数项级数的性质及其应用
- 格式:doc
- 大小:438.00 KB
- 文档页数:10
第六章 级数理论§1 数项级数I 基本概念一 数项级数及其敛散性定义1 给定一个数列{}n u ,对它的各项依次用“+”号连结起来的表达式++++n u u u 21 (1)称为数项级数或无穷级数,简称级数,记为∑∞=1n nu,其中n u 称为数项(1)的通项.数项级数(1)的前n 项之和,记为∑==nk kn uS 1,称之为(1)的前n 项部分和,简称为部分和.定义2 若级数(1)的部分和数列{}n S 收敛于S (即S S n n =∞→lim ),则称级数(1)收敛,并称S 为(1)的和,记为∑∞==1n nuS .若{}n S 是发散数列,则称级数(1)发散.二 收敛级数的基本性质1 收敛级数的柯西收敛准则级数(1)收敛的充要条件是:0>∀ε,0>∃N ,N n >∀,+∈∀Z p ,有ε<++++++p n n n u u u 21.2 级数收敛的必要条件:若级数∑∞=1n na收敛,则0lim =∞→n n a .3 去掉、增加或改变级数的有限项并不改变级数的敛散性.4 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数亦如此),即收敛级数满足结合律.5 若级数适当加括号后发散,则原级数发散.6 在级数中,若不改变级数中各项的位置,只把符号相同的项加括号组成一新级数,则两级数具有相同的敛散性.7 线性运算性质 若级数∑∞=1n nu与∑∞=1n nv都收敛,d c ,是常数,则()∑∞=+1n n ndv cu收敛,且()∑∑∑∞=∞=∞=±=±111n n n n n n nv d u c dv cu.三 正项级数收敛性判别法1 正项级数∑∞=1n nu收敛的充要条件是部分和数列{}n S 有界.2 比较判别法 设∑∞=1n nu与∑∞=1n nv是两个正项级数,若存在正整数N ,当N n >时,都有n n v u ≤,则(1)若∑∞=1n nv收敛,则∑∞=1n nu收敛; (2)若∑∞=1n nu发散,则∑∞=1n nv发散.3 比较原则的极限形式 设∑∞=1n n u 和∑∞=1n n v 是两个正项级数,且l v u nnn =∞→lim,则(1)当+∞<<l 0时,∑∞=1n nu和∑∞=1n nv具有相同的敛散性; (2)当0=l 时,若∑∞=1n nv收敛,则∑∞=1n nu收敛; (3)当+∞=l 时,若∑∞=1n nv发散,则∑∞=1n nu发散.4 设∑∞=1n n a 和∑∞=1n n b 是两个正项级数,且0>∃N ,N n >∀,有nn n n b b a a 11++≤,则 (1)若∑∞=1n nb收敛,则∑∞=1n na收敛; (2)若∑∞=1n na发散,则∑∞=1n nb发散.5 比式判别法(达朗贝尔判别法) 设∑∞=1n nu是正项级数,若00>∃N 及常数0>q ,有(1)当0N n >时,11<≤+q a a n n ,则级数∑∞=1n n u 收敛;(2)当0N n >时,11≥+n n a a ,则∑∞=1n n u 发散.6 比式判别法极限形式 设∑∞=1n n u 为正项级数,且q u u nn n =+∞→1lim,则(1)当1<q 时,∑∞=1n nu收敛;(2)当1>q 若+∞=q 时,∑∞=1n nu发散;(3)当1=q 时失效.当比式极限不存在时,我们有 设∑∞=1n nu为正项级数.(1)若1lim1<=+∞→q u u nn n ,则级数收敛;(2)若1lim 1>=+∞→q u unn n ,则级数发散.7 根式判别法(柯西判别法) 设∑∞=1n nu为正项级数,且存在某正整数0N 及正常数l ,(1)若对一切0N n >,成立不等式1<≤l u n n ,则级数∑∞=1n nu收敛;(2)若对一切0N n >,成立不等式1≥n n u ,则级数∑∞=1n nu发散.8 根式判别法极限形式 设∑∞=1n nu为正项级数,且l u n n n =∞→lim ,则(1)当1<l 时级数收敛; (2)当1>l 时级数发散. 9 柯西积分判别法设f 为[)∞+,1上非负递减函数,那么正项级数()∑∞=1n n f 与反常积分()⎰∞+1dx x f 同时收敛或同时发散.10 拉贝判别法 设∑∞=1n nu为正项级数,且存在某正整数0N 及常数r ,(1)若对一切0N n >,成立不等式111>≥⎪⎪⎭⎫⎝⎛-+r u u n n n ,则级数∑∞=1n n u 收敛;(2)若对一切0N n >,成立不等式111≤⎪⎪⎭⎫⎝⎛-+n n u u n ,则级数∑∞=1n n u 发散.注 拉贝判别法中(1)111>≥⎪⎪⎭⎫ ⎝⎛-+r u u n n n 可转化为n ru u nn -≤+11,1>r 收敛;(2)r u u n n n ≤⎪⎪⎭⎫ ⎝⎛-+11可转化为n ru u n n -≥+11,1≤r 发散. 11 拉贝判别法极限形式 若r u u n n n n =⎪⎪⎭⎫ ⎝⎛-+∞→11lim ,则有 (1)当1>r 时,∑∞=1n nu 收敛; (2)当1<r 时,∑∞=1n nu发散.四 一般项级数1 莱布尼兹判别法 若交错级数()∑∞=--111n n n u ,0>n u ,满足下列两个条件:(1)数列{}n u 单减; (2)0lim =∞→n n u ,则∑∞=1n nu收敛.注 若交错级数()∑∞=--111n n n u 满足莱布尼兹判别法,则其余项()x R n 满足()1+≤n n u x R .2 绝对收敛级数及其性质 定义 对于级数∑∞=1n nu,若∑∞=1n nu收敛,则称∑∞=1n nu绝对收敛;若∑∞=1n nu收敛,而∑∞=1n nu发散,则称∑∞=1n nu是条件收敛的. 显然,若∑∞=1n nu绝对收敛,则∑∞=1n nu一定收敛,反之不真.绝对收敛级数的性质: (1)重排性:若∑∞=1n nu绝对收敛,其和为S ,则任意重排后所得级数亦绝对收敛,且有相同的和数.此说明:绝对收敛级数满足交换律.对于条件收敛级数适当重排后,可得到发散级数,或收敛于任何事先指定的数(Riemann ). (2)级数的乘积 若∑∞=1n nu和∑∞=1n nv都绝对收敛,其和分别为A 和B ,则其乘积∑∞=1n n u ∑∞=⋅1n nv按任意方式排列所得的级数也绝对收敛,且其和为AB (柯西定理).乘积的排列方式通常有两种:正方形和对角线法.3 一般级数收敛判别法一般级数除应用前面正项级数方法判定其绝对收敛以外,莱布尼兹判别法和下面的狄利克雷判别法和阿贝尔判别法则是判定其可能条件收敛的主要方法.(1)狄利克雷判别法 若数列{}n a 单减收敛于零,∑∞=1n nb的部分和数列有界,则级数nn n ba ∑∞=1收敛.注 莱布尼兹判别法是狄利克雷判别法的特例,Abel 判别法亦可由狄利克雷判别法推证. (2)阿贝尔判别法:若数列{}n a 单调有界,∑∞=1n nb收敛,则级数nn n ba ∑∞=1收敛.五、常用于比较判别法的已知级数(1)几何级数∑∞=1n nq ,1<q 收敛,1≥q 发散; (2)-p 级数∑∞=11n pn,1>p 时收敛,1≤p 发散; (3)()∑∞=2ln 1n pn n ,1>p 时收敛,1≤p 发散.II 例题选解一 级数敛散性判别例1 讨论下列级数的敛散性.(1)∑∞=+111n nx ,0>x ; (2)∑∞=1sin n n x,R x ∈.解(1)10<<x ,0→nx ,0111≠→+nx,发散; 1=x 时,02111≠→+nx,发散; 1>x 时,nnx x ⎪⎭⎫⎝⎛<+111,∑∞=11n n x 收敛,故∑∞=+111n n x收敛. (2)当0=x 时收敛,当0≠x 时,发散.例2 已知∑∞=12n na收敛.(1)判定()∑∞=+-1211n n n n a 的敛散性;(2)证明:∑∞=2ln n n nn a 收敛.(武汉大学)解(1)()222221112111n a n a n a n nn+≤⎪⎭⎫ ⎝⎛++≤+⋅-,∑∞=12n n a 与∑∞=121n n 均收敛,从而原级数收敛(绝对收敛).(2)仿(1),由五(3)知其收敛. 例3 判断下列级数的敛散性. (1)∑∞=+-1)]11ln(1[n n n ;(东北师大) (2)∑++++-)]!1!21!111([n e ;(东北师大) (3)∑∞=142sin3n n n ; (4)∑∞=⎪⎭⎫ ⎝⎛-1cos 1n pn π,(0>p )(5)∑∞=1!n n n nn a (e a a ≠>,0);(6)()∑∞=--+11312n n n ;(7)∑∞=->-+111)0()2(n nna a a ;(8)∑⎰∞=+14411n n dxx ;(9)∑∞=⎪⎭⎫ ⎝⎛---21111n n n n ; (10)()()∑∞=+2ln ln 1n n n n n ; (11)∑∞=3ln n p n n(0>p );(12)()()∑∞=++11ln 11n pn n (0>p );(1=p 为大连理工)(13)()∑∞=+++1!2!!2!1n n n ; (14)()∑∞=⎥⎦⎤⎢⎣⎡-+111ln n p n n (0>p ); (15)()()∑∞=⋅-11!!2!!12n n n n ;(16)()∑∞=1ln ln 1n nn ; (17)∑∞=⎪⎭⎫⎝⎛-2ln 1n nn n p (0>p ); (18)()()()∑∞=+++12111n nnx x x x (0≥x ); (19)()∑∞=+-⋅-+211ln 1n p n n n n (0>p );(20)()∑∞=⎪⎭⎫⎝⎛++-110310021n nnn n ;(21)()()∑∞=-+-211n n n n ; (22)∑∞=1cos n pn nx(π<<x 0); (23) +---+--+-+2222222222; (24)()[]∑∞=-11n n n;(25)()()∑∞=2ln ln ln 1n qp n n n ;(大连理工1998) (26)∑∞=+-11n nn n;(中科院2002)(27)∑-nnnarctan )1((北京大学1999).解(1)由于)(1ln ln 1)1ln(1)]11ln(1[111∞→→++-=+-=+-=∑∑∑===n c n nn k n k k k S nk n k nk n ,其中c 为欧拉常数,所以级数收敛.(2)由于++++=++++-<)!2(1)!1(1)!1!21!111(e 0n n n ))3)(2)(1(1)2)(1(111(!1 +++++++++=n n n n n n n 22)!1(2))3)(2(1)2)(1(111(!1n n n n n n n n <+=++++++++< , 由比较原则知其收敛.(3)24342sin 3→⎪⎭⎫⎝⎛nnn ⇒ 收敛; (4)21021~cos 12≤<⇒⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-p n n ppππ发散,21>p 收敛;(5)()()e a n n a n n a n n a nnn n n →⎪⎭⎫⎝⎛+⋅=⋅++⋅++1!1!111e a <<⇒0收敛,e a >发散; (6)()131312<→-+n n n⇒收敛;或()()∑∑∑∞=-∞=∞=--+=-+111113131232n nn n n n n n ,收敛;或()1131312--≤-+n nn ,收敛;(此乃正项级数) (7)220222121211)ln 2()(lim )21()(lim )21()2(lim a x a a n a a n a a x x x nnn nnn =-=-=-+-+→-∞→-∞→⇒收敛; 注:利用xa 的Maclaurin 展开式估计分子的阶.(8)204421110nxdx dx x a n n n =≤+=<⎰⎰⇒ 收敛;(9)()nn n nn n n n n n -=--=---111111=n n -231⇒收敛; 或⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+++=⎪⎭⎫ ⎝⎛-=--n o n n n n n n 11111111111⎪⎭⎫ ⎝⎛+++=23231111n o n n n⇒⎪⎭⎫⎝⎛+=---=2323111111n o n n n n a n (∞→n )∑∞=⇒1n n a 收敛; (10)()()()()n en n n n nn n nnnnnln ln 1ln 11ln ln ln ln +⋅=+=+,而()01ln ln →+⋅nn n ,从而上式极限为零,⇒收敛;(11)当10≤<p 时,n n n p 1ln ≥(3>n )⇒发散; 当1>p 时,()()21211ln 1ln --+⋅=p p p n n n n n ,当n 充分大时, ()1ln 21<-p n n⇒ ()2111ln -+≤p p n n n ⇒收敛. 或当1>p 时,0ln 1ln 1ln 121<-=⋅-⋅='⎪⎭⎫⎝⎛+-p p p p p x x p x xpx x x x x (3>x ),即单减.由柯西积分判别法知原级数收敛.(12)()()()pn n n u 1ln 11++=单减,故可用柯西积分判别法,令()()()1ln 11++=x x x f p ,1≥x ,易知当1=p 时,()⎰∞+1dx x f 发散,10<<p 时亦发散,而1>p 时收敛.(13)()()()2121!2!!2!!2!1+≤⋅≤+++n n n n n n (3≥n )⇒收敛; (14)由泰勒公式(皮亚诺余项形式)得:()()()⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡-+p p n p n p n n o n n n 221121111ln ()⎪⎭⎫ ⎝⎛+⋅--=p p p nn o n n 2211211,当1>p 绝对收敛,121≤<p 条件收敛,210≤<p 发散.注 能否利用()()p n p n n n 1~11ln -⎪⎪⎭⎫ ⎝⎛-+⇒()∑∞=⎪⎪⎭⎫⎝⎛-+111ln n p n n 收敛?(此法仅用于正项级数). (15)()()()()⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-=+⋅++=⋅-+⋅++=+1112211122121!!2!!1211!!22!!121n n n n n n nn n n n n a a n n()⎪⎭⎫⎝⎛+++-=+++-=11123112112312n o n n n 由拉贝判别法知其收敛.(16)+∞→n ln ,则当n 较大时,2ln e n >,()()2ln 2ln 11ln 1n en n n =<⇒收敛; (17)根式判别法失效.先估计它的阶,⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=n n p n nn e n n p u ln 1ln ln 1,n npn n p ln ~ln 1ln -⎪⎭⎫ ⎝⎛-(∞→n ), 从而可以估计pn nu -~,于是可讨论n p p nu n nu =的极限,为此()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=∞→∞→∞→n n p n n p n n p n u n n npn n p n ln 1ln ln lim ln 1ln lim ln lim ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-=-∞→n n p n p n n n 1ln 1ln 1ln 11lim 1 ()[]x px x px xx ln ln 1ln 1lim 0-+=→ ()0ln 1ln ln lim 220=++-=→xpx x x x x p x 故1lim =∞→n pn u n ,p n n u -~,所以当1>p 时收敛,当1≤p 时发散.(18)当0=x 时级数显然收敛; 当10<<x 时,n n x u <,故收敛;当1=x 时,nn u ⎪⎭⎫⎝⎛=21,收敛;当1>x 时,()()()112111111--<+<+++=n n n n n x x x x x x u ,收敛. (19)()()())(12121~1112∞→⋅=++=-+n n nn n n n p p p p p , )(2~12~121ln 11ln ∞→-+-⎪⎭⎫ ⎝⎛+-+=+-n n n n n n , 所以,211121~p p n na +-⋅-)(∞→n ,由此易得:0>p 时收敛,0≤p 时发散.注 等价无穷小替换法仅适用于同号级数.(20)()132103100210310021<→++=⎪⎭⎫⎝⎛++-n n n n n nn,绝对收敛. (21)()()()()()111111111-+--=----=-+-=n n n n n n u nnnnn n , ()()()0121112112221<---=---⋅='⎪⎪⎪⎭⎫ ⎝⎛-x x x x xx x x x (1>x )由莱布尼兹判别法,()∑∞=--211n nn n收敛,而∑∞=-111n n 发散,故原级数发散.(22)当0≤p ,发散,1>p ,绝对收敛,当10≤<p 时,由狄利克雷判别法知其收敛.事实上,212sin 21sin cos 3cos 2cos cos -⎪⎭⎫ ⎝⎛+=++++xn nx x x x ,()π,0∈x ,有界.(23)法一:212sin 24sin 24cos 22πππ====a ,322sin 24cos 1222ππ=⎪⎭⎫ ⎝⎛-=-=a ,4332sin 22cos 224cos 122222πππ=-=⎪⎭⎫ ⎝⎛+-=--=a ,……12sin2+=n n a π,……于是原级数可表为∑∞=+=⎪⎭⎫⎝⎛++++21322sin 22sin 2sin 2sin 2n n n ππππ ,收敛.法二:记21=A ,222+=A ,2223++=A ,……则2→n A ,于是121222lim 222lim 222lim lim 22111<=-+-=-+-=-+-=→→--∞→+∞→x x x x A A a a x x n n n nn n ,收敛. (24)将级数中相邻且符号相同的项合并为一项,得一新级数()()∑∞=⎭⎬⎫⎩⎨⎧-++++-12221111111n nn n n注意到通项中共有12+n 项,其中前n 项之和和后1+n 项之和分别夹在11+n 与n1之间, n n n n n n n n n n n n n 11111122222=<-+++<-+<+= ()nn n n n n n n n n n n n n 11211211122222=++<++++<+<+=+ 因此()n n n n n 211111112222<-+++++<+ 由此得其单减,从而为收敛级数,而原级数的部分和总是夹在新级数某相邻的二部分和之间,所以原级数也收敛.(25)当1=p 时,则当1>q 时收敛,1≤q 时发散,此时级数的敛散性等同于无穷积分()⎰∞+2ln ln ln qx x x dx的敛散性.由无穷积分立得()⎰∞+2ln ln ln q x x x dx ()⎰+∞→=A q A x x x dx2ln ln ln lim ()⎪⎪⎩⎪⎪⎨⎧<∞+>-=+∞==-+∞→+∞→1,1,ln ln 11lim 1,ln ln ln lim 212q q x q q x A qAA A 收敛, 当1<p 时发散,1>p 时收敛,事实上,当1<p 时,()()()()n n n n n n n n n q pqp ln 1ln ln ln ln 1ln ln ln ln 11>⋅=-(n 充分大) 当1>p 时,()()()()()()()2121211ln 1ln ln ln 1ln 1ln ln ln ln 1+--+<⋅=p q p p q p n n n n n n n n n . (26)由 及∑-1n发散知级数发散.(27)由于{}n arctan 单调有界,∑-nn)1(收敛,由阿贝尔判别法知其收敛.思考题1 判别下列级数的敛散性: (1)∑∞=+--++122)11(1n n n n n n ;(复旦大学1997) (2)∑∞=123ln n nn;(复旦大学1998) (3)∑∞=122sinn nn π;(复旦大学1999)(4)∑∞=-122sin)53(n n n n π;(复旦大学1999)(5))0()1()2ln(1>++∑∞=a n a n n n;武汉理工大学2004) (6)∑∞=-1)1sin 1(n n n α.(南京理工2004)提示:(1)分子有理化,发散; (2)收敛;(3)仿上例(3),收敛;(4)当n 为偶数时,通项为0,去掉这些为0的项以后所得级数为交错级数,收敛,从而原级数收敛(考察它们部分和数列之间的关系).(5)由级数收敛的必要条件知当1≤a 时发散;当1>a 由比式判别法知其收敛; (6)利用x sin 的Taylor 公式讨论. 例4 讨论级数∑∞=11n p n 的敛散性.分析:1=p ,柯西准则,发散;1>p ,柯西积分判别法,收敛; 1<p ,比较判别法,发散.例5 证明 (1)若级数∑∞=12n n a 收敛,则∑∞=1n nna 收敛;(淮北煤师院2004) (2)若0lim ≠=a na n n,则∑∞=1n na发散,而∑∞=12n na收敛;(南开大学2001)(3)若∑∞=1n n a 是收敛的正项级数,则当21>p 时,级数∑∞=1n p n na 收敛(中科院2002).分析:(1)⎪⎭⎫⎝⎛+≤22121n a n a n n ;(2)01≠→=a na na n n ,∑∞=1n n a 发散,而∑∞=12n na 收敛; (3)同(1).或:由Cauchy 不等式211221111⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑===nk p nk k nk pk k a k a ; 知其部分和有界,从而收敛.例6(兰州大学2000)设0>n u 是单调递减数列,试证明:(1)若0lim ≠=∞→c u n n ,则∑∞=+-11)1(n nn u u 收敛; (2)若0lim =∞→n n u ,则∑∞=+-11)1(n nn u u 发散. 证(1)由单调有界定理知0>≥c u n ,再由极限的柯西收敛准则知:0,0>∃>∀N ε,当+∈∀>Z p N n ,,有εc u u p n n <-+,又n u 单调递减,所以,当+∈∀>Z p N n ,时,有ε<-≤-++-+-+-+++++np n n p n p n n n n n u u u u u u uu u )1()1()1(1121 , 由级数的柯西收敛准则知其收敛.(2)由于1)1()1()1(1121-=-≥-++-+-+++-+++++pn n p n p n n p n p n n n n n u u u u u u u u u u u , 令∞→p 得上式右端的极限为∞+,由柯西准则知∑∞=+-11)1(n nn u u 发散.例7(华东师大1997)设级数∑∞=1n nn a收敛.试就∑n a 为正项级数和一般项级数两种情形分别证明:级数n n an n+∑∞=1也收敛.证 当∑na为正项级数时,1lim=+∞→nn a n a n n n ,由比较判别法知n n an n+∑∞=1收敛.当∑∞=1n n n a 为一般项级数时,nn a n n a n n n n 1111+=+∑∑∞=∞=,由阿贝尔判别法知它是收敛的.思考题2(华东师大1998)已知∑∞=1n n a 为发散的一般项级数,试证明∑∞=+1)11(n n n a 也是发散级数.提示:用反证法.假设∑∞=+1)11(n n n a 收敛,则∑∑∞=∞=++=11)1)(11(n n n n n nn a a ,由阿贝尔判别法知∑∞=1n na收敛,矛盾.例8(北京工业大学2000)设和正项数列{}n a 单调减少,且级数n n na ∑∞=-1)1(发散.令nn a a a u ++⋅+=11111121,.,2,1 =n 试问级数∑∞=1n nu是否收敛,并说明理由.证 级数∑∞=1n nu收敛.这是因为:由级数n n na ∑∞=-1)1(发散和正项数列{}n a 单调减少知0lim >=∞→a a n n ,且由单调有界定理知a a n ≥,于是nn n n aa a a a u )11()1(111111121+=+≤++⋅+=, 由比较原则知∑∞=1n nu收敛.例9(北方交通大学1999)已知.,2,1,,01 =≤>+n a a a n n n 讨论级数++++na a a a a a 21211111 的敛散性.解 由单调性假设知存在极限0lim ≥=∞→a a n n ,则a a a a n n n =∞→ 21lim ,由柯西根式判别法知,当1>a 时收敛,当1<a 时发散,当1=a 时,例10(中国矿大北研部)设0>n a ,n n a a a S +++= 21,级数∞=∑∞=1n na.试证:(1)∑∞=1n nnS a 发散;(武汉大学) (2)∑∞=12n nn S a收敛.(东北师大) 证 (1)0>n a ,↑n S ,于是pn n p n pn n k kpn n k k k S S S a S a ++++=++=-=≥∑∑111. 而∞=∑∞=1n n a ,故+∞=++∞→p n p S lim ,从而当p 充分大时,21<+pn n S S , 211≥∑++=pn n k kk S a .由柯西收敛准则知其发散.(2)11211211122121111a S S S S a S S a a S a n nk k k n k k k k nk kk ≤-=⎪⎪⎭⎫ ⎝⎛-+=+≤∑∑∑=-=-=,部分和有界,故收敛.例11(华中科技大学) 若0lim 1=+∞→n n a ,()0lim 21=+++∞→n n n a a ,…,()0lim 21=++++++∞→p n n n n a a a ,…,试问∑∞=1n n a 是否一定收敛?为什么?解 不一定.如级数∑∞=11n n ,有 )(01121110∞→→+<++++++<n n p p n n n ;但∑∞=11n n 发散. 例12(上海交大) 若 1lim 1sin 2=⎪⎪⎭⎫ ⎝⎛⋅∞→n nn n a n ,则级数∑∞=1n n a 是否收敛?试证之. 解 由于11sin2→-nn n na (∞→n ),而()432sin 21sin210-⋅--≤=<-nnnn n nn (n 充分大),由比较判别法知∑∞=-11sin2n nn n收敛,再由比较判别法知∑∞=1n na收敛.例13 设0>n a 且单减,试证∑∞=1n na与∑∞=122n nn a 同时敛散.证 因为对正项级数任意加括号不改变敛散性,因此由∑∞=1n na()()() ++++++++++=1587654321a a a a a a a a a∑∞==++++≤02232221222232n n n a a a a a和∑∞=1n na()()() ++++++++++=169854321a a a a a a a a∑∞=+=+++++≥02116842122121842n nn a a a a a a a知两级数具有相同的敛散性.例14 若正项级数∑∞=1n na收敛,且n n nb a n a e a e++=( ,2,1=n ).证明 (1)∑∞=1n nb收敛;(华东师大)(2)∑∞=1n n na b 收敛.(北京理工大学2003) 证 解出n b 得:()0ln lim >-=∞→n a n n a eb n,而∑∞=1n n a 收敛,故当n 充分大时,nnn a b b <,从而(2)收敛立得(1)收敛.由收敛的必要条件得)(0∞→→n a n .又因为()⎪⎪⎭⎫ ⎝⎛-++++=-n n n n n a a a a a a e n!3!21ln ln 32()n n n a o a a =++ 32!3121~, 即 0lim =∞→nn n a b ,由级数∑∞=1n n a 收敛得∑∞=1n nn a b收敛.例15 研究级数∑∞=121n nx 的敛散性,这里n x 是方程x x tan =的正根,并且按递增的顺序编号.解 解方程得:()⎪⎭⎫⎝⎛+-+∈ππππn n x n 2,12,()22111-<n x n ,1>n ,收敛. 例16 设11=u ,22=u ,21--+=n n n u u u (3≥n ).问∑∞=-11n nu收敛吗?解 由于03323233211211111<-=-=-=-+--+-+++n n n n n n n n n n n u u u u u u u u u u u (3>n ); 所以 321111≤=+--+n n nn u u u u (由n u 的前若干项预测);由比式判别法知其收敛.例17 设0>n a ,证明级数 ()()()∑∞=+++121111n n na a a a 收敛. 解 由于()()()()()()()()n n n a a a a a a a a a a a a a S +++++++++++++=<111111111021321321211 ()()()()()()()++++++++-=+++++=321321212121111111111a a a a a a a a a a a a ()()()()()()n n a a a a a a a ++++++++-=1111111121321 ()()()1111121<+++-=n na a a a即部分和有界,所以收敛.例18(上海师大)证明:级数: +⎪⎭⎫⎝⎛+++-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+-4131211713121151211311是收敛的.解 这是交错级数,且()()⎪⎭⎫ ⎝⎛++++-+=⎪⎭⎫ ⎝⎛+++-=n n n n n n a n 12111212121211121111121112112111221121+=⎪⎭⎫ ⎝⎛++++++>⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-++=n a n n n n n n , ()()0ln 1211211121→++-=⎪⎭⎫ ⎝⎛+++-=n n n c n n n a ε . 由莱布尼兹判别法知∑∞=1n na收敛.例19(合肥工大2001)已知正项级数∑na 和∑nb 都发散,问下列级数收敛性如何?(1)∑),min(nnb a ; (2)∑),max(nnb a .解(1)可能收敛,也可能发散,例如,取1-==n b a nn,则∑),min(nn b a 发散;若取n na )1(1-+=,1)1(1+-+=n n b ,则0),min(≡n n b a ,∑),min(nn b a 收敛.(2)一定发散,这是因为n n n a b a ≥),max(. 思考题3(复旦大学1997)证明:如果任意项级数∑nu和∑nv都收敛,且成立.1,≥≤≤n v w u n n n则∑nw收敛.提示:利用柯西收敛准则.思考题4(上海交大2004)设.,2,1,1,11212 +==⎰+-n dx x x n x n nn n 证明∑∞=--11)1(n nn x 收敛.提示:12212111-+=<<+=n n n x n x n x ,应用Leibniz 判别法即可.例20(华东师大2000)设∑∞=1n na收敛,0lim =∞→n n na .证明:∑∑∞=∞=+=-111)(n n n n na a an .证 记级数∑∞=--11)(n n na an 的前n 项和为n S ,则12113221)()(2)(++-+++=-++-+-=n n n n n na a a a a a n a a a a S ,而0])1(1[lim lim 11=+⋅+=+∞→+∞→n n n n a n n nna ,所以 ∑∑∞=∞=+=-111)(n n n n na a an .思考题5(合肥工大2000)设数列{}n a 单调,且级数∑∞=1n na收敛于A .证明:级数∑∞=+-11)(n n na an 收敛,并求其和.思考题6(北京工业大学2001)设数列{}n na 收敛,00=a ,级数∑∞=--11)(n n na an 收敛,证明:级数∑∞=1n na收敛.思考题7(安徽大学2003)若级数∑∞=1n na满足:(1)0lim =∞→n n a ;(2)∑∞=-+1212)(n n n a a收敛,证明:∑∞=1n na收敛.思考题8(华东师大2003)若级数∑∞=1n na满足:(1)0lim =∞→n n a ;(2)∑∞=--1212)(n n n a a收敛,证明:∑∞=1n na收敛.例21(吉林大学)证明级数+-++-++-+611119141715121311发散到正无穷.证 记.,2,1,141241341 =---+-=n n n n a n 则nnna n 1)331(3142-=->, 而∑n1发散到正无穷,所以,+∞=∞→n n S 3lim .又因为n n n S S S 31323>>++,故+∞=∞→n n S lim .注(1)若要证明级数发散,则只需证明+∞=∞→n n S 3lim 即可.(2)在证明{}n S 收敛或发散时,有时通过求其子列的敛散性而使问题变得简单. 思考题9(武汉大学1999)级数+--+++-+-n n 21)12(1514131211222 是否收敛?为什么?提示:考察n S 2.例22 证明:级数∑∞=1n na收敛的充分必要条件是:对于任意的正整数序列{}k p 和正整数数任意子序列{}k n ,都有.0)(lim 11=++++++∞→k k k k p n n n k a a a证 必要性.设级数∑∞=1n na收敛,则由柯西收敛准则得:,0,0>∃>∀N ε当N n >时,+∈∀Z p ,都有ε<++++++p n n n a a a 21,从而当N k >时,N n k >,于是对于任意的正整数序列{}k p ,有ε<++++++k k k k p n n n a a a 11,即 .0)(lim 11=++++++∞→k k k k p n n n k a a a充分性.反证法.若∑∞=1n na发散,则+∈∃>∃>∀>∃Z p N n N ,,0,00ε,使得021ε≥++++++p n n n a a a ,特别地,分别取,,1,1111+∈∃>∃=Z p n N 使得 0211111ε≥++++++p n n n a a a ,{}+∈∃>∃>Z p N n n N 22212,,,2max ,使得 0212222ε≥++++++p n n n a a a ,如此下去,得一正整数子序列{}k n 和正整数序列{}k p ,恒有011ε≥++++++k k k k p n n n a a a ,这与已知条件矛盾.二 绝对收敛与条件收敛例23 判别下列级数是条件收敛,还是绝对收敛: (1)()∑∞=+--1111n n p n n(南京师大2002,1=p 为武汉大学1995);(2)∑∞=-1sin )1(n nnx(内蒙古大学); (3))0()23()1(12>-+-∑∞=x n n n xn(复旦大学1997). 解(1)当0≤p 时,n u 不趋于0,发散; 当1>p 时,原级数绝对收敛;当10≤<p 时,()∑∞=--1111n pn n 收敛,nn 11单调有界,由阿贝尔判别发知其收敛,但 ()1111→--+-p np n n n(∞→n );故原级数条件收敛.(2)当0=x 时绝对收敛,当0≠x 时,不妨设0>x ,则0>∃N ,当N n >时,有20π<<x ,且nxsin关于n 单减趋于0,由莱布尼兹判别法知其收敛. 又因为)(1sin)1(∞→→-n nx n xn ,而∑∞=1n n x发散,故原级数条件收敛. (3)当0>x 时,数列⎭⎬⎫⎩⎨⎧-+x n n )23(12单减趋于0,由莱布尼兹判别法知其收敛.又因为 222423n n n n <-+<,所以xx n x x nn n n 2221)23()1(41≤-+-<, 从而,当21>x 时,绝对收敛,当21≤x 时,条件收敛.思考题10(武汉大学2005)判别级数∑∞=2sin ln ln ln n n nn是否绝对收敛或条件收敛.思考题11(南京大学2001)设1,0,1,111≥>>++=+n x k x x k x nnn . (1)证明:级数∑∞=+-01)(n n n x x绝对收敛;(2)求级数∑∞=+-11)(n n n x x之和.提示:例24(北京大学1999,中国矿大1999,安徽大学2000,2001)设()x f 在0=x 的某邻域内有二阶连续导数,且()0lim0=→x x f x .证明:级数∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 证 由()0lim 0=→xx f x 得()00=f ,()00='f ,()x f 在0=x 某邻域内的二阶泰勒展式为 ()()()()()22212100x x f x x f x f f x f θθ''=''+'+=,10<<θ由()x f ''连续知,0>∃M ,有()M x f ≤'',从而有2121nM n f ⋅≤⎪⎭⎫ ⎝⎛ 故∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 思考题12 证明: (1)(华南理工大学2005)设)(x f 是偶函数,在0=x 的某个领域中有连续的二阶导数,.2)0(,1)0(=''=f f 则级数∑∞=-1)1)1((n n f 绝对收敛.(2)(浙江大学2004)设函数)(x f 在区间)1,1(-内具有直到三阶的连续导数,且0)0(=f ,.0)(lim 0='→x x f x 则∑∞=2)1(n n nf 绝对收敛. 例25 设0>n a ( ,2,1=n )单调,且级数∑∞=11n n a 收敛,讨论级数()∑∞=++-111n nna a n 是条件收敛还是绝对收敛.解 由于0>n a 且单调,故01→na ↑⇒n a()()()()⎪⎪⎩⎪⎪⎨⎧<++<++++⋅-=<+++⋅-++,2112121,22211221122212n n n n nn n n a a n n a a a n a na n a a a n 由已知条件,∑∞=12n na 收敛,故原级数绝对收敛. 例26 (哈尔滨工大2000)证明:若级数∑∞=1n nb收敛,且级数()∑∞=--11n n na a绝对收敛,则级数∑∞=1n nn ba 收敛.证 设n n b b b S +++= 21,则1--=n n n S S b ,于是由∑∞=1n nb收敛知:0>∃M ,M S n ≤, ,2,1=n .由()∑∞=--11n n n a a 收敛知:0>∀ε,01>∃N ,1,N m n >∀,有ε<-++-+--+-111m m n n n n a a a a a a ,又{}n S 收敛,对上述0>ε,02>∃N ,2N n >∀,2N m >,有ε<-m n S S ,取{}1,m a x21+=N N N ,于是,当N m n >,时, m m n n n n b a b a b a +++++ 11()()()1111-++--++-+-=m m m n n n n n n S S a S S a S S a[]()11121--+++-+-+-++-+-≤n m n n m m m n n n n S S a a a M a a a a a a MεM 3<.由柯西收敛准则知级数∑∞=1n nn ba 收敛.另证∑∞=1n nb收敛⇒0>∀ε,0>∃N ,N n >∀,+∈∀Z p ,有ε<∑++=pn n k kb1.记∑++==in n k ki bS 1,p i ,,2,1 =,则ε<i S ,p i ,,2,1 =.由()∑∞=--11n n na a绝对收敛得其部分和有界,即0>∃M ,有M a aS mn n nm ≤-='∑=-11, ,2,1=m .由阿贝尔定理得p n p p n p n p n n n n pn n k kk a S a a S a a S a a S ba ++-+-++++++=+-++-+-≤∑113222111p n p a S M ++≤ε又M a a a a a a a p n p n p n +<-++-+=-+++01010 ,从而()012a M ba pn n k kk +≤∑++=ε.由柯西收敛准则知其收敛.例27(华东师大2001)证明:若级数∑∞=1n na绝对收敛,则级数∑∞=+++121)(n n na a a a也绝对收敛.证 记n n a a S ++= 1,则由∑∞=1n na绝对收敛知∑∞=1n na收敛,所以{}n S 有界,即0>∃M ,有.,2,1, =≤n M S n 于是有n n n a M a a a a ≤+++)(21 ,由∑∞=1n na绝对收敛知级数∑∞=+++121)(n n na a a a也绝对收敛.思考题14(华中科技2004)设)(),1(,010∞→→≥==∑=n b x n ax x n nk kn ,求级数∑-+)(1n n nx x a之和.提示:1--=n n n x x a .例28 证明:若对任意收敛于0的数列{}n x ,级数∑∞=1n n nx a都收敛,则级数∑∞=1n n a 绝对收敛.分析 问题等价于:若级数∑na发散,则至少存在一个收敛于0的数列{}n x ,使得级数∑nnxa 发散,于是问题转化为:从∑+∞=na出发,构造出满足条件的数列{}n x .联想例10中(1)的结论立明.证 假设∑∞=1n n a 发散,记其前n 项和为n S ,则+∞=∞→n n S lim .取210=ε,0>∀N ,N n >∃,由+∞=∞→n n S lim 得 210lim <=∞→mn m S S ,从而当m 充分大(n m >)时,有21<m n S S ,于是0221121ε=>-≥+++++=++m n m m m n n n n S S S S a S a S a , 由柯西收敛准则知级数 ∑∞=1n n n S a 发散,取1,1≥=n S x nn ,则0lim =∞→n n x ,且∑∞=1n n n x a 发散,这与题目的条件矛盾,故命题成立.思考题15(中国人民大学2000)若正项级数∑∞=1n na发散,则存在收敛于0的正数序列{}n b ,使得级数∑∞=1n nn ba 发散.例29 研究级数∑∞=1sin n n n的收敛性.记其前n 项和为n S ,将其分成两项 -++=nn n S S S , 其中-+n n S S ,分别表示前n 项和中所有正项之和与负项之和.证明:极限-+∞→nnn S S lim 存在,并求其值.证 由Dirichlet 判别法知其收敛.又因为∑∑∑∑∞=∞=∞=∞=-=≥111212cos 21121sin sin n n n n n nn n n n , 右端第一个级数发散,第二个级数收敛(利用Dirichlet 判别法),从而∑∞=1sin n n n非绝对收敛. 由于)(sin 2122)(1∞→-∞→-=--+=∑=-+-+-n k k S S S S S S n k n n n n n n,所以,1)1(lim lim lim -=-=-+=-∞→---+∞→-+∞→n n n n n n n n nn n S S S S S S S S . 注 此例给出了条件收敛与绝对收敛的一个本质区别,且这个结论对一切条件收敛级数都成立.三 构造级数例30 试构造一级数∑∞=1n na,使它满足:(1)∑∞=1n n a 收敛; (2)⎪⎭⎫ ⎝⎛≠n o a n1. 解 ∑∞=121n n ,∑∞=11n n 满足(2),将两者结合起来,构造级数如下:+++++=∑∞=22221514131211n n a 即当n 是整数平方时,n a n 1=,否则21n a n =,显然⎪⎭⎫⎝⎛≠n o a n 1,同时+∞<≤+≤=∑∑∑∑=≤==nk n k n k n k k n k kk a S 12212112112故此级数收敛.例31 举出一个发散的交错级数,使其通项趋于零. 分析 交错级数+-++-+--n n a a a a a a 2124321 (0>n a )部分和为∑∑==--=n k k nk k n a aS 121122,可见只要构造一个级数∑∞=1n n a ,使得0→n a ,同时使∑∞=-112k k a和∑∞=12k ka一个收敛,另一个发散即可.为此可构造级数如下:() +--+-+-+-nn 21121514131211222. 例32(南开大学1999)已知级数∑∞=1n na收敛,问级数∑∞=12n na和∑∞=13n na是否必收敛?说明理由.解 未必收敛.如级数∑∞=-1)1(n nn 收敛,但∑∞=12n na发散.令+---+--+-=∑∞=33333331331331331312212212111n n a+----+项k k k k k k k k k k k 11113 则级数∑∞=1n na收敛,但∑∞=13n na发散,因为它的部分和子列+∞→----+++=3312111211kk S k n .四 级数与极限问题例33 设正项级数∑∞=1n na收敛,试证:0lim1=∑=∞→nkank kn .证 记∑∞==1n naS ,∑==nk kn aS 1,则S S n →(∞→n ),且∑∑-==-=111n k k n nk kS nS ka,从而0lim lim 1211=-=⎪⎭⎫ ⎝⎛+++-=-∞→∞=∞→∑S S n S S S S nkan n x k kn . 例34(西安电子科技大学2003,东北师大)设021>≥≥ a a ,且级数∑∞=1n na发散,则1lim1231242=++++++-∞→n nn a a a a a a .解 由于1123112311231242=++++++≤++++++---n n n n a a a a a a a a a a a a ;1211121121121123123124211--+-+-++->++--=++++≥++++++n n n n n n n a a a a a a a a a a a a a a a a a ;(1) 而 n n a a a a a a 2421231+++≥+++- ,由此及∑∞=1n na发散可得)(2)(21223211231∞→∞→=++++≥+++-n S a a a a a a a n n n , 从而(1)式右端的极限为1,由两边夹定理知结论成立.例35(煤师院2004)设级数∑∞=1n na收敛,0>n a ,且n a 单减.试证0lim =∞→n n na .分析:0lim =∞→n n na ⇔0>∀ε,0>∃N ,N n >∀,有ε<n na . 证 由∑∞=1n na收敛知,0>∀ε,0>∃N ,N m n >>∀,有ε<++++<+++n m m m a a a a 3210 由n a 单减知,当m n 2>时,m n n-<2,于是有()()ε22222211<⋅+++≤-<⋅=++-n m m n n n a a a a m n na na .故0lim =∞→n n na .例36(北师大)证明:极限 )]ln(ln ln 1[lim 2n kk nk n -∑=∞→存在有限. 证 令xx x f ln 1)(=,则f 在),2[+∞上非负单减,所以 ∑⎰⎰=+<<=-nk n nk k dx x f dx x f n 2122ln 1)()()2ln(ln )ln(ln , 从而得0)2ln(ln )ln(ln ln 12>->-∑=n kk nk ,即数列有下界.又 0)1ln()1(1)1ln()1(1)()1ln()1(1111=++-++<-++=-⎰⎰+++n n n n n n dx n n n n dx x f n n a a ,即数列单减,从而极限存在且有限.例37 试证:若正项级数∑∞=1n na收敛,且数列{}1+-n n a a 单减,则.)11(lim 1+∞=-+∞→nn n a a。
数项级数的定义一、数项级数的概念数项级数是指由一系列数项按照一定规律相加而得到的一种数列。
数项级数一般表示为 S =a 1+a 2+a 3+...+a n +...,其中 a n 是数项。
二、数项级数的和数项级数的和指的是将数项按照一定次序相加的结果。
如果数项级数的和存在有限值,我们称该数项级数是收敛的,收敛的和就是该级数的和;如果数项级数的和不存在有限值,我们称该数项级数是发散的。
三、数项级数的收敛条件数项级数的收敛与数项的值有关,有以下几种常见的收敛条件:1. 绝对收敛如果数项级数的各个数项 a n (n ≥1)的绝对值组成的级数 ∑|a n |∞n=1 收敛,则称原数项级数 ∑a n ∞n=1 是绝对收敛的。
2. 条件收敛如果数项级数 ∑a n ∞n=1 收敛,但 ∑|a n |∞n=1 发散,则称原数项级数是条件收敛的。
3. 收敛性与发散性对于一般的数项级数,没有绝对收敛或条件收敛的情况,称该数项级数是发散的。
四、数项级数的性质数项级数具有以下一些基本的性质:若级数 ∑a n ∞n=1 和 ∑b n ∞n=1 都收敛,则级数 ∑(a n +b n )∞n=1 也收敛,并且有∑(a n +b n )∞n=1=∑a n ∞n=1+∑b n ∞n=1。
2. 常数倍数性若级数 ∑a n ∞n=1 收敛,则级数 ∑(ka n )∞n=1 也收敛,并且有 ∑(ka n )∞n=1=k ∑a n ∞n=1(k 为常数)。
3. 递推式若级数 ∑a n ∞n=1 的部分和数列 {S n } 满足递推式 S n =S n−1+a n (n ≥2)并且lim n→∞S n 存在,则级数 ∑a n ∞n=1 收敛且 lim n→∞S n =∑a n ∞n=1。
4. 比较性若级数 ∑a n ∞n=1 和 ∑b n ∞n=1 满足 |a n |≤|b n |(n ≥1),且 ∑b n ∞n=1 收敛,则∑a n ∞n=1 绝对收敛。
请双面打印/复印(节约纸张)高等数学主讲: 张小向第六章 无穷级数第一节 数项级数 第二节 反常积分判敛法 第三节 幂级数 第四节 傅里叶级数第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数§6.1 数项级数 一. 无穷级数的概念 1.引例1 − 2 1 − 41 − 8(3) 无法实施的奖赏(摘自/Blog/181498.aspx)国际象棋起源于印度. 棋盘上共有64个格子. 传说国王要奖赏国际象棋的发明者—— 他的大宰相西萨·班·达伊尔, 问他有什么要求, 这位大宰相跪在国王面前说: “… …”. 1+2+22 +23 +...+263 = 264−1 = 18 446 744 073 709 551 615(粒) 1000粒小麦的质量 ≈ 40g, 18 446 744 073 709 551 615粒小麦的质量大于 7000亿吨! 2008/09年度全球小麦产量: 6.56 亿吨, 7000 ÷ 6.56 ≈ 1067(年) 要用23 300 000 000辆载重量为30吨的大卡车拉1 1 1 (1) − + − + − + … 2 4 8(2) 乒乓球跳动的时间2H 2n+1H H 4 2H g + 4 3g + − g + … + 2 3ng + … 3第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数2. 定义 u1, u2, …, un, … ——无穷数列 数项级数(简称级数):n=1 nn=1 n ∞ n=1 nΣ u = u1 + u2 + … + un + …n∞Σ u 前n项部分和(简称部分和): Sn = u1 + u2 + … + un = k=1 uk Σ∞Σ u = u1 + u2 + … + un + … 项 通项(一般项)∞n=1 nΣ u 收敛: lim Sn 存在 n→∞n=1 nΣ u 的和: S = n→∞ Sn lim∞∞Σ 记为: n=1un = Sn=1 nΣ u 发散: lim Sn 不存在 n→∞∞272365083@1请双面打印/复印(节约纸张)第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数例1. n=1 2n . Σ1 1 Sn = − + − + … + 2n = 1 − 2n . 2 4n→∞∞1例2. 等比级数(几何级数)1 1Σ aqn−1 (a ≠ 0). n=1 Sn = a + aq + aq2 + … + aqn−1 = 1 − q . (1) |q| < 1时, n→∞ Sn = 1 − q , 即 limn=1∞a − aqnlim Sn = 1, 故 n=1 2n = 1. Σ1 − 2 1 − 41 − 8∞1aΣ aqn−1 = 1 − q .∞∞alim (2) |q| > 1时, n→∞ Sn = ∞, 记为n=1Σ aqn−1 = ∞.第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数(2) |q| = 1时, lim lim ① 若q = 1, 则 n→∞ Sn = n→∞ na = ∞. a, n为奇数; ② 若q = −1, 则Sn = 0, n为偶数, lim S 不存在. n→∞ n 综上所述, 当|q| < 1时等比级数 n=1 aqn−1 (a ≠ 0) Σ 收敛, 且 Σ aqn−1 = a . n=1 1−q Σ 当|q| ≥ 1时等比级数 n=1 aqn−1 (a ≠ 0)发散.∞ ∞ ∞Σ 例3. 证明: n=11∞1 = 1. n(n+1) 1 1证明: Sn = 1×2 + 2×3 + … + n(n+1)2 2 3 1 = 1 − n+1 → 1 (n→∞), 1 1 1 = (1 − −) + (− − −) + … + (− − n+1) n 1 1即 n=1 Σ∞1 = 1. n(n+1)第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数Σ 例4. 证明: n=1∞1 收敛. n21例5. 调和级数 ,n=1证明: ∀ε >0, ∃N = [−] + 1, 当n > N时, ∀p ∈ ε |Sn+p − Sn| = (n+1)2 + (n+2)2 + … + (n+p)2 = n(n+1) + … +1 1 1 1 1 (n+p−1)(n+p) 1 1 11 1 Σ −=1+−+−+…+−+… 2 3∞1 n1 n对于ε0 = 1/2, 取m = 2n, 则 |Sm − Sn| = 1 + 1 + … + 1 n+1 n+2 2n ≥ 2n = ε0 . 由Cauchy收敛准则可知{Sn}发散, 即调和级数是发散的.n= − − n+p < − < ε . n n∞ 即 n=1 12 收敛. Σ由Cauchy收敛准则可知{Sn}收敛,n272365083@2请双面打印/复印(节约纸张)第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数二. 数项级数收敛的条件 定理1 (级数收敛的必要条件).n=1 n ∞Σ 注① n=1 un 收敛 ⇒ lim un = 0. ——原命题 n→∞n→∞ n ∞∞Σ u 收敛 ⇒ lim un = 0. n→∞∞∞limu ∃ 或 limun = a ≠ 0 ——逆否命题证明: 设 n=1un 收敛, 且 n=1 un = S, Σ Σ 则 n→∞ un = n→∞ (Sn − Sn−1) lim lim = n→∞ n − n→∞ n−1 limS limS = S − S = 0.⇒ n=1 un 发散. Σ例6. 判别下列级数的敛散性. (1) n=1 (−1)n; Σπ (3) n=1 nsin− ; Σ n∞ ∞(2) n=1 n+1 n ; Σ (4) n=1 (n − √n2 − n). Σ∞∞n第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数Σ 注② n=1 un 收敛 ⇒ lim un = 0. ——原命题 n→∞n→∞∞定理2 (Cauchy收敛准则).n=1 nlim un = 0 ⇒ n=1 un 收敛. ——逆命题 Σ 该命题不成立!∞Σ u 收敛 ⇔ 数列{Sn}收敛 ,当 n > N时,n+p∞⇔ ∀ε > 0, ∃N∈∀p∈ , 有 Σ uk = |Sn+p − Sn| < ε. k=n+1例如 n→∞ − = 0, 但 n=1 − 发散. lim n Σ n1∞1第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数∞ (−1)n−1 例7. 证明级数 n=1 n Σ 收敛.例8. 已知级数 n=1un收敛, 其中un > 0 (∀n). Σ(−1)n+p−1 n+p∞证明: |Sn+p − Sn| = n+1 + n+2 +…+ ≤1 n+1(−1)n(−1)n+1证明: 级数u1 + u3 +…+ u2k−1 + …也收敛. 证明: 记Sn = u1 + u2 +…+ un, Tn = u1 + u3 +…+ u2n−1, 由条件及Cauchy收敛准则可知 ∀ε > 0, ∃N ∈ , 当 n > N时, ∀p∈ +, 有 |Tn+p − Tn| = |u2n+1 + u2n+3 +…+ u2n+2p−1| ≤ |u2n+1 + u2n+2 +…+ u2n+2p−1| = |S2n+2p−1 − S2n| < ε . 所以级数u1 + u3 +…+ u2k−1 + …也收敛.<1 − n, ,= ε, 故 ∀ε > 0, ∃N ∈ [−] ∈1当 n > N时, ∀p∈ , 有 1 |Sn+p − Sn| < −. < ε . ε n 由Cauchy收敛准则可知该级数收敛.272365083@3请双面打印/复印(节约纸张)第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数三. 数项级数的基本性质 性质1. 设级数 n=1 un 收敛, 且 n=1un = S, Σ Σ 则对任意常数k, 级数 n=1kun也收敛, Σ 且 n=1kun = kS. Σ 证明: 记Sn = u1 + u2 +…+ un, Tn = ku1 + ku2 +…+ kun, 则 n→∞ n = limkSn = klimSn = kS. limT n→∞ n→∞ 推论. 若k≠0, 则 n=1un 与n=1 kun 的收敛性相同. Σ Σ∞ ∞ ∞ ∞ ∞ ∞性质2. 设 n=1 un 与 n=1vn 都收敛, 且 Σ Σn=1 n ∞∞∞Σ u = S, n=1vn = T, Σ∞∞∞则 n=1(un ± vn)也收敛, 且 Σn=1 ∞Σ (un ± vn) = S ± T.∞ ∞例9. n=1un收敛, n=1vn 发散 ⇒ n=1(un + vn) _____. Σ Σ Σ第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数Σ Σ Σ 注① n=1(un + vn)收敛 ⇒ n=1 un 与 n=1 vn 都收敛.−1 例如, un = 1 , vn = n+1 , n∞∞∞Σ Σ Σ 注① n=1(un + vn)收敛 ⇒ n=1 un 与 n=1 vn 都收敛. Σ Σ Σ Σ 注② n=1un , n=1vn , n=1(un + vn), n=1(un − vn)中, 任意两个收敛, 则另外两个也收敛.上述四个级数的敛散性, 可能出现的情形: (A) 都收敛; (B) 都发散; (C) 一个收敛, 另外三个发散.∞ ∞ ∞ ∞∞∞∞则n=1 (un + vn)收敛, Σ 但 n=1un 与 n=1vn 都发散. Σ Σ1 1 1 1 1 (1− −) + (− − −) + … + (− − n+1) 2 2 3 n∞ ∞∞=1− 1n+1→ 1 (n→∞).第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数性质3. 在级数中去掉或添加有限多项, 得到的 级数与原来的级数敛散性相同.∞ 例如: (1) n=1 12 收敛 ⇒ Σ1 1 1 1 1 1 1+−+−+−+−+−+…+−+… n 2 3 4 5 6 1 1 1 1 1 −+−+−+−+…+−+… n 6 7 8 9 1 1 1 1 1 1 1+−+−+−+−+−+…+−+… n 4 6 7 8 9 1 1 1 1 1 1 1 + 2 + 3 + − + 5 + − + − + − + −… + − + … n 6 7 8 9 4n 1 1 1 1 + 25 + 36 + … + n2 + …收敛; 16 1 1 1 9 + 4 + 1 + − + − + … + n2 + …收敛. 4 9 ∞ 1 (2) Σ − 发散 ⇒ n=1 n 1 1 1 − + − + … + − + …发散; n 5 6 1 1 1 1 1 − + − + 1 + − + − + … + − + …发散. n 9 4 2 3272365083@4请双面打印/复印(节约纸张)第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数性质4. 设级数 n=1un 收敛, 则不改变它的各项 Σ 次序而任意添加括号后构成的新级数n=1 n∞n=1 nΣ u = u1 + u2 + u3 + u4 + u5 + u6 + u7 + …∞Σ u′ 仍然收敛, 而且和不变.∞∞部分和数列: S1 , S2 , S3 , S4 , S5 , S6 , S7 , …n=1 n证明: 注意到 n=1un 的部分和数列 {Sn} 是 Σ ′ ′ Σ u 的部分和数列 {Sn} 的子列即可. n=1 n∞Σ u′ = (u1 + u2) + u3 + (u4 + u5 + u6) + u7 + … = u1 ′ + u2 + ′ u3 + ′ S3′ , u4 + … ′ S4′ , …∞部分和数列: S1′ , S2′ ,n→∞lim Sn 存在 ⇒ n→∞ Sn = lim Sn . lim ′ n→∞第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数注: 级数(1−1) + (1−1) + (1−1) + ... 收敛, 但 1 − 1 + 1 − 1 + ... + (−1)n+1 + … 发散. 性质5. n=1 cn 收敛 ⇒ n→∞ k=n+1ck = 0. Σ lim Σ 证明: 设 n=1cn 收敛, 且 n=1 cn = S. Σ Σ 令 Rn = k=n+1ck , 称为 n=1cn的n阶余项. Σ Σ 于是 S = n→∞ Sn ⇒ n→∞ Rn = n→∞ (S − Sn) = 0. lim lim lim∞ ∞ ∞ ∞ ∞ ∞四. 数项级数判敛法 1. 正项级数 (1) 定义 正项级数 n=1un : ∀un ≥ 0 Σ (2) 性质 ∀un ≥ 0 ⇒ {Sn}单调递增. (3) 判敛法 Σ 定理3. 正项级数 n=1un 收敛 ⇔ {Sn}有界.∞ ∞第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数例10. u1 = 1, un = ∫ n−1 xp dx (n ≥ 2, p >1), 证明 Σ un 收敛.n=1 ∞n1定理4 (比较判别法). 设0 ≤ un ≤ vn (∀n), 则 (1) n=1 vn 收敛 ⇒ n=1un 收敛. Σ Σ Σ (2) n=1 un 发散 ⇒ n=1 vn 发散. Σ∞ ∞ ∞ ∞可 改 ∃N∈ , s.t. 为 当n > N时,证明: 因为un > 0, 而且 Sn = 1 + ∫ 1 xp dx + … + ∫n−1 xp dx = 1 + ∫ 1 xp dx = 1 + 1−p x1−p1 1 1∞ n 2un ≤ vn1n111n 1Σ 证明: (1) n=1vn 收敛 ⇒ 其部分和数列{Tn}有界 ⇒ n=1un 的部分和数列{Sn}有界 Σ ⇒ Σ un 收敛.n=1 ∞ ∞∞= 1 + p−1 (1 − n p−1 ) < 1 + p−1 . 所以 Σ un 收敛.n=1(2) 由(1)立得.272365083@5请双面打印/复印(节约纸张)第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数例11. p级数 n=1 Σ1 当p > 1时收敛, p ≤ 1时发散. . np ∞ 1 1 (1) 当 p < 0时, lim np = +∞ ⇒ n=1 np 发散. Σ n→∞ 1 1∞1 n 1 1 1 证明: 因为 lim[(1−cos−) n2] = − , n→∞ n 2例12. 证明 Σ (1 − cos−)收敛.n=1∞(2) 当0 ≤ p ≤ 1时, np ≥ − , n Σ − 发散 ⇒ n=1 np 发散. Σ n=1 n1 n 1 (3) 当 p>1时, np < ∫ n−1 p dx (n ≥ 2), x ∞ 由例10可知 Σ 1p 收敛. n=1 n∞所以 ∃N∈, s.t. 当n > N时, 有1 11∞11 1 [(1−cos−) n2 ] − − < −, n 2 4从而1 1 3 < 1−cos− < 4n2 . 4n2 n ∞ 3 又因为 Σ 4n2 收敛, n=1∞故由比较判别法可知 n=1(1 − cos−) 收敛. Σ n1第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数1 发散. n1+1/n 1 1 证明: 因为 lim( 1+1/n −) = n→∞ 1 = 1, lim 1/n n→∞ n n n例13. 证明 Σ∞推论 (比较判别法的极限形式) 设 n=1un 和 n=1 vn 均为正项级数, 且 Σ Σ 则 (1) 当0 < l < +∞时,∞ ∞ ∞ ∞ ∞n=1所以 ∃N∈1, s.t. 当n > N时, 有lim n→∞un = l, vn1 1 ( 1+1/n −) − 1 < − . n n 2 1 1 3 从而 2n < n1+1/n < 2n . ∞ ∞ 1 1 Σ 又因为 Σ 2n 发散, 故 n=1 n1+1/n 发散. n=1Σ u 与n=1 vn 的敛散性相同. Σ n=1 n (2) 当l = 0 且 n=1vn 收敛时, n=1un 也收敛. Σ Σ (3) 当l = +∞ 且 Σ vn 发散时, Σ un 也发散.n=1 n=1 ∞ ∞ ∞第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数证明: (1) 方法同例12和例13. (2) 因为 lim n→∞un = 0, vn un , s.t. 当n > N时, v < 1, n∞(3) (法一) 因为 limn→∞ ∞un = +∞, vn所以 ∃N∈, s.t. 当n > N时, un > vn .∞所以 ∃N∈ 于是un < vn .∞Σ 而 n=1vn 发散, 故 n=1un 发散. Σ (法二) 若 n=1un 收敛, Σ 则由 lim 矛盾! 故 n=1un 发散. Σ∞ n→∞ ∞ vn Σ = 0 及(2) 得 n=1vn 收敛, un ∞Σ 而 n=1vn 收敛, 故 n=1un 收敛. Σ272365083@6请双面打印/复印(节约纸张)第六章 无穷级数§6.1 数项级数第六章 无穷级数§6.1 数项级数例14. 设a >0, 讨论 Σ (a1/n + a−1/n −2)的敛散性.n=1∞定理5 (D’Alembert比值判别法). 设 Σ un 为正项级数, ∀un > 0 且 limn=1 n→∞ ∞ ∞ ∞a1/n + a−1/n − 2 at + a−t − 2 = t→0+ lim 解: lim 2 n→∞ 1/n t2 2. = (lna) 又因为 n=1 Σ∞un+1 = ρ, unΣ 则 (1) 当ρ < 1时, n=1un 收敛. (2) 当ρ > 1时, n=1un 发散. Σ达朗贝尔:法国物理学家、数学家、天文学 家哲学家。
数项级数的性质及其应用数学学院数学与应用数学(师范)专业 2008级孟野指导教师摘要:级数是数学分析中的一个重要组成部分,而数项级数是则是一类特殊的级数,它是级数论的基础。
本文首先对数项级数的内容加以整理和归纳,给出了正项级数、交错级数等几种数项级数的分类以及他们的内容和相关性质、定理,接着举例说明了这些数项级数在极限中的应用。
最后,对数项级数相关内容进行了变形和推广。
关键词:数项级数;正项级数;幂级数;极限;Abstract:The series is an important part of mathematical analysis, and the several series is a special kind of series is a series on the basis of. Firstly, organize and summarized the contents of a number of series, a series of positive terms, alternating series, several series classification and their content and nature of the theorem, and then illustrates these numbers series in the limit. . Finally, a number of series-related content, the deformation and promotion.Key words:A number of series; series of positive terms; power series; limit;1 引言数项级数是数学分析中很重要的一部分内容。
数项级数的理论实际上只是极限的另一种表现形式,这种表现形式是研究许多实际问题及进行数值计算的一种必不可少的工具]1[。
数项级数不仅包括常数项级数与函数项级数两部分;同时,又可分为正项级数、交错级数和任意项级数三部分。
函数项级数则可分为幂级数和傅里叶级数。
本文则是对数项级数加以整理和归纳,在正项级数、交错级数、任意项级数和幂级数四部分加以研究。
2 预备知识定义2.1 设给定一个数列12,,,,n u u u ,则表达式12n u u u ++++ 称为无穷级数.其中12,,,,n u u u 叫做该级数的项,n u 称为一般项或通项.由于式中的每一项都是常数,所以又叫数项级数,简称级数,并记为1n i u ∞=∑.称121nn ii u u u u=+++=∑ 为部分和数列,记作n S .定义2.2 若级数1n i u ∞=∑的部分和数列为{}n S 的极限存在,即lim n n S S →∞=,则称级数1n i u ∞=∑收敛,S称为级数的和.并记为1nn S u ∞==∑,这时也称该级数收敛于S ;若部分和数列的极限不存在,就称级数1n i u ∞=∑发散.定义2.3 若通项为实数的无穷项级数 ∑∞=1n n u 每一项n u 都大于等于零,则称∑∞=1n nu 是一正项级数。
定义2.4 具有以下形式的级数()∑∞=-01n n n u 被称作交错级数。
其中所有n u 非负.定义2.5 正项和负项任意出现的级数称为任意项级数。
对任意项级数∑∞=1n n u ,若∑∞=1n nu 收敛,则称原级数∑∞=1n n u 绝对收敛。
若原级数收敛,但∑∞=1n n u 发散,则称原级数∑∞=1n n u 条件收敛。
定义2.6 形同 ∑∞=-10)(n n n x x a 的函数项无穷级数称为0x x -的幂级数。
一般只需讨论形同 ∑∞=1n n n x a 的幂级数。
引理2.1(正项级数收敛的基本定理) 如果正项级数的部分和数列具有上界,则此级数收敛;如果正项级数的部分和数列无上界,则此级数发散到∞+。
引理2.2 (莱布尼茨定理)如果一个交错级数 ∑∞=+-11)1(n n n u 的项满足: (1)单调减少 1+≥n n u u (n=1,2,3,…); (2)0lim =∞→n n u 。
则 01 级数 ∑∞=+-11)1(n n n u 收敛;02 它的余和n r 的符号与余和第一项的符号相同,并且余和的绝对值不超过余和的第一项的绝对值:1+≤n n u r 。
引理2.3 (阿贝尔判别法)若交错级数 ∑∞=--11)1(n n n a 中n n n v u a =, 其中 ∑∞=--11)1(n n n u 收敛,数列n v 单调有界,即 K v n ≤(n=1,2,3,…),则交错级数 ∑∞=--11)1(n n n a 收敛。
引理2.4 绝对收敛级数必为收敛级数。
但反之不然。
引理 2.5(阿贝尔引理) 若∑∞=-00)(n n n x x a 在点ξ=x 收敛,那么它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n nnx x a在点ξ=x 发散,则它必在00x x x ->-ξ也发散。
引理2.6(柯西-阿达玛定理) 幂级数 ∑∞-00)(n n x x a ,在R x x <-0内绝对收敛,在R x x >-0内发散。
由此可见,对任何一个幂级数,都存在一个以0x 为中心,以R为半径的区间,在这个区间内幂级数绝对收敛,而在区间外,幂级数发散。
我们称此R 是幂级数的收敛半径。
3 数项级数的应用数项级数极其巧妙和独特,应用十分广泛。
下面,我们将举例说明数项级数在极限中的应用。
3.1 正项级数在极限中的应用]3[例3.1.1 设级数∑∞=1n n a 收敛,n a >0,n a ↘ ,试证n n na +∞→lim =0。
证明 分析 要证明n n na +∞→lim =0,即0>∀ε,要证0>∃N ,使得N n >时,有ε<≤n na 0。
下面证明此例:因 ∑∞=1n n a ()0>n a 收敛,根据Cauchy 准则,0>∀ε,0>∃N ,N n >时,2021ε<+++<++n N N a a a (1)但 n a ↘ ,故()21ε<++≤-+n N n a a a N n ,特别令 N n 2=得 ()222ε<-N a N N 。
故当 N n 2> 时,()()n n n a N N a N n na -+-=2 ()()N n a N N a N n 22-+-< εεε=+<22。
故 n n na +∞→lim =0。
注 本例说明递减正项级数要收敛,其通项必须是比n1高阶的无穷小量,但注意此条件并不充分。
例3.1.2 设正项级数∑∞=1n n a 收敛,试证nkak kn ∑∞=∞→1lim=0。
证明 记 ∑∞==1n na S ,∑==nk kna S1,则SSn→ (当∞→n 时)。
利用Abel 变换 ∑∑-==-=111n k k n n k k S nS ka ,从而 0lim lim1211=-=⎪⎭⎫ ⎝⎛+++-=-∞→=∞→∑S S n S S S S nkan n n nk kn 。
注 阿贝尔变换式:m m i m i i imi i i B a B a ab a +-=∑∑-=+=1111)(,其中m m b b b B +++= 213.2 交错级数在极限中的应用]4[例3.2.1 计算 nn nn xxn+⋅-∞→1)1(lim)0(>x解 对于数列⎭⎬⎫⎩⎨⎧+n n x x 1来说,当0>x 时,110=<+<n nnn x xx x , 又⎩⎨⎧>>≤<≤++=++=++++++1,110,11111)1(1111111x x x xxx x xxx x n n n nnnn n 因此,数列⎭⎬⎫⎩⎨⎧+n n x x 1是单调有界的。
又∑∞=-1)1(n n n 收敛,由阿贝尔判别法知,原级数nn n nxxn+⋅-∑∞=1)1(1收敛。
所以01)1(lim=+⋅-∞→nn nn xxn。
注 本例题根据参考文献[4]的习题加以推广改编而成,进一步理解交错级数在求极限中的应用。
例 3.2.2 设0>n a ,1+>n n a a ),2,1( =n ,且 0lim =∞→n n a ,判断级数∑∞=-⋅-11)1(n nna a a n+++ 21的敛散性,并求 na a a nn n +++--∞→ 211)1(lim 。
解 记 na a a u nn +++=21∴0)1(1211>+-+++=-++n n na a a a u u n n n n∴数列{}n u 严格递减,且 0lim limlim 21==+++=∞→∞→∞→n n nn n n a na a a u由莱布尼茨判别法推得,交错级数∑∞=-+++⋅-1211)1(n nn na a a 收敛;且 na a a nn n +++--∞→ 211)1(lim =0 。
3.3 任意项级数在极限中的应用我们知道,如果级数∑∞=1n n x 收敛,则0lim =∞→n n x ,这个条件叫做级数收敛的必要条件。
当数列极限不易求出,如果可以把这数列的通项看成是某级数的通项,而对此数列的收敛性的判别又比较容易时,则由级数收敛的必要条件就立即求得数列的极限。
例3.3.1]5[ 计算 )cos 2cos cos (lim 2αααn q q q nn ++++∞→ 及)sin 2sin sin (lim 2αααn q q q nn ++++∞→ (1<q )。
解 首先讨论1n in n q e α∞=∑的收敛性。
∵1n in n q e α∞=∑为等比级数,且1<==q qe r i α∴1n in n q e α∞=∑收敛,且其和为:ααααααsin )cos 1()sin (cos 1iq q i q qeqeZ i i --+=-==ααααα2222sin cos )cos 1{(sin )cos 1(q q q q q--+-]}sin cos sin )cos 1[(ααααq q i +-+=ααααcos 21sin cos 21cos 222q q q iq q qq -++-+-又1n in n q e α∞=∑=∑∞=+1)sin (cos n n n i n q αα=ααααsin ()cos 2cos cos (2q i n q q q n ++++++)sin 2sin 2 +++ααn q q n=ααααsin (lim )cos 2cos cos (lim 2q i n q q q n n n +∞→+∞→+++++)sin 2sin 2ααn q q n ++∴)cos 2cos cos (lim 2αααn q q q nn ++++∞→ =ααcos 21cos 22q q qq -+-)sin 2sin sin (lim 2αααn q q q nn ++++∞→ =ααcos 21sin 2q q q -+3.4 幂级数在极限中的应用当数列本身就是某个级数的部分和数列时,求该数列的极限就成了求相应级数的和。