆市初中毕业暨高中招生考试数学试题(含答案全解全析)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-b2a ,4ac-b24a),对称轴为x=-b2a.第Ⅰ卷(选择题,共48分)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.1.在-4,0,-1,3这四个数中,最大的数是( )A.-4B.0C.-1D.32.下列图形是轴对称图形的是( )3.化简√12的结果是( )A.4√3B.2√3C.3√2D.2√64.计算(a2b)3的结果是( )A.a6b3B.a2b3C.a5b3D.a6b5.下列调查中,最适合用普查方式的是( )A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况6.如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为( )A.65°B.55°C.45°D.35°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B.218C.216D.2098.一元二次方程x2-2x=0的根是( )A.x1=0,x2=-2B.x1=1,x2=2C.x1=1,x2=-2D.x1=0,x2=29.如图,AB是☉O的直径,点C在☉O上,AE是☉O的切线,A为切点,连结BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为( )A.40°B.50°C.60°D.20°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是( )··A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,……,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.21B.24C.27D.3012.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐的图象经过A,B两点,则菱形ABCD的面积为( )标分别为3,1,反比例函数y=3xA.2B.4C.2√2D.4√2第Ⅱ卷(非选择题,共102分)二、填空题:(本大题6个小题,每小题4分,共24分)13.我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为.14.计算:20150-|2|= .15.已知△ABC∽△DEF,△ABC与△DEF的相似比为4∶1,则△ABC与△DEF对应边上的高之比为.16.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4√2.以A为圆心,AC长为半径作弧,交AB 于点D,则图中阴影部分的面积是.(结果保留π)的解, 17.从-3,-2,-1,0,4这五个数中随机抽取一个数记为a,a的值既是.不等式组{2x+3<4,3x-1>-11又在函数y=1的自变量取值范围内的概率是.2x2+2x18.如图,在矩形ABCD中,AB=4√6,AD=10,连结BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC'E'.当射线BE'和射线BC'都与线段AD相交时,设交点分别F,G.若△BFD为等腰三角形,则线段DG长为.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).19.解方程组{y=2x-4,①3x+y=1.②20.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线). 21.计算:(1)y(2x-y)+(x+y)2;(2)(y -1-8y+1)÷y 2-6y+9y 2+y.22.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有小微企业按年利润w(万元)的多少分为以下四个类型:A 类(w<10),B 类(10≤w<20),C 类(20≤w<30),D 类(w ≥30),该镇政府对辖区内所有的小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是 ,扇形统计图中B 类所对应扇形圆心角的度数为 度,请补全条形统计图;(2)为进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.23.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12 321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.24.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.大坝顶上有一瞭望台PC,PC 正前方有两艘渔船M,N,观察员在瞭望台顶端P处观测到渔船M的俯角α为31°,渔船N的俯角β为45°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1∶0.25.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH的坡度i=1∶1.75,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).25.如图1,在△ABC中,∠ACB=90°,∠BAC=60°.点E是∠BAC角平分线上一点.过点E作AE 的垂线,过点A作AB的垂线,两垂线交于点D,连结DB,点F是BD的中点.DH⊥AC,垂足为H,连结EF,HF.(1)如图1,若点H是AC的中点,AC=2√3,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连结CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由.图1图226.如图1,在平面直角坐标系中,抛物线y=-√3x2+√3x+3√3交x轴于A,B两点(点A在点B的4左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D.(1)求直线BC的解析式;(2)点E(m,0),F(m+2,0)为x轴上两点,其中2<m<4,EE',FF'分别垂直于x轴,交抛物线于点E',F',交BC于点M,N,当ME'+NF'的值最大时,在y轴上找一点R,使|RF'-RE'|的值最大,请求出R点的坐标及|RF'-RE'|的最大值;(3)如图2,已知x轴上一点P(9,0),现以P为顶点,2√3为边长在x轴上方作等边三角形QPG,2使GP⊥x轴.现将△QPG沿PA方向以每秒1个单位长度的速度平移,当点P到达点A时停止.记平移后的△QPG为△Q'P'G',设△Q'P'G'与△ADC的重叠部分面积为s,当点Q'到x轴的距离与点Q'到直线AW的距离相等时,求s的值.图1图2答案全解全析:一、选择题1.D3>0>-1>-4,所以最大的数是3,故选D.2.A A选项是轴对称图形,B、C、D选项都不是轴对称图形,故选A.3.B√12=√4×3=2√3,故选B.4.A(a2b)3=(a2)3·b3=a6b3,故选A.5.B A、C、D选项适合抽样调查,B选项适合普查,故选B.6.C因为AB∥CD,所以∠2=∠BGE,因为∠BGE=180°-∠1=45°,所以∠2=45°,故选C.7.C把五个数据从小到大排列为198,209,216,220,230,则中位数是216,故选C.8.D x2-2x=0,x(x-2)=0,解得x1=0,x2=2,故选D.∠AOC=40°,∴∠ADB=90°-∠B=50°,故选9.B∵AE是☉O的切线,∴∠BAE=90°,∵∠B=12B.10.C从题图可看出A选项正确;小明休息前爬山的平均速度为2 800=70米/分钟,休息后爬40山的平均速度为3 800-2 800=25米/分钟,所以小明休息前爬山的平均速度大于休息后爬山的100-60平均速度,B、D选项正确;从题图看出小明所走的总路程为3800米,所以C选项错误,故选C.11.B第①个图形中有2×3=6个小圆圈;第②个图形中有3×3=9个小圆圈;第③个图形中有3×4=12个小圆圈;……;第⑦个图形中有3×8=24个小圆圈,故选B.12.D由题意可得A(1,3),B(3,1),底边BC=AB=√(3-1)2+(1-3)2=2√2,菱形BC边上的高为3-1=2,所以菱形ABCD的面积是4√2,故选D.评析本题重点考查反比例函数的图象与性质,平面直角坐标系内线段长度的计算方法,试题新颖别致,属于中等难度题.二、填空题13.答案 3.7×104解析37000=3.7×104.14.答案-1解析20150-|2|=1-2=-1.15.答案4∶1解析两个相似三角形对应边上的高之比等于相似比,所以答案是4∶1.16.答案8-2π解析 在Rt △ABC 中,BC=AC=AB ·cos 45°=4,所以阴影部分的面积为12×4×4-45π·42360=8-2π. 17.答案 25解析 解不等式组{2x +3<4,3x -1>-11,得-103<x<12①,函数y=12x 2+2x 的自变量的取值范围是x ≠0且x ≠-1②,从-3,-2,-1,0,4这五个数中随机抽取一个数,共有5种可能,其中同时满足①②的有-3,-2,共2种可能,所以所求的概率是25. 18.答案 9817解析 过点F 作FH ∥BD 交BG 的延长线于点H,在矩形ABCD 中,BD=√(4√6)2+102=14,∵AD ∥BC,∴∠ADB=∠DBC,∵BE平分∠DBC,∴∠FBG=∠EBC=12∠DBC,∴∠FBG=12∠FDB,由题可得BF=FD,∴∠FBD=∠FDB,∴∠FBG=12∠FBD,∴∠FBG=∠GBD,∵FH ∥BD,∴∠H=∠GBD,∴∠H=∠F BG,∴FB=FH=FD,设FD=x(x>0),在Rt △ABF 中,由勾股定理得BF 2=AF 2+AB 2,即x 2=(10-x)2+(4√6)2,解得x=495,∴FB=FH=FD=495.∵FH ∥BD,∴△FHG ∽△DBG,∴FH BD =FGGD ,设GD=y(y>0),∴49514=495-y y,解得y=9817,∴GD=9817.评析 本题重点考查勾股定理,矩形的性质,相似三角形的性质与判定,方程思想等,综合性较强,属于难题.三、解答题19.解析 将①代入②,得3x+2x-4=1,(2分)解得x=1.(4分)将x=1代入①,得y=-2.(6分) 所以原方程组的解是{x =1,y =-2.(7分)20.证明 ∵BC=DE,∴BC+CD=DE+CD,即DB=CE.(3分) 又∵AB=FE,∠B=∠E,∴△ABD ≌△FEC.(6分) ∴∠ADB=∠FCE.(7分)四、解答题21.解析 (1)原式=2xy-y 2+x 2+2xy+y 2(3分) =x 2+4xy.(5分)(2)原式=[(y+1)(y -1)y+1-8y+1]÷(y -3)2y(y+1)(8分)=(y+3)(y -3)y+1·y(y+1)(y -3)2(9分)=y 2+3yy -3.(10分)22.解析 (1)25;72.补全条形统计图如下:某镇各类型小微企业个数条形统计图(6分)(2)记来自高新区的2个代表为A 1,A 2,来自开发区的2个代表为B 1,B 2,画树状图如下:(8分)或列表如下:第一个第二个A1A2B1B2A1(A2,A1)(B1,A1)(B2,A1)A2(A1,A2)(B1,A2)(B2,A2)B1(A1,B1)(A2,B1)(B2,B1)B2(A1,B2)(A2,B2)(B1,B2)(8分)由树状图或列表可知,共有12种等可能情况,其中2个发言代表都来自高新区的有2种.所以,2个发言代表都来自高新区的概率P=212=16.(10分)23.解析(1)写出3个满足条件的数即可.(千位上的数字与个位上的数字相同,百位上的数字与十位上的数字相同)猜想:任意一个四位“和谐数”能被11整除.设一个四位“和谐数”个位上的数字为a(1≤a≤9且a为自然数),十位上的数字为b(0≤b≤9且b 为自然数),则这个四位“和谐数”可表示为1000a+100b+10b+a.∵1000a+100b+10b+a=1001a+110b=11×91a+11×10b=11(91a+10b),∴1000a+100b+10b+a能被11整除,即任意一个四位“和谐数”能被11整除.(5分)(2)∵这个三位“和谐数”的个位上的数字为x,十位上的数字为y,∴这个三位“和谐数”可表示为100x+10y+x.(6分)∵100x+10y+x=99x+11y+2x-y=11(9x+y)+(2x-y),又这个三位“和谐数”能被11整除,且x,y是自然数,∴2x -y 能被11整除.(8分) ∵1≤x ≤4,0≤y ≤9,∴2x -y=0.∴y 与x 的函数关系式为y=2x(1≤x ≤4且x 为自然数).(10分)24.解析 (1)由题意得,∠E=90°,∠PME=∠α=31°,∠PNE=∠β=45°,PE=30米. 在Rt △PEN 中,PE=NE=30(米).(2分) 在Rt △PEM 中,tan 31°=PEME , ∴ME ≈300.60=50(米).(4分)∴MN=ME -NE=50-30=20(米).答:两渔船M,N 之间的距离约为20米.(5分) (2)过点D 作DG ⊥AB 于G,坝高DG=24米.∵背水坡AD 的坡度i=1∶0.25,∴DG∶AG=1∶0.25. ∴AG=6(米).∵加固后背水坡DH 的坡度i=1∶1.75,∴DG∶GH=1∶1.75, ∴GH=42(米).∴AH=GH -GA=42-6=36(米).(6分) ∴S △ADH =12AH ·DG=12×36×24=432(平方米).∴需要填筑土石方432×100=43 200(立方米).(7分) 设施工队原计划平均每天填筑土石方x 立方米, 根据题意,得10+43 200-10x =43 200-20.(9分)解方程,得x=864.经检验,x=864是原方程的根且符合题意.答:施工队原计划平均每天填筑土石方864立方米.(10分)五、解答题25.解析(1)∵点H是AC的中点,AC=2√3,∴AH=1AC=√3.(1分)2∵∠ACB=90°,∠BAC=60°,∴∠ABC=30°,∴AB=2AC=4√3.(2分)∵DA⊥AB,DH⊥AC,∴∠DAB=∠DHA=90°.∴∠DAH=30°,∴AD=2.(3分)在Rt△ADB中,∵∠DAB=90°,∴BD2=AD2+AB2.∴BD=√22+(4√3)2=2√13.(4分)(2)证明:连结AF,如图.∵F是BD的中点,∠DAB=90°,∴AF=DF,∴∠FDA=∠FAD.(5分)∵DE⊥AE,∴∠DEA=90°.∵∠DHA=90°,∠DAH=30°,∴DH=1AD.∠BAC=30°.∵AE平分∠BAC,∴∠CAE=12∴∠DAE=60°,∴∠ADE=30°.∴AE=1AD,∴AE=DH.(6分)∵∠FDA=∠FAD,∠HDA=∠EAD=60°,∴∠FDA-∠HDA=∠FAD-∠EAD.∴∠FDH=∠FAE.(7分)∴△FDH≌△FAE(SAS).∴FH=FE.(8分)(3)△CEF是等边三角形.(9分)理由如下:取AB的中点G,连结FG,CG.如图.∵F 是BD 的中点,∴FG ∥DA,FG=12DA. ∴∠FGA=180°-∠DAG=90°, 又∵AE=12AD,∴AE=FG. 在Rt △ABC 中,∠ACB=90°, 点G 为AB 的中点,∴CG=AG.又∵∠CAB=60°,∴△GAC 为等边三角形.(10分) ∴AC=CG,∠ACG=∠AGC=60°. ∴∠FGC=30°,∴∠FGC=∠EAC. ∴△FGC ≌△EAC(SAS).(11分)∴CF=CE,∠ACE=∠GCF.∵∠ECF=∠ECG+∠GCF=∠ECG+∠ACE=∠ACG=60°. ∴△CEF 是等边三角形.(12分)26.解析 (1)∵-√34x 2+√3x+3√3=0的解为x 1=-2,x 2=6,∴抛物线y=-√34x 2+√3x+3√3与x 轴交于点A(-2,0),B(6,0).(1分)∵y=-√34x 2+√3x+3√3=-√34(x-2)2+4√3,∴顶点C(2,4√3).(2分)设直线BC 的解析式为y=kx+b(k ≠0),将点(6,0),(2,4√3)代入得,{6k +b =0,2k +b =4√3.解得{k =-√3,b =6√3.∴直线BC 的解析式为y=-√3x+6√3.(4分) (2)由已知得E'(m,-√34m 2+√3m +3√3),M(m,-√3m+6√3), F'(m +2,-√34(m +2)2+√3(m +2)+3√3),N(m+2,-√3(m+2)+6√3).ME'=-√34m 2+2√3m-3√3,NF'=-√34m 2+√3m.(5分)ME'+NF'=-√34m 2+2√3m-3√3-√34m 2+√3m=-√32(m-3)2+3√32(2<m<4). 当m=3时,ME'+NF'的值最大.(6分) 此时E'(3,15√34),F'(5,7√34),构造直角三角形可得E'F'=4,且直线E'F'的解析式为y=-√3x+27√34. 当R 是直线E'F'与y 轴交点时,|RF'-RE'|取得最大值,最大值为E'F'的长度. 因此|RF'-RE'|的最大值为4,此时点R (0,27√34).(8分)(3)由题意得Q (32,√3),设平移时间为t 秒,∴Q'(32-t,√3),P'(92-t,0).如图①,过点Q'作Q'K ∥x 轴交AW 于K,Q'H ⊥AW 交AW 于H. ∵Q'到x 轴的距离为√3,∴点Q'到直线AW 的距离Q'H=√3. 又∵A(-2,0),W(0,3√3), ∴直线AW 的解析式为y=3√3x+3√3. ∴K (-43,√3).又∵点Q'可能在点K 的左边或右边, ∴KQ'=|3-t +4|=|17-t|.在Rt △WAO 中,∠WOA=90°,AO=2,WO=3√3,∴AW=√31. 由题意易证Rt △WAO ∽Rt △Q'KH,∴Q'H Q'K =WOAW , 即√3|176-t |=√331,∴t 1=17-2√316,t 2=17+2√316.(10分)∵0≤t 1≤132,0≤t 2≤132,∴t 1,t 2符合条件. 现分两种情况讨论: ①当t 1=17-2√316时,Q'(√31-43,√3),P'(5+√313,0),∵0<√31-43<2,5+√313>2. ∴重叠部分为如图①所示的等边三角形Q'H 1I 1,图①s=12I 1H 1·Q'K 1=√33(t +12)2=√33×(17-2√316+12)2=131√3-20√9327. ②当t 2=17+2√316时,Q'(-4-√313,√3),P'(5-√313,0), ∵-4-√313<-2,-2<5-√313<0, ∴重叠部分为如图②所示的直角三角形H 2I 2P',图②∴s=12H 2I 2·I 2P'=3√38(132-t)2=3√38(132-17+2√316)2=76√3-11√9312. 综上,当点Q'到x 轴的距离与点Q'到直线AW 的距离相等时,s=131√3-20√9327或s=76√3-11√9312.(12分)。
海南省 2015 年初中毕业生学业水平考试数 学 科 试 题(考试时间 100 分钟,满分 120 分)一、选择题(本大题满分 42 分,每小题 3 分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的 答案的字母代号按.要.求.用 2B 铅笔涂黑. 1.- 2015 的倒数是A .- 1B . 20151 C .- 2015 D .2015 2015 2.下列运算中,正确的是 A .a 2+a 4= a6 B .a 6÷a 3=a 2 C .(- a 4)2= a 6 D .a 2·a 4= a 6 3.已知 x = 1,y = 2,则代数式 x - y 的值为 A .1B .- 1C .2D .- 3 4.有一组数据:1、4、- 3、 3、4,这组数据的中位数为 A .- 3B .1C .3D .4 5.图 1 是由 5 个完全相同的小正方体组成的几何体,则这个几何体的主视图是正面A BC D 图16.据报道,2015 年全国普通高考报考人数约 9 420 000 人,数据 9 420 000 用科学记数法表 示为9.42×10n ,则 n 的值是A .4B .5C .6D .7 7.如图 2,下列条件中,不.能.证明△ABC ≌△DCB 的是 A D A .AB =DC ,AC =DBC .BO =CO ,∠A =∠D 3 2 B .AB =DC ,∠ABC =∠DCB O D .AB =DC ,∠A =∠DB C 8.方程 = x x - 2的解为 图 2 A .x = 2B .x = 6C .x = - 6D .无解 9.某企业今年 1 月份产值为 x 万元,2 月份比 1 月份减少了 10%,3 月份比 2 月份增加了 15% 则 3 月份的产值是A .(1- 10%)(1+15%)x 万元C .(x - 10%)( x +15%)万元 B .(1- 10%+15%)x 万元D .(1+10%- 15%)x 万元AMB M P O A B Q P10.点 A (- 1,1)是反比例函数 y =m + 1 的图象上一点,则 m 的值为 x A .- 1 B .- 2 C .0 D .111.某校开展“文明小卫士”活动,从学生会“督查部”的 3 名学生(2 男 1 女)中随机选 两名进行督导,则恰好选中两名男学生的概率是A . 1 3B . 4 9C . 2 3D . 2 912.甲、乙两人在操场上赛跑,他们赛跑的路程 S (米)与时间 t (分钟)之间的函数关系如 图 3所示,则下列说法错.误.的是 A .甲、乙两人进行 1000 米赛跑C .比赛到 2 分钟时,甲、乙两人跑过的路程相等B .甲先慢后快,乙先快后慢 D .甲先到达终点 13.如图 4,点 P 是□ABCD 边 A B 上的一点,射线C P 交D A 的延长线于点E ,则图中相 似的三角形有A .0 对 S (米) 1000 700 600 500 02 2.5 图3 B .1 甲 乙3.25 4 对 E t () B C .2 对 A P C 图 4D .3 对 D 图 5 14.如图 5, 将⊙O 沿弦 A B 折叠,圆弧恰好经过圆心 O∠ A PB 的度数为, 点 P 是优弧 ⌒ 上一点,则 A .45°B .30°C .75°D .60° 二、填空题(本大题满分 16 分,每小题 4 分)15.分解因式:x 2- 9 =. 16.点(- 1,y 1)、(2,y 2)是直线 y = 2x +1 上的两点,则 y 1y 2(填“>”或“=”或“<”) 17.如图 6,在平面直角坐标系中,将点 P (- 4,2)绕原点 O 顺时针旋转 90°,则其对应点 Q 的坐标为. A DB C图 7 18.如图 7,矩形 A BCD 中,AB = 3,BC = 4,则图中四个小矩形的周长之和为⎨ x + 天数 48 42 36 30 24 18 12 6 0 24 18 15 9 6 三、解答题(本大题满分 62 分)⎧2x -1≤3 19 (满分 10 分)(1)计算:(- 1)3+ 9 - 12× 2-2; (2)解不等式组: ⎪ 3>1 . ⎛⎪ 2 20 (满分 8 分)小明想从“天猫”某网店购买计算器,经查询,某品牌 A 型号计算器的单 价比B 型号计算器的单价多 10 元,5 台 A 型号的计算器与 7 台 B 型号的计算器的价钱相 同,问 A 、B 两种型号计算器的单价分别是多少?21 (满分 8 分)为了治理大气污染,我国中部某市抽取了该市 2014 年中 120 天的空气质量 指数,绘制了如下不完整的统计图表:空气质量指数条形统计图优 良请根据图表中提供的信息,解答下面的问题:轻度 中度 重度 污染 污染 污染 严重级别 污染 (1)空气质量指数统计表中的 a = ,m =;(2)请把空气质量指数条形统计图补充完整; (3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是 度(4)估计该市 2014 年(365 天)中空气质量指数大于 100 的天数约有天.22 (满分 9 分)如图 8,某渔船在小岛 O 南偏东 75°方向的 B 处遇险,在小岛 O 南偏西 45° 方向 A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛 O 相距 8 海里,渔船在中国渔政船的正东方向上.(1)求∠BAO 与∠ABO 的度数(直接写出答案);(2)若中国渔政船以每小时 28 海里的速度沿 A B 方向赶往 B 处救援,能否在 1 小时内赶到?请说明理由 (参考数据: t an 75°˜ 3.73,tan 15°˜ 0.27, 2 ˜ 1.41, 6 ˜ 2.45 北A 图 8 BO东23 (满分 13 分)如图 9-1,菱形 A BCD 中,点 P 是 C D 的中点,∠BCD = 60°,射线 A P 交BC 的延长线于点 E ,射线 B P 交 D E 于点 K ,点 O 是线段 B K 的中点.(1)求证:△ADP ≌△ECP ;(2)若 B P = n ·PK ,试求出 n 的值;(3)作 B M ⊥AE 于点 M ,作 K N ⊥AE 于点 N ,连结 M O 、NO ,如图 9-2 所示. 请证明△MON是等腰三角形,并直接写出∠MON 的度数.A DA D KM KPP O O N B C 图 9-1E B C E 图 9-2 24 (满分 14 分)如图 10-1,二次函数 y = ax 2+bx +3 的图象与 x 轴相交于点 A (- 3,0)、B (1,0) 与 y 轴相交于点 C ,点 G 是二次函数图象的顶点,直线 G C 交 x 轴于点 H (3,0),AD 平 行 G C 交 y 轴于点 D .(1)求该二次函数的表达式;(2)求证:四边形 A CHD 是正方形;(3)如图 10-2,点 M (t ,p )是该二次函数图象上的动点,并且点 M 在第二象限内,过 点 M的直线 y = kx 交二次函数的图象于另一点 N .①若四边形 A DCM 的面积为 S ,请求出 S 关于 t 的函数表达式,并写出 t 的取值范围②若△CMN 的面积等于21 ,请求出此时①中 S 的值. 4图 10-1 图 10-2Gy M C A B H O xD NG yC A B H O x D。
初中数学优秀试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程 \(2x + 3 = 7\) 的解?A. \(x = 1\)B. \(x = 2\)C. \(x = 3\)D. \(x = 4\)2. 如果一个数的平方是16,那么这个数是多少?A. \(\pm 4\)B. \(\pm 2\)C. \(\pm 8\)D. \(\pm 16\)3. 一个三角形的两边长分别为3cm和4cm,第三边的长度可能是多少?A. 1cmB. 2cmC. 7cmD. 5cm4. 以下哪个分数是最简分数?A. \(\frac{4}{8}\)B. \(\frac{3}{6}\)C. \(\frac{5}{10}\)D. \(\frac{7}{14}\)5. 一个圆的半径是5cm,那么它的面积是多少?A. \(25\pi\) cm²B. \(50\pi\) cm²C. \(100\pi\) cm²D. \(125\pi\) cm²6. 一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是7. 以下哪个选项是不等式 \(x - 3 > 2\) 的解?A. \(x = 4\)B. \(x = 3\)C. \(x = 2\)D. \(x = 1\)8. 一个等腰三角形的底角是45°,那么顶角是多少?A. 45°B. 90°C. 60°D. 135°9. 一个数乘以-1后,它的值会?A. 增加B. 减少C. 不变D. 变为相反数10. 以下哪个选项是方程 \(3x - 5 = 10\) 的解?A. \(x = 5\)B. \(x = 3\)C. \(x = 2\)D. \(x = 1\)二、填空题(每题2分,共20分)11. 一个数的相反数是-7,那么这个数是_________。
12. 一个数的倒数是0.5,那么这个数是_________。
2015年初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2 5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A(a,b)在反比例函数2yx=的图像上,则代数式ab-4的值为A.0 B.-2 C.2 D.-67.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2kmC.D.(4-km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.DCB A(第7题)(第9题)(第10题)l13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.(第17题)GF E D CBA F EDC B A (第18题)ba(第13题)20%10%30%40%其他乒乓球篮球羽毛球(第15题)19.(本题满分5分)(052--. 20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x .22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50︒,求 DE、 DF的长度之和(结果保留π).25.(本题满分8分)如图,已知函数kyx=(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.(1)若AC=32OD,求a、b的值;(2)若BC∥AE,求BC的长.(第24题)F EDCBA26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.(第26题)28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.(第28题)(图②)(图①)2015年苏州市初中毕业暨升学考试数学试题答案一、选择题1.C 2.B 3.A 4.C 5.D6.B 7.C 8.D 9.A 10.B二、填空题11.3a12.55 13.60 14.()()22a b a b+-15.1416.3 17.27 18.16三、解答题19.解:原式=3+5-1 =7.20.解:由12x+≥,解得1x≥,由()315x x-+>,解得4x>,∴不等式组的解集是4x>.21.解:原式=()21122xxx x++÷++=()2121211x xx xx++⨯=+++.当1x===.22.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗.根据题意,得60505x x=+.解这个方程,得x=25.经检验,x=25是所列方程的解.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.23.解:(1)1.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB=65°.∵BD = CD = BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD = CD =6.∴ DE的长度= DF 的长度=556111806ππ⨯⨯=. ∴ DE、 DF 的长度之和为111111663πππ+=. 25.解:(1)∵点B (2,2)在ky x=的图像上,∴k =4,4y x=. ∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2. ∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3. ∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ (2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0). ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形. ∴CE = BD =2.∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt △AFD 中,tan ∠ADF =42AF mDF m -=, 在Rt △ACE 中,tan ∠AEC =42AC mEC =, ∴4422m m m -=,解得m =1.∴C 点的坐标为(1,0),BC26.证明:(1)∵AD 是△ABC 的角平分线, ∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ··················· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +==== ,∴32ABC S = . 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC ,∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°, ∴∠APC =2∠ABC =90°.下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b=(cm/s ). ∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G . 若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O 移动的速度比为45455218364==. ∴此时PD 与⊙O 1恰好相切. 解法二:∵点P 移动的距离为452cm (见解法一), OO 1=14cm (见解法一),1254v v =,∴⊙O 应该移动的距离为4541825⨯=(cm ). ①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18 cm , ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一) OO 1=14cm ,(见解法一) 由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s , ∴点P 移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942k k⨯--=, ∴此时PD 与⊙O 1恰好相切.。
专题15 应用题一、选择题1. (2017某某某某第7题)志远要在报纸上刊登广告,一块cm cm 510⨯的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( )A .540元B .1080元 C.1620元 D .1800元【答案】C考点:相似三角形的应用2. (2017某某某某第5题)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买( )A .16个B .17个C .33个D .34个 【答案】A【解析】试题分析:设买篮球m 个,则买足球(50﹣m )个,根据题意得:80m+50(50﹣m )≤3000,解得:m ≤1623, ∵m 为整数,∴m 最大取16,∴最多可以买16个篮球.故选A .考点:一元一次不等式的应用.3. (2017某某某某第9题)某楼梯的侧面如图所示,已测得BC 的长约为,BCA ∠约为29,则该楼梯的高度AB 可表示为( )A.3.5sin29米 B.3.5cos29米 C.3.5tan29米 D.3.5cos29米【答案】A考点:解直角三角形的应用﹣坡度坡角问题.4. (2017某某某某第9题)某某市创建全国x小时,根据题意可列出方程为()A.1.2 1.216x+= B.1.2 1.2162x+= C.1.2 1.2132x+= D.1.2 1.213x+=【答案】B【解析】试题分析:由题意可得,1.2 1.2162x+=,故选B.考点:分式方程的应用.5. (2017某某乌鲁木齐第7题)2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多0020,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.()0030305120x x-=+B.3030520x x-=C.3030520x x+=D.()0030305120x x-=+【答案】A.【解析】试题解析:设原计划每天植树x万棵,需要30x天完成,∴实际每天植树(x+0.2x)万棵,需要30(120%)x+天完成,∵提前5天完成任务,∴30x﹣30(120%)x+=5,故选A.考点:由实际问题抽象出分式方程.二、填空题1. (2017某某某某第16题)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有_ 两.(注:明代时1斤=16两,故有“半斤八两”这个成语)【答案】46两.考点:一元一次方程的应用.2.x X,乙种票买了y X,依据题意,可列方程组为.【答案】36, 3020860x yx y+=⎧⎨+=⎩.【解析】试题分析:设甲种票买了xX,乙种票买了yX,根据“36名学生购票恰好用去860元”作为相等关系列方程组.设甲种票买了xX ,乙种票买了yX ,根据题意,得:36,3020860x y x y +=⎧⎨+=⎩,故答案为36,3020860x y x y +=⎧⎨+=⎩. 考点:由实际问题抽象出二元一次方程组.3. (2017某某乌鲁木齐第13题)一件衣服售价为200元,六折销售,仍可获利0020,则这件衣服的进价是元.【答案】100.考点:一元一次方程的应用.三、解答题1. (2017某某某某第25题)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A 、B 两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A 、B 两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A 型车高10元,A 、B 两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a 辆“小黄车”,乙街区每1000人投放8240a a+ 辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a 的值.【答案】问题1:A 、B 两型自行车的单价分别是70元和80元;问题2:a 的值为15.【解析】试题分析:问题1:设A 型车的成本单价为x 元,则B 型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可. 试题解析:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,1500a×1000+12008240aa×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15.考点:分式方程的应用;二元一次方程组的应用.2. (2017某某株洲第23题)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=23,无人机的飞行高度AH为5003米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.【答案】①求点H到桥左端点P的距离为250米;②无人机的长度AB为5米.②设BC ⊥HQ 于C .在Rt △BCQ 中,∵BC=AH=5003,∠BQC=30°,∴CQ=tan 30BC=1500米,∵PQ=1255米,∴CP=245米, ∵HP=250米,∴AB=HC=250﹣245=5米.答:这架无人机的长度AB 为5米.考点:解直角三角形的应用﹣仰角俯角问题.3. (2017某某某某第20题)一汽车从甲地出发开往相距240km 的乙地,出发后第一小时内按原计划的匀速行驶,1小时后比原来的速度加快41,比原计划提前min 24到达乙地,求汽车出发后第1小时内的行驶速度.【答案】汽车出发后第1小时内的行驶速度是120千米/小时考点:分式方程的应用4. (2017某某某某第22题)如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在OA 的位置时俯角030=⊥EOA ,在OB 的位置时俯角060=∠FOB .若EF OC ⊥,点A 比点B 高cm 7. 求(1)单摆的长度(7.13≈);(2)从点A 摆动到点B 经过的路径长(1.3≈π).【答案】(1)单摆的长度约为(2)从点A 摆动到点B 经过的路径长为则在Rt△AOP中,OP=OAcos∠AOP=12x,在Rt△BOQ中,OQ=OBcos∠BOQ=32x,由PQ=OQ﹣OP可得3x﹣12x=7,解得:x=7+73≈18.9(cm),答:单摆的长度约为;(2)由(1)知,∠AOP=60°、∠BOQ=30°,且OA=OB=7+73,∴∠AOB=90°,则从点A摆动到点B经过的路径长为903180π⨯()≈29.295,答:从点A摆动到点B经过的路径长为.考点:1、解直角三角形的应用﹣仰角俯角问题;2、轨迹5. (2017某某第21题)某工厂有甲种原料130kg,乙种原料144kg,现用两种原料生产处,A B两种产品共30件,已知生产每件A产品需甲种原料5kg,乙种原料4kg,且每件A产品可获得700元;生产每件B 产品甲种原料3kg,乙种原料6kg,且每件B产品可获利润900元,设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产,A B两种产品的方案有哪几种?(2)设生产这30件产品可获利y元,写出关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.【答案】(1)共有三种方案:方案一:A产品18件,B产品12件,方案二:A产品19件,B产品11件,方案三:A产品20件,B产品10件;(2)利润最大的方案是方案一:A产品18件,B产品12件,最大利润为23400元.方案三:A产品20件,B产品10件;(2)根据题意得:y=:700x+900(30﹣x)=﹣200x+27000,∵﹣200<0,∴y随x的增大而减小,∴x=18时,y有最大值,y最大=﹣200×18+27000=23400元.答:利润最大的方案是方案一:A产品18件,B产品12件,最大利润为23400元.考点:一元一次不等式组的应用;一次函数的应用.6. (2017某某某某第22题)某公司开发出一款新的节能产品,该产品的成本价位6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.⑴第24天的日销售量是件,日销售利润是元;⑵求y与x之间的函数关系式,并写出x的取值X围;⑶日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?【答案】(1)330,660;(2)y=20(018)5450(1830)y x xy x x=≤≤⎧⎨=-+≤⎩;(3)720元.(3)当0≤x≤18时,根据题意得:(8﹣6)×20x≥640,解得:x≥16;当18<x≤30时,根据题意得:(8﹣6)×(﹣5x+450)≥640,解得:x≤26.∴16≤x≤26.26﹣16+1=11(天),∴日销售利润不低于640元的天数共有11天.∵点D的坐标为(18,360),∴日最大销售量为360件,360×2=720(元),∴试销售期间,日销售最大利润是720元.考点:一次函数的应用.7. (2017某某某某第23题)收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?【答案】(1)10%;(2)甜甜在2017年六一收到微信红包为150元,则她妹妹收到微信红包为334元.考点:一元一次方程的应用;一元二次方程的应用;增长率问题.8. (2017某某某某第24题)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为,篮板顶端F点到篮框D的距离FD=,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.7323≈1.7322≈1.414)【答案】.考点:解直角三角形的应用.9. (2017某某某某第24题)某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?【答案】(1)九年级师生表演的歌唱类节目有12个,舞蹈类节目有8个;(2)参与的小品类节目最多能有3个.考点:1.一元一次不等式的应用;2.二元一次方程组的应用.10. (2017某某第25题)威丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【答案】(1)A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)威丽商场至少需购进6件A种商品.【解析】试题分析:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;考点:1.一元一次不等式的应用;2.二元一次方程组的应用.11. (2017某某某某第25题)“低碳环保、绿色出行”的理念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)a=;b=;m=;(2)若小军的速度是120米/分,求小军在图中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在图中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值X围.【答案】(1)10;15;200;(2)小军在途中与爸爸第二次相遇时,距图书馆的距离是750米100米;(4)00<v<4003(2)线段BC所在直线的函数解析式为y=1500+200(x﹣15)=200x﹣1500;线段OD所在的直线的函数解析式为y=120x.联立两函数解析式成方程组,200150120y xy x=-⎧⎨=⎩,解得:7542250xy⎧=⎪⎨⎪=⎩,∴3000﹣2250=750(米).答:小军在途中与爸爸第二次相遇时,距图书馆的距离是750米.(3)根据题意得:|200x﹣1500﹣120x|=100,解得:x1=352=17.5,x2=20.100米.(4)当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);当线段OD过点C时,小军的速度为3000÷22.5=4003(米/分钟).结合图形可知,当100<v<4003时,小军在途中与爸爸恰好相遇两次(不包括家、图书馆两地).考点:一次函数的应用.12. (2017某某某某第25题)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【答案】(1)甲每天修路,则乙每天修路1千米;(2)甲工程队至少修路8天.答:甲工程队至少修路8天.考点:1.分式方程的应用;2.一元一次不等式的应用.13. (2017某某某某第27题)一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城后均停止行驶.两车之间的路程y(千米)与轿车行驶时间t(小时)的函数图象如图所示.请结合图象提供的信息解答下列问题:(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;(2)求轿车在乙城停留的时间,并直接写出点D的坐标;(3)请直接写出轿车从乙城返回甲城过程中离甲城的路程s(千米)与轿车行驶时间t(小时)之间的函数关系式.(不要求写出自变量的取值X围)【答案】(1)甲城和乙城之间的路程为180千米,轿车和卡车的速度分别为120千米/时和60千米/时;(2)轿车在乙城停留了0.5小时,点D的坐标为(2,120);(3)s=180﹣120×(t﹣0.5﹣0.5)=﹣120t+420.(2)卡车到达甲城需180÷60=3(小时)轿车从甲城到乙城需180÷120=1.5(小时)3+×2=0.5(小时)∴轿车在乙城停留了0.5小时,点D的坐标为(2,120);(3)s=180﹣120×(t﹣0.5﹣0.5)=﹣120t+420.考点:一次函数的应用.14. (2017某某某某第22题)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有,A B两种型号的健身器可供选择.(1)劲松公司2015年每套A型健身器的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司,A B两种型号的健身器材共80套,采购专项费总计不超过112万元,采购合同规定:每套A 型健身器售价为1.6万元,每套B 型健身器售价我()1.51n -万元.①A 型健身器最多可购买多少套?②安装完成后,若每套A 型和B 型健身器一年的养护费分别是购买价的005和0015 .市政府计划支出10计划支出能否满足一年的养护需要?【答案】(1)每套A 型健身器材年平均下降率n 为20%;(2)①A 型健身器材最多可购买40套;②该计划支出不能满足养护的需要.所以n 1=0.2=20%,n 2=1.8(不合题意,舍去).答:每套A 型健身器材年平均下降率n 为20%;(2)①设A 型健身器材可购买m 套,则B 型健身器材可购买(80﹣m )套,依题意得:+×(1﹣20%)×(80﹣m )≤112,整理,得+96﹣≤1.2,解得m ≤40,即A 型健身器材最多可购买40套;②设总的养护费用是y 元,则×5%m+×(1﹣20%)×15%×(80﹣m ),∴y=﹣+14.4.∵<0,∴y 随m 的增大而减小,∴m=40时,y 最小.∵m=40时,y 最小值=﹣01×40+14.4=10.4(万元).又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.考点:1.一次函数的应用;2.一元一次不等式的应用;3.一元二次方程的应用.15. (2017某某呼和浩特第20题)某专卖店有A ,B 两种商品.已知在打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元;A ,B 两种商品打相同折以后,某人买500件A 商品和450件B 商品一共比不打折少花1960元,计算打了多少折?【答案】打了八折.根据题意得:603010805010840x y x y +=⎧⎨+=⎩ ,解得:164x y =⎧⎨=⎩ ,500×16+450×4=9800(元), 980019609800- =0.8. 答:打了八折.考点:二元一次方程组的应用.“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义.试运行期间,一列动车从某某开往某某,一列普通列车从某某开往某某,两车同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系.根据图象进行以下探究:【信息读取】(1)某某到某某两地相距_________千米,两车出发后___________小时相遇;(2)普通列车到达终点共需__________小时,普通列车的速度是___________千米/小时.【解决问题】(3)求动车的速度;(4)普通列车行驶t小时后,动车的达终点某某,求此时普通列车还需行驶多少千米到达某某?【答案】(1)1000,3;(2)12,2503;(3)动车的速度为250千米/小时;(4)此时普通列车还需行驶20003千米到达某某.考点:一次函数的应用.17. (2017某某第22题)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【答案】(1)y=5x+400;(2)选择乙公司的服务,每月的绿化养护费用较少.考点:一次函数的应用.18. (2017某某某某第18题)某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后了出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如下表:批发价(元)零售价(元)黑色文化衫1025白色文化衫820假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?【答案】黑色文化衫60件,白色文化衫80件.【解析】试题分析:设黑色文化衫x件,白色文化衫y件,依据黑白两种颜色的文化衫共140件,文化衫全部售出共获利1860元,列二元一次方程组进行求解.试题解析:设黑色文化衫x 件,白色文化衫y 件,依题意得:140(2510)(208)1860x y x y +=⎧⎨-+-=⎩,解得:6080x y =⎧⎨=⎩. 答:黑色文化衫60件,白色文化衫80件.考点:二元一次方程组的应用.19. (2017某某某某第19题)位于某某核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD 和底座CD 两部分组成.如图,在Rt △ABC 中,∠ABC =70.5°,在Rt △DBC 中,∠DBC =45°,且CD =,求像体AD 的高度(最后结果精确到,参考数据:sin70.5°≈0.943,co s70.5°≈0.334,tan70.5°≈2.824)【答案】m .考点:解直角三角形的应用.20. (2017某某某某第21题)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划每天生产多少个零件?【答案】75.【解析】试题分析:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.试题解析:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得:60045025x x=+,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件.考点:分式方程的应用.21. (2017某某第20题)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【答案】甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.考点:二元一次方程组的应用.22. (2017某某第22题)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【答案】水坝原来的高度为12米..考点:解直角三角形的应用,坡度.23.30元,用500元购得的排球数量与用800元购得的足球数量相等.⑴排球和足球的单价各是多少元?⑵若恰好用去1200元,有哪几种购买方案?【答案】(1)排球单价是50元,则足球单价是80元;(2)有两种方案:①购买排球5个,购买足球16个.②购买排球10个,购买足球8个.【解析】试题分析:(1)设排球单价是x元,则足球单价是(x+30)元,根据题意可得等量关系:500元购得的排球数量=800元购得的足球数量,由等量关系可得方程,再求解即可;(2)设恰好用完1200元,可购买排球m个和购买足球n个,根据题意可得排球的单价×排球的个数m+足球的单价×足球的个数n=1200,再求出整数解.试题解析:设排球单价为x元,则足球单价为(x+30)元,由题意得:考点:分式方程的应用;二元一次方程的应用.24. (2017某某六盘水第24题)甲乙两个施工队在某某(六盘水——某某)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【答案】试题分析:(1)利用每天甲队比乙队多铺设100米钢轨,得x-y=100;利用甲队铺设5天的距离刚好等于乙队铺设6天的距离,得5x=6y(2)解方程组.试题解析:(1)100 56x yx y-=⎧⎨=⎩(2)100 56x yx y-=⎧⎨=⎩解得,600500 xy=⎧⎨=⎩答:甲施工队每天各铺设600米,乙施工队每天各铺设500米.考点:列二元一次方程组解应用题.25. (2017某某乌鲁木齐第18题)我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?【答案】笼中鸡有23只,兔有12只.考点:二元一次方程组的应用.26. (2017某某乌鲁木齐第21题)一艘渔船位于港口A的北偏东60方向,距离港口20海里B处,它沿北偏西37方向航行至C处突然出现故障,在C处等待救援,,B C之间的距离为10海里,救援船从港口A≈≈≈,结果取整数)出发20分钟到达C处,求救援的艇的航行速度.(sin370.6,cos370.8,3 1.732【答案】救援的艇的航行速度大约是64海里/小时.【解析】试题分析:辅助线如图所示:BD⊥AD,BE⊥CE,CF⊥AF,在Rt△ABD中,根据勾股定理可求AD,在Rt△BCE中,根据三角函数可求CE,EB,在Rt△AFC中,根据勾股定理可求AC,再根据路程÷时间=速度求解即可.试题解析:辅助线如图所示:答:救援的艇的航行速度大约是64海里/小时.考点:解直角三角形的应用﹣方向角问题27. (2017某某乌鲁木齐第22题)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y (千米)与行驶时间x (小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y 与x 之间的函数关系式;(4)何时两车相距300千米.【答案】(1)600千米;(2)快车速度为90千米/小时,慢车速度为60千米/小时;(3)2032060(1506010)30(4y x x y x x <⎧=-≤⎪⎪⎨=≤≤⎪⎪⎩;(4)两车2小时或6小时时,两车相距300千米.考点:一次函数的应用.。
2015年重庆市初中毕业暨高中招生考试数学试题(含答案全解全析)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为--,对称轴为x=-.第Ⅰ卷(选择题,共48分)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.1.在-4,0,-1,3这四个数中,最大的数是( )A.-4B.0C.-1D.32.下列图形是轴对称图形的是( )3.化简的结果是( )A.4B.2C.3D.24.计算(a2b)3的结果是( )A.a6b3B.a2b3C.a5b3D.a6b5.下列调查中,最适合用普查方式的是( )A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查重庆市初中学生每天锻炼所用的时间情况D.调查重庆市初中学生利用网络媒体自主学习的情况6.如图,直线AB∥CD 直线EF分别与直线AB,CD相交于点G,H.若∠ = 5° 则∠ 的度数为( )A. 5°B.55°C. 5°D. 5°7.在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( )A.220B.218C.216D.2098.一元二次方程x2-2x=0的根是( )A.x1=0,x2=-2B.x1=1,x2=2C.x1=1,x2=-2D.x1=0,x2=29.如图,AB是☉O的直径,点C在☉O上,AE是☉O的切线,A为切点,连结BC并延长交AE 于点D.若∠AOC=80° 则∠ADB的度数为( )A. 0°B.50°C. 0°D. 0°10.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是( )A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6 600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度11.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈 …… 按此规律排列,则第⑦个图形中小圆圈的个数为( )A.21B.24C.27D.3012.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为( )A.2B.4C.2D.4第Ⅱ卷(非选择题,共102分)二、填空题:(本大题6个小题,每小题4分,共24分)13.我国“南仓”级远洋综合补给舰满载排水量为37 000吨,把数37 000用科学记数法表示为.14.计算:2 0150-|2|= .15.已知△ABC∽△DEF △ABC与△DEF的相似比为 ∶ 则△ABC与△DEF对应边上的高之比为.16.如图,在等腰直角三角形ABC中 ∠ACB=90° AB= .以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是.(结果保留π)的17.从-3,-2,-1,0,4这五个数中随机抽取一个数记为a,a的值既是.不等式组--的自变量取值范围内的概率是.解,又在函数y=x18.如图,在矩形ABCD中,AB=4,AD=10,连结BD ∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC'E'.当射线BE'和射线BC'都与线段AD 相交时,设交点分别F,G.若△BFD为等腰三角形,则线段DG长为.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).19.解方程组-①.②20.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE BC=DE ∠B=∠E.求证:∠ADB=∠FCE.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).21.计算:(1)y(2x-y)+(x+y)2;(2)--8÷-9.22.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类( 0≤w< 0) C类( 0≤w< 0) D类(w≥ 0) 该镇政府对辖区内所有的小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.23.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12 321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12 321是一个“和谐数”.再如22,545,3 883,345 5 … 都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数” 设其个位上的数字为x( ≤x≤ x为自然数),十位上的数字为y,求y与x的函数关系式.24.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N,观察员在瞭望台顶端P处观测到渔船M的俯角α为 ° 渔船N的俯角β为 5°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i= ∶0. 5.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH 的坡度i= ∶ .75,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan °≈0. 0 sin °≈0.5 )五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线).25.如图1,在△ABC中 ∠ACB=90° ∠BAC= 0°.点E是∠BAC角平分线上一点.过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连结DB,点F是BD的中点.DH⊥AC 垂足为H,连结EF,HF.(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连结CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由.图1图226.如图1,在平面直角坐标系中,抛物线y=-x2+x+3交x轴于A,B两点(点A在点B 的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D.(1)求直线BC的解析式;(2)点E(m,0),F(m+2,0)为x轴上两点,其中2<m<4,EE',FF'分别垂直于x轴,交抛物线于点E',F',交BC于点M,N,当ME'+NF'的值最大时,在y轴上找一点R,使|RF'-RE'|的值最大,请求出R点的坐标及|RF'-RE'|的最大值;(3)如图2,已知x轴上一点P9 0,现以P为顶点,2为边长在x轴上方作等边三角形QPG,使GP⊥x轴.现将△QPG沿PA方向以每秒1个单位长度的速度平移,当点P到达点A时停止.记平移后的△QPG为△Q'P'G' 设△Q'P'G'与△ADC的重叠部分面积为s,当点Q'到x 轴的距离与点Q'到直线AW的距离相等时,求s的值.图1图2答案全解全析:一、选择题1.D 3>0>-1>-4,所以最大的数是3,故选D.2.A A选项是轴对称图形,B、C、D选项都不是轴对称图形,故选A.3.B 故选B.4.A (a2b)3=(a2)3 b3=a6b3,故选A.5.B A、C、D选项适合抽样调查,B选项适合普查,故选B.6.C 因为AB∥CD 所以∠ =∠BGE 因为∠BGE= 80°-∠ = 5° 所以∠ = 5° 故选C.7.C 把五个数据从小到大排列为198,209,216,220,230,则中位数是216,故选C.8.D x2-2x=0,x(x-2)=0,解得x1=0,x2=2,故选D.9.B ∵AE是☉O的切线 ∴∠BAE=90° ∵∠B=∠AOC= 0° ∴∠ADB=90°-∠B=50° 故选B.10.C 从题图可看出A选项正确;小明休息前爬山的平均速度为 800=70米/分钟,休息后爬山的平均速度为 800- 80000- 0=25米/分钟,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,B、D选项正确;从题图看出小明所走的总路程为3 800米,所以C选项错误,故选C.11.B 第①个图形中有 × = 个小圆圈;第②个图形中有 × =9个小圆圈;第③个图形中有 × = 个小圆圈;……;第⑦个图形中有 ×8= 个小圆圈,故选B.12.D 由题意可得A(1,3),B(3,1),底边BC=AB=( - )( - )=2,菱形BC边上的高为3-1=2,所以菱形ABCD的面积是4故选D.评析本题重点考查反比例函数的图象与性质,平面直角坐标系内线段长度的计算方法,试题新颖别致,属于中等难度题.二、填空题13.答案 .7× 04解析 7 000= .7× 04.14.答案-1解析 2 0150-|2|=1-2=-1.15.答案 ∶解析两个相似三角形对应边上的高之比等于相似比,所以答案是 ∶ .16.答案8- π解析在Rt△ABC中 BC=AC=AB cos 5°= 所以阴影部分的面积为× × - 5π=8- π.17.答案5解析解不等式组--得- 0<x<① 函数y=x的自变量的取值范围是x≠0且x≠- ② 从-3,-2,-1,0,4这五个数中随机抽取一个数,共有5种可能,其中同时满足①②的有-3,-2,共2种可能,所以所求的概率是5.18.答案987解析过点F作FH∥BD交BG的延长线于点H,在矩形ABCD 中,BD=( 0= ∵AD∥BC ∴∠ADB=∠DBC ∵BE平分∠DBC ∴∠FBG=∠EBC=∠DBC ∴∠FBG=∠FDB 由题可得BF=FD ∴∠FBD=∠FDB ∴∠FBG=∠FBD ∴∠FBG=∠GBD ∵FH∥BD ∴∠H=∠GBD ∴∠H=∠FBG ∴FB=FH=FD 设FD=x(x>0),在Rt△ABF中,由勾股定理得BF2=AF2+AB2,即x2=(10-x)2+(4)2,解得x= 95 ∴FB=FH=FD= 95.∵FH∥BD ∴△FHG∽△DBG ∴=,设GD= ( >0) ∴ 95=95-,解得y=987∴GD=987.评析本题重点考查勾股定理,矩形的性质,相似三角形的性质与判定,方程思想等,综合性较强,属于难题.三、解答题19.解析将①代入② 得3x+2x-4=1,(2分)解得x=1.(4分)将x=1代入① 得y=-2.(6分)所以原方程组的解是- .(7分)20.证明∵BC=DE ∴BC+CD=DE+CD 即DB=CE.(3分)又∵AB=FE ∠B=∠E ∴△ABD≌△FEC.( 分)∴∠ADB=∠FCE.(7分)四、解答题21.解析(1)原式=2xy-y2+x2+2xy+y2(3分)=x2+4xy.(5分)(2)原式=( )(- )-8÷(- )( )(8分)=( )(- )( )(- )(9分)=-.(10分)22.解析(1)25;72.补全条形统计图如下:某镇各类型小微企业个数条形统计图(6分) (2)记来自高新区的2个代表为A1,A2,来自开发区的2个代表为B1,B2,画树状图如下:(8分)或列表如下:(8分)由树状图或列表可知,共有12种等可能情况,其中2个发言代表都来自高新区的有2种.所以,2个发言代表都来自高新区的概率P==.(10分)23.解析(1)写出3个满足条件的数即可.(千位上的数字与个位上的数字相同,百位上的数字与十位上的数字相同)猜想:任意一个四位“和谐数”能被11整除.设一个四位“和谐数”个位上的数字为a( ≤a≤9且a为自然数),十位上的数字为b(0≤b≤9且b为自然数),则这个四位“和谐数”可表示为1 000a+100b+10b+a.∵ 000a+ 00b+ 0b+a= 00 a+ 0b= ×9 a+ × 0b= (9 a+ 0b)∴ 000a+ 00b+ 0b+a能被11整除,即任意一个四位“和谐数”能被11整除.(5分)( )∵这个三位“和谐数”的个位上的数字为x,十位上的数字为y,∴这个三位“和谐数”可表示为100x+10y+x.(6分)∵ 00x+ 0 +x=99x+ + x-y=11(9x+y)+(2x-y),又这个三位“和谐数”能被11整除,且x,y是自然数,∴ x-y能被11整除.(8分)∵ ≤x≤ 0≤ ≤9 ∴ x-y=0.∴ 与x的函数关系式为 = x( ≤x≤ 且x为自然数).(10分)24.解析(1)由题意得 ∠E=90° ∠PME=∠α= ° ∠PNE=∠β= 5° PE= 0米.在Rt△PEN中,PE=NE=30(米).(2分)在Rt△PEM中 tan °=,=50(米).(4分)∴ME≈ 00. 0∴MN=ME-NE=50-30=20(米).答:两渔船M,N之间的距离约为20米.(5分)(2)过点D作DG⊥AB于G,坝高DG=24米.∵背水坡AD的坡度i= ∶0. 5 ∴DG∶AG= ∶0. 5.∴AG= (米).∵加固后背水坡DH的坡度i= ∶ .75 ∴DG∶GH= ∶ .75∴GH= (米).∴AH=GH-GA=42-6=36(米).(6分)∴S△ADH=AH DG=× × = (平方米).∴需要填筑土石方 × 00= 00(立方米).(7分)设施工队原计划平均每天填筑土石方x立方米,根据题意,得10+ 00- 0= 00-20.(9分)解方程,得x=864.经检验,x=864是原方程的根且符合题意.答:施工队原计划平均每天填筑土石方864立方米.(10分)五、解答题25.解析( )∵点H是AC的中点,AC=2,∴AH=AC=.(1分)∵∠ACB=90° ∠BAC= 0° ∴∠ABC= 0° ∴AB= AC= .(2分) ∵DA⊥AB DH⊥AC ∴∠DAB=∠DHA=90°.∴∠DAH= 0° ∴AD= .( 分)在Rt△ADB中 ∵∠DAB=90° ∴BD2=AD2+AB2.∴BD=( )=2.(4分)(2)证明:连结AF,如图.∵F是BD的中点 ∠DAB=90° ∴AF=DF ∴∠FDA=∠FAD.(5分) ∵DE⊥AE ∴∠DEA=90°.∵∠DHA=90° ∠DAH= 0°∴DH=AD.∵AE平分∠BAC ∴∠CAE=∠BAC= 0°.∴∠DAE= 0° ∴∠ADE= 0°.∴AE=AD ∴AE=DH.( 分)∵∠FDA=∠FAD ∠HDA=∠EAD= 0°∴∠FDA-∠HDA=∠FAD-∠EAD.∴∠FDH=∠FAE.(7分)∴△FDH≌△FAE(SAS).∴FH=FE.(8分)( )△CEF是等边三角形.(9分)理由如下:取AB的中点G,连结FG,CG.如图.∵F是BD的中点 ∴FG∥DA FG=DA.∴∠FGA= 80°-∠DAG=90°又∵AE=AD ∴AE=FG.在Rt△ABC中 ∠ACB=90°点G为AB的中点 ∴CG=AG.又∵∠CAB= 0° ∴△GAC为等边三角形.(10分)∴AC=CG ∠ACG=∠AGC= 0°.∴∠FGC= 0° ∴∠FGC=∠EAC.∴△FGC≌△EA C(SAS).(11分)∴CF=CE ∠ACE=∠GCF.∵∠ECF=∠ECG+∠GCF=∠ECG+∠ACE=∠ACG= 0°.∴△CEF是等边三角形.(12分)26.解析( )∵-x2+=0的解为x1=-2,x2=6,∴抛物线y=-x2+x+3 与x轴交于点A(-2,0),B(6,0).(1分) ∵ =-x2+=-(x-2)2+4C(2,4分)设直线BC的解析式为 =kx+b(k≠0) 将点(6,0),(2,4)代入得,0解得-.∴直线BC的解析式为y=-x+6.(4分)(2)由已知得E'-,M(m,-m+6),F'-( ) ( ),N(m+2,-(m+2)+6ME'=-m2+2,NF'=-m2+m.(5分)ME'+NF'=-m2+2m-3-m2+m=-(m-3)2+(2<m<4).当m=3时,ME'+NF'的值最大.(6分)此时E' 5,F'5 7,构造直角三角形可得E'F'=4,且直线E'F'的解析式为y=-x+ 7.当R是直线E'F'与y轴交点时,|RF'-RE'|取得最大值,最大值为E'F'的长度.因此|RF'-RE'|的最大值为4,此时点R0 7.(8分)(3)由题意得Q,设平移时间为t秒,∴Q'-t ,P'9-t 0.如图① 过点Q'作Q'K∥x轴交AW于K Q'H⊥AW交AW于H.∵Q'到x轴的距离为Q'到直线AW的距离Q'H=又∵A(-2,0),W(0,3),∴直线AW的解析式为y=x+3.∴K-.又∵点Q'可能在点K的左边或右边,∴KQ'=-t= 7-t.在Rt△WAO中 ∠WOA=90° AO= WO= ∴AW=.由题意易证Rt△WAO∽Rt△Q'KH ∴''=,即7-t=,∴t1= 7-,t2= 7.(10分)∵0≤t1≤ 0≤t2≤ ∴t1,t2符合条件.现分两种情况讨论:①当t1= 7-时,Q'-,P'5 0,∵0<-<2,5>2.∴重叠部分为如图①所示的等边三角形Q'H1I1,图①s=I1H1 Q'K1==× 7-=- 097.②当t2= 7时,Q'--,P'5- 0,∵--<-2,-2<5-<0,∴重叠部分为如图②所示的直角三角形H2I2P',图②∴s=H2I2 I2P'=8-t=8- 7=7 -9 .综上,当点Q'到x轴的距离与点Q'到直线AW的距离相等时,s=- 097或s=7 -9 .(12分)。
初中数学典型试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是正确的?A. 2x + 3 = 7x - 1B. 3x - 5 = 2x + 6C. 4x + 2 = 6x - 4D. 5x - 3 = 3x + 2答案:C2. 计算下列哪个表达式的结果是负数?A. 3x + 2B. 2x - 5C. 4x + 6D. 5x - 7答案:B3. 哪个图形的面积最大?A. 边长为4的正方形B. 半径为3的圆C. 长为5宽为3的矩形D. 底为6高为2的三角形答案:B4. 下列哪个方程的解是x = 2?A. x^2 - 4 = 0B. x^2 - 3x + 2 = 0C. x^2 + 2x - 8 = 0D. x^2 - 5x + 6 = 0答案:D5. 哪个选项是正确的比例?A. 3:4 = 6:8B. 2:3 = 4:6C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题3分,共15分)6. 计算表达式 2x^2 - 5x + 3 的值,当 x = 2 时,结果是 _______。
答案:57. 如果一个数的三倍加上4等于该数的五倍减去6,那么这个数是_______。
答案:68. 一个圆的周长是2πr,如果周长是12π,那么半径 r 是_______。
答案:69. 一个长方体的长是宽的两倍,高是宽的三倍,如果长方体的体积是72 立方单位,那么宽是 _______。
答案:210. 如果一个等差数列的首项是3,公差是2,那么第5项是 _______。
答案:11三、解答题(每题10分,共20分)11. 解方程组:\[\begin{cases}x + y = 5 \\2x - y = 1\end{cases}\]答案:将第一个方程乘以2得到 2x + 2y = 10,然后将第二个方程从第一个方程中减去,得到 3y = 9,所以 y = 3。
将 y = 3 代入第一个方程得到 x + 3 = 5,所以 x = 2。
2004年“TRULY ®信利杯”全国初中数学竞赛试题参考答案和评分标准一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填得零分)1. 已知实数b a ≠,且满足)1(33)1(2+-=+a a ,2)1(3)1(3+-=+b b .则ba a ab b +的值为( ). (A )23 (B )23- (C )2- (D )13-答:选(B )∵ a 、b 是关于x 的方程()03)1(312=-+++x x的两个根,整理此方程,得0152=++x x ,∵ 0425>-=∆,∴ 5-=+b a ,1=ab .故a 、b 均为负数. 因此 ()232222-=-+-=+-=--=+abab b a ab ab b a ab b a ab a b b a a a b b . 2. 若直角三角形的两条直角边长为a 、b ,斜边长为c ,斜边上的高为h ,则有 ( ).(A )2h ab = (B )h b a 111=+ (C )222111hb a =+ (D )2222h b a =+ 答:选(C )∵ 0>>h a ,0>>h b ,∴ 2h ab >,222222h h h b a =+>+;因此,结论(A )、(D )显然不正确.设斜边为c ,则有c b a >+,ab ch h b a 2121)(21=>+,即有 hb a 111>+, 因此,结论(B )也不正确.由ab h b a 212122=+化简整理后,得222111hb a =+, 因此结论(C )是正确的.3.一条抛物线c bx ax y ++=2的顶点为(4,11-),且与x 轴的两个交点的横坐标为一正一负,则a 、b 、c 中为正数的( ).(A )只有a (B )只有b (C )只有c (D )只有a 和b答:选(A )由顶点为(4,11-),抛物线交x 轴于两点,知a >0.设抛物线与x 轴的两个交点的横坐标为1x ,2x ,即为方程02=++c bx ax的两个根.由题设021<x x ,知0<ac ,所以0<c . 根据对称轴x =4,即有02>-a b ,知b <0. 故知结论(A )是正确的.4.如图所示,在△ABC 中,DE ∥AB ∥FG ,且FG 到DE 、AB 的距离之比为1:2. 若△ABC 的面积为32,△CDE 的面积为2,则△CFG 的面积S 等于 ( ).(A )6 (B )8(C )10 (D )12答:选(B )由DE ∥AB ∥FG 知,△CDE ∽△CAB ,△CDE ∽△CFG ,所以 41322===∆∆CAB CDE S S CACD , 又由题设知21=FA FD ,所以 31=AD FD , AC AC AD FD 41433131=⨯==, 故DC FD =,于是41212=⎪⎭⎫ ⎝⎛=∆∆CFG CDE S S ,8=∆CFG S . 因此,结论(B )是正确的.(第4题图)5.如果x 和y 是非零实数,使得3=+y x 和03=+x y x ,那么x +y 等于( ).(A )3 (B )13 (C )2131- (D )134- 答:选(D ) 将x y -=3代入03=+x y x ,得0323=+-x x x .(1)当x >0时,0323=+-x x x ,方程032=+-x x 无实根;(2)当x <0时,0323=--x x x ,得方程032=--x x 解得2131±=x ,正根舍去,从而2131-=x . 于是2137213133-=-+=-=x y . 故134-=+y x .因此,结论(D )是在正确的.二、填空题(共5小题,每小题6分,满分30分)6. 如图所示,在△ABC 中,AB =AC ,AD =AE ,︒=∠60BAD ,则=∠EDC (度).答:30°解:设α2=∠CAD ,由AB =AC 知αα-︒=-︒-︒=∠60)260180(21B , α+︒=︒-∠-︒=∠6060180B ADB , 由AD =AE 知,α-︒=∠90ADE ,所以︒=∠-∠-︒=∠30180ADB ADE EDC .7.据有关资料统计,两个城市之间每天的电话通话次数T 与这两个城市的人口数m 、n (单位:万人)以及两城市间的距离d (单位:km )有2dkmn T =的关系(k 为常数) . 现测得A 、B 、C 三个城市的人口及它们之间的距离如图所示,且已知A 、B 两个城市间每天的电话通话次数为t ,那么B 、C 两个城市间每天的电话通话次数为 次(用t 表示). 答:2t (第6题图)解:据题意,有k t 21608050⨯=, ∴t k 532=. 因此,B 、C 两个城市间每天的电话通话次数为2645532320100802t t k T BC =⨯=⨯⨯=. 8.已知实数a 、b 、x 、y 满足2=+=+y x b a ,5=+by ax ,则=+++)()(2222y x ab xy b a .答:5-解:由2=+=+y x b a ,得4))((=+++=++bx ay by ax y x b a ,∵ 5=+by ax ,∴ 1-=+bx ay .因而,5))(()()(2222-=++=+++by ax bx ay y x ab xy b a .9. 如图所示,在梯形ABCD 中,AD ∥BC (BC >AD ),︒=∠90D ,BC =CD =12, ︒=∠45ABE ,若AE =10,则CE 的长为 .答:4或6解:延长DA 至M ,使BM ⊥BE . 过B 作BG ⊥AM ,G 为垂足.易知四边形BCDG 为正方形, 所以BC =BG . 又GBM CBE ∠=∠,∴ Rt △BEC ≌Rt △BMG .∴ BM =BE ,︒=∠=∠45ABM ABE ,∴△ABE ≌△ABM ,AM =AE =10.设CE =x ,则AG =x -10,AD =x x -=--2)10(12,DE =x -12.在Rt △ADE 中,222DE AD AE +=,∴ 22)12()2(100x x -++=,即024102=+-x x ,解之,得41=x ,62=x . (第9题图)(第7题图)故CE 的长为4或6.10.实数x 、y 、z 满足x+y +z =5,xy +yz +zx =3,则z 的最大值是 . 答:313 解:∵ z y x -=+5,35)5(3)(32+-=--=+-=z z z z y x z xy ,∴ x 、y 是关于t 的一元二次方程035)5(22=+-+--z z t z t的两实根.∵ 0)35(4)5(22≥+---=∆z z z ,即0131032≤--z z ,0)1)(133(≤+-z z .∴ 313≤z ,当31==y x 时,313=z . 故z 的最大值为313. 三、解答题(共4题,每小题15分,满分60分)11.通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散. 学生注意力指标数y 随时间x (分钟)变化的函数图象如图所示(y 越大表示学生注意力越集中). 当100≤≤x 时,图象是抛物线的一部分,当2010≤≤x 和4020≤≤x 时,图象是线段.(1)当100≤≤x 时,求注意力指标数y 与时间x 的函数关系式;(2)一道数学竞赛题需要讲解24分钟. 问老师能否经过适当安排,使学生在听这道题时,注意力的指标数都不低于36.解:(1)当100≤≤x 时,设抛物线的函数关系式为c bx ax y ++=2,由于它的图象经过点(0,20),(5,39),(10,48),所以⎪⎩⎪⎨⎧=++=++=.4810100,39525,20c b a c b a c 解得,51-=a ,524=b ,20=c . 所以20524512++-=x x y ,100≤≤x . …………………(5分) (第11(A )题图)(2)当4020≤≤x 时,7657+-=x y . 所以,当100≤≤x 时,令y =36,得2052451362++-=x x , 解得x =4,20=x (舍去);当4020≤≤x 时,令 y =36,得765736+-=x ,解得 74287200==x . ……………………(10分) 因为24742447428>=-,所以,老师可以经过适当的安排,在学生注意力指标数不低于36时,讲授完这道竞赛题. ……………………(15分)12.已知a ,b 是实数,关于x ,y 的方程组⎩⎨⎧+=--=bax y bx ax x y ,23 有整数解),(y x ,求a ,b 满足的关系式.解:将b ax y +=代入bx ax x y --=23,消去a 、b ,得xy x y -=3, ………………………(5分)3)1(x y x =+.若x +1=0,即1-=x ,则上式左边为0,右边为1-不可能. 所以x +1≠0,于是111123+-+-=+=x x x x x y . 因为x 、y 都是整数,所以11±=+x ,即2-=x 或=x 0,进而y =8或=y 0. 故⎩⎨⎧=-=82y x 或 ⎩⎨⎧==00y x ………………………(10分) 当⎩⎨⎧=-=82y x 时,代入b ax y +=得,082=+-b a ;当⎩⎨⎧==00y x 时,代入b ax y +=得,0=b .综上所述,a 、b 满足关系式是082=+-b a ,或者0=b ,a 是任意实数.………………………(15分)13.D 是△ABC 的边AB 上的一点,使得AB =3AD ,P 是△ABC 外接圆上一点,使得ACB ADP ∠=∠,求PDPB 的值. 解:连结AP ,则ADP ACB APB ∠=∠=∠,所以,△APB ∽△ADP , …………………………(5分) ∴ADAP AP AB =, 所以223AD AD AB AP =∙=,∴AD AP 3=, …………………………(10分)所以3==AD AP PD PB . …………………………(15分) 14.已知0<a ,0≤b ,0>c ,且ac b ac b 242-=-,求ac b 42-的最小值. 解:令c bx ax y ++=2,由0<a ,0≤b ,0>c ,判别式042>-=∆ac b ,所以这个二次函数的图象是一条开口向下的抛物线,且与x 轴有两个不同的交点)0,(1x A ,)0,(2x B ,因为021<=a c x x ,不妨设21x x <,则210x x <<,对称轴02≤-=ab x ,于是c aac b b a ac b b x =--=-+-=2424221, ………………(5分) 所以aac b a ac b b c a b ac 242444222--≥--=≥-, …………………(10分)故442≥-ac b ,当1-=a ,b =0,c =1时,等号成立.所以,ac b 42-的最小值为4. ………………………(15分)北京请中考数学家教 - 请中考数学一对一辅导北京请中考数学家教 - 请中考数学一对一辅导老师NO.1:一直教初中数学,数学教研组组长,学科带头人,擅长初中数学家教,精通各版本新、旧教材,各年级重点、难点、考点,思维敏捷,业务精炼,方法多样,教学气氛活跃,教学成绩优秀。