一致收敛函数列与函数项级数级数的性质.ppt
- 格式:ppt
- 大小:682.01 KB
- 文档页数:25
第十三章函数列与函数项级数§1 一致收敛性(一) 教学目的:掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(二) 教学内容:函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法.基本要求:1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法.2、教学基本要求:理解并掌握函数列与函数项级数的概念及一致收敛的概念和性质;掌握函数项级数的几个重要判别法,并能利用它们去进行判别;掌握一致收敛函数列与函数项级数的极限与和函数的连续性,可积性,可微性,并能应用它们去解决问题。
3、教学重点难点:重点是函数列一致收敛的概念、性质;难点是一致收敛性的概念、判别及应用。
(三) 教学建议:(1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法.————————————————————一函数列及其一致收敛性对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。
使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。
若函数列})({x f n 在数集E D ⊂上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值)()(lim x f x f n n =∞→与之对应,由这个对应关系所确定的函数,称为函数列})({x f n 的极限函数。
第七节 函数项级数的一致收敛性内容分布图示★ 引例(讲义例1) ★ 一致收敛的概念★ 例2 ★ 例3 ★ 魏尔斯特拉斯判别法 ★ 例4 ★ 例5 一致收敛级数的基本性质 ★ 定理2★ 定理3★ 定理4幂级数的一致收敛性★ 定理5★ 定理6 ★ 内容小结★ 课堂练习★ 习题11—7 ★ 返回讲解注意:一、 一致收敛的概念:函数项级数在收敛域I 上收敛于和)(x s ,指的是它在I 上的每一点都收敛,即对任意给定的0>ε及收敛域上的每一点x ,总相应地存在自然数),(x N ε,使 得当N n >时,恒有ε<-|)()(|x s x s n .一般来说,这里的N 不仅与ε有关,而且与x 也有关. 如果对某个函数项级数能够找到这样的一个只与ε有关而不依赖于x 的自然数N ,则当N n >时,不等式ε<-|)()(|x s x s n 对于区间I 上每一点都成立,这类函数项级数就是所谓的一致收敛的级数.定义1 设函数项级数∑∞=1)(n n x u 在区间I 上收敛于和函数)(x s , 如果对任意给定的0>ε,都存在着一个与x 无关的自然数N , 使得当N n >时, 对区间I 上的一切x 恒有ε<-=|)()(||)(|x s x s x r n n ,则称该函数项级数在区间I 上一致收敛于和)(x s ,此时也称函数序列)}({x s n 在区间I 上一致收敛于)(x s .二、定理1(魏尔斯特拉斯判别法)如果函数项级数∑∞=1)(n n x u 在区间I 上满足条件:(1));,3,2,1(|)(| =≤n a x u n n (2)正项级数∑∞=1n n a 收敛.则该函数项级数在区间I 上一致收敛. 三、 一致收敛级数的基本性质定理2 如果级数∑∞=1)(n n x u 的各项)(x u n 在区间],[b a 上都连续,且级数在区间],[b a 上一致收敛于),(x s 则)(x s 在],[b a 上也连续.定理3 设)(x u n ),3,2,1( =n 在],[b a 上连续,且级数∑∞=1)(n n x u 在区间],[b a 上一致收敛于)(x s ,则⎰xx dx x s 0)(存在,且级数∑∞=1)(n n x u 在],[b a 上可以逐项积分,即])([])([)(11∑⎰⎰∑⎰∞=∞===n xx n x x n n xxdx x u dx x u dx x s (7.2)其中,0b x x a ≤<≤ 且上式右端的级数在],[b a 上也一致收敛.定理4 如果级数∑∞=1)(n n x u 在区间],[b a 上收敛于和)(x s , 它的各项)(x u n 都有连续导数)(x u n',并且级数∑∞='1)(n nx u 在],[b a 上一致收敛,则级数∑∞=1)(n n x u 在],[b a 上也一致收敛,且可 逐项求导,即有∑∑∞=∞='='⎪⎪⎭⎫⎝⎛='11)()()(n nn n x u x u x s (7.3) 四、 幂级数的一致收敛性定理5 如果幂级数∑∞=1n n n x a 的收敛半径为,0>R 则此级数在),(R R -内的任一闭区间],[b a 上一致收敛.定理6 如果幂级数∑∞=1n n n x a 的收敛半径为,0>R 则其和函数)(x s 在),(R R -内可导,且有逐项求导公式,)(111∑∑∞=-∞=='⎪⎪⎭⎫ ⎝⎛='n n n n n n x na x a x s逐项求导后所得到的幂级数与原级数有相同的收敛半径.例题选讲:一致收敛的概念例1(讲义例1)考察函数项级数+-++-+-+-)()()(1232n n x x x x x x x的和函数的连续性.本例表明,即使函数项级数的每一项都在[a , b ]上连续,并且级数在[a , b ]上收敛,但其和函数却不一定在[a , b ]上连续;同样也可举例说明,函数项级数的每一项的导数及积分所成的级数的和也不一定等于它们的和函数的导数及积分. 那么在什么条件下,我们才能够从级数每一项的连续性得出它的和函数的连续性,从级数的每一项的导数及积分所成的级数之和得出原级数的和函数的导数及积分呢? 要回答这个问题,就需要引入函数项级数的一致收敛性概念.例2(讲义例2)研究级数∑∞=+⎪⎪⎭⎫⎝⎛+-111n n n n x n x 在区间]1,1[-上的一致收敛性.例3(讲义例3)研究级数∑∞=-0)1(n n x x 在区间[0,1]上的一致收敛性.例4(讲义例4)证明级数++++22222sin 22sin 1sin nx n x x 在),(+∞-∞上一致收敛.例5(讲义例5)判别级数∑∞=+1241n x n x在),(+∞-∞上一致收敛. 课堂练习1. 研究级数+⎪⎭⎫ ⎝⎛-+-+++⎪⎭⎫ ⎝⎛+-+++111112111n x n x x x x 在区间),0[+∞上的一致收敛性.魏尔斯特拉斯(Weierstrass, Karl Wilhelm ,1815~1897)魏尔斯特拉斯德国数学家,1815年10月31日生于德国威斯特伐利亚地区的奥斯登费尔特;1897年2月19日卒于柏林。