一致收敛函数列与函数项级数级数的性质.ppt
- 格式:ppt
- 大小:682.01 KB
- 文档页数:25
第十三章函数列与函数项级数§1 一致收敛性(一) 教学目的:掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(二) 教学内容:函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法.基本要求:1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法.2、教学基本要求:理解并掌握函数列与函数项级数的概念及一致收敛的概念和性质;掌握函数项级数的几个重要判别法,并能利用它们去进行判别;掌握一致收敛函数列与函数项级数的极限与和函数的连续性,可积性,可微性,并能应用它们去解决问题。
3、教学重点难点:重点是函数列一致收敛的概念、性质;难点是一致收敛性的概念、判别及应用。
(三) 教学建议:(1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法.————————————————————一函数列及其一致收敛性对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。
使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。
若函数列})({x f n 在数集E D ⊂上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值)()(lim x f x f n n =∞→与之对应,由这个对应关系所确定的函数,称为函数列})({x f n 的极限函数。
第七节 函数项级数的一致收敛性内容分布图示★ 引例(讲义例1) ★ 一致收敛的概念★ 例2 ★ 例3 ★ 魏尔斯特拉斯判别法 ★ 例4 ★ 例5 一致收敛级数的基本性质 ★ 定理2★ 定理3★ 定理4幂级数的一致收敛性★ 定理5★ 定理6 ★ 内容小结★ 课堂练习★ 习题11—7 ★ 返回讲解注意:一、 一致收敛的概念:函数项级数在收敛域I 上收敛于和)(x s ,指的是它在I 上的每一点都收敛,即对任意给定的0>ε及收敛域上的每一点x ,总相应地存在自然数),(x N ε,使 得当N n >时,恒有ε<-|)()(|x s x s n .一般来说,这里的N 不仅与ε有关,而且与x 也有关. 如果对某个函数项级数能够找到这样的一个只与ε有关而不依赖于x 的自然数N ,则当N n >时,不等式ε<-|)()(|x s x s n 对于区间I 上每一点都成立,这类函数项级数就是所谓的一致收敛的级数.定义1 设函数项级数∑∞=1)(n n x u 在区间I 上收敛于和函数)(x s , 如果对任意给定的0>ε,都存在着一个与x 无关的自然数N , 使得当N n >时, 对区间I 上的一切x 恒有ε<-=|)()(||)(|x s x s x r n n ,则称该函数项级数在区间I 上一致收敛于和)(x s ,此时也称函数序列)}({x s n 在区间I 上一致收敛于)(x s .二、定理1(魏尔斯特拉斯判别法)如果函数项级数∑∞=1)(n n x u 在区间I 上满足条件:(1));,3,2,1(|)(| =≤n a x u n n (2)正项级数∑∞=1n n a 收敛.则该函数项级数在区间I 上一致收敛. 三、 一致收敛级数的基本性质定理2 如果级数∑∞=1)(n n x u 的各项)(x u n 在区间],[b a 上都连续,且级数在区间],[b a 上一致收敛于),(x s 则)(x s 在],[b a 上也连续.定理3 设)(x u n ),3,2,1( =n 在],[b a 上连续,且级数∑∞=1)(n n x u 在区间],[b a 上一致收敛于)(x s ,则⎰xx dx x s 0)(存在,且级数∑∞=1)(n n x u 在],[b a 上可以逐项积分,即])([])([)(11∑⎰⎰∑⎰∞=∞===n xx n x x n n xxdx x u dx x u dx x s (7.2)其中,0b x x a ≤<≤ 且上式右端的级数在],[b a 上也一致收敛.定理4 如果级数∑∞=1)(n n x u 在区间],[b a 上收敛于和)(x s , 它的各项)(x u n 都有连续导数)(x u n',并且级数∑∞='1)(n nx u 在],[b a 上一致收敛,则级数∑∞=1)(n n x u 在],[b a 上也一致收敛,且可 逐项求导,即有∑∑∞=∞='='⎪⎪⎭⎫⎝⎛='11)()()(n nn n x u x u x s (7.3) 四、 幂级数的一致收敛性定理5 如果幂级数∑∞=1n n n x a 的收敛半径为,0>R 则此级数在),(R R -内的任一闭区间],[b a 上一致收敛.定理6 如果幂级数∑∞=1n n n x a 的收敛半径为,0>R 则其和函数)(x s 在),(R R -内可导,且有逐项求导公式,)(111∑∑∞=-∞=='⎪⎪⎭⎫ ⎝⎛='n n n n n n x na x a x s逐项求导后所得到的幂级数与原级数有相同的收敛半径.例题选讲:一致收敛的概念例1(讲义例1)考察函数项级数+-++-+-+-)()()(1232n n x x x x x x x的和函数的连续性.本例表明,即使函数项级数的每一项都在[a , b ]上连续,并且级数在[a , b ]上收敛,但其和函数却不一定在[a , b ]上连续;同样也可举例说明,函数项级数的每一项的导数及积分所成的级数的和也不一定等于它们的和函数的导数及积分. 那么在什么条件下,我们才能够从级数每一项的连续性得出它的和函数的连续性,从级数的每一项的导数及积分所成的级数之和得出原级数的和函数的导数及积分呢? 要回答这个问题,就需要引入函数项级数的一致收敛性概念.例2(讲义例2)研究级数∑∞=+⎪⎪⎭⎫⎝⎛+-111n n n n x n x 在区间]1,1[-上的一致收敛性.例3(讲义例3)研究级数∑∞=-0)1(n n x x 在区间[0,1]上的一致收敛性.例4(讲义例4)证明级数++++22222sin 22sin 1sin nx n x x 在),(+∞-∞上一致收敛.例5(讲义例5)判别级数∑∞=+1241n x n x在),(+∞-∞上一致收敛. 课堂练习1. 研究级数+⎪⎭⎫ ⎝⎛-+-+++⎪⎭⎫ ⎝⎛+-+++111112111n x n x x x x 在区间),0[+∞上的一致收敛性.魏尔斯特拉斯(Weierstrass, Karl Wilhelm ,1815~1897)魏尔斯特拉斯德国数学家,1815年10月31日生于德国威斯特伐利亚地区的奥斯登费尔特;1897年2月19日卒于柏林。
第十三章 函数列与函数项级数 2 一致收敛函数列与函数项级数的性质定理13.8:设函数列{f n }在(x,x 0)∪(x 0,b)上一致收敛于f(x),且对每个n ,x n lim →f n (x)=a n ,则∞→n lim a n 和0x n lim →f(x)均存在且相等.证:∀ε>0,∵{f n }一致收敛于f(x),∴∃N>0,当n>N 和任意自然数p , 对一切x ∈(x,x 0)∪(x 0,b)有,|f n (x)-f n+p (x)|< ε,∴|a n -a n+p |=0x n lim →|f n (x)-f n+p (x)|≤ε,∴{a n }是收敛数列. 设∞→n lim a n =A ,则∀ε>0,∃N>0,当n>N 时,对一切x ∈(x,x 0)∪(x 0,b)同时有, |f n (x)-f(x)|<3ε和|a n -A|<3ε. 特别取n=N+1,有|f N+1(x)-f(x)|<3ε和|a N+1-A|<3ε. 又0xn lim →f N+1(x)=a N+1,∴∃δ>0, 当0<|x-x 0|<δ时,|f N+1(x)-a N+1|<3ε,从而当x 满足0<|x-x 0|<δ时,有 |f(x)-A|≤|f N+1(x)-f(x)|+|f N+1(x)-a N+1|+|a N+1-A|<3ε+3ε+3ε=ε, 即0xn lim →f(x)=A ,得证!注:定理13.8指出:∞→→n x n lim lim 0f n (x)=0xn n lim lim →∞→f n (x).定理13.9:(连续性)若函数列{f n }在区间I 上一致收敛,且每一项都连续,则其极限函数f 在I 上也连续.证:设x 0为I 上任一点,∵0xn lim →f n (x)=f n (x 0),由定理13.8知, 0x n lim →f(x)存在,且0x n lim →f(x)=∞→n lim f n (x 0)=f(x 0),∴f(x)在I 上连续.注:定理13.9指出:各项为连续函数的函数列在区间I 上其极限函数不连续,则此函数列在区间I 上不一致收敛. 如: 函数列{x n }各项在(-1,1]上都连续,但其极限函数f(x)=⎩⎨⎧=< 1x 11|x |0,,在x=1时不连续,所以{x n }在(-1,1]上不一致收敛.推论:若连续函数列{f n }在区间I 上内闭一致收敛于f ,则f 在I 上连续.定理13.10:(可积性)若函数列{f n }在[a,b]上一致收敛,且每一项都连续,则⎰∞→b an lim f n (x)dx=⎰∞→ban n (x )f lim dx.证:设f 是{f n }在[a,b]上的极限函数. 由定理13.9,f 在[a,b]上连续, ∴f n (n=1,2,…)与f 在[a,b]上都可积. ∵在[a,b]上f n (x)⇉f(x) (n →∞), ∴∀ε>0,∃N>0,当n>N 时,对一切x ∈[a,b]都有|f n (x)-f(x)|<ε. 根据定积分的性质,当n>N 时,有⎰⎰-baban f(x)dx (x)dx f =f(x))dx (x)(f ban -⎰≤dx f(x )(x )f ban ⎰-≤ε(b-a).∴⎰∞→ban n(x )f lim dx=⎰ba f(x )dx =⎰∞→ba n lim f n (x)dx. 得证!例1:举例说明当{f n (x)}收敛于f(x)时,一致收敛性是极限运算与积分运算交换的充分条件,但不是必要条件.解:如f n (x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<≤<≤ 1x n 10,n 1x n 21x ,2na -a 2n21x 0 ,x 2na n n n , n=1,2,…. 其图像如图:{f n (x)}是[0,1]上的连续函数列,且∀x ∈[0,1],∞→n lim f n (x)=0=f(x). 又Dx sup ∈|f n (x)-f(x)|=a n ,∴{f n (x)}在[0,1]上一致收敛于0的充要条件是:∞→n lim a n =0.∵⎰10n (x )f dx=2na n,∴⎰10n (x )f dx →⎰10f(x )dx=0的充要条件是:2n a lim n n∞→=0. 当a n ≡1时,{f n (x)}在[0,1]上不一致收敛于f(x),但定理13.10仍成立. 而当a n =n 时,{f n (x)}不一致收敛于f(x), 且⎰10n (x )f dx ≡21不一致收敛于⎰10f(x )dx=0.定理13.11:(可微性)设{f n }为定义在[a,b]上的函数列,若x 0∈[a,b]为{f n }的收敛点,{f n }的每一项在[a,b]上有连续的导数,且{f ’n }在[a,b]上一致收敛,则())x (f lim dx d n n ∞→=⎪⎭⎫⎝⎛∞→)x (f dx d limn n . 证:设)x (f lim 0n n ∞→=A ,f ’n ⇉g (n →∞), x ∈[a,b],则对任一x ∈[a,b],总有f n (x)=f n (x 0)+⎰'x x n 0(t)f dt. 两边对n →∞取极限得:)x (f lim n n ∞→=A+⎰xx 0g(t)dt ,又)x (f lim n n ∞→=f(x),∴f(x)=A+⎰xx 0g(t)dt. 两边微分得证!推论:设函数列{f n }定义在区间I 上的,若x 0∈I 为{f n }的收敛点,且{f ’n }在I 上内闭一致收敛,则f 在I 上可导,且f ’(x)=())x (f lim n n '∞→.例2:举例一致收敛性是极限运算与求导运算交换的充分条件,但不是必要条件. 解:如函数列f n (x)=2n 1 ln(1+n 2x 2)及f ’n (x)=22x n 1nx+, n=1,2,… 在[0,1]上都收敛于0,即∞→n lim f n (x)=∞→n lim f ’n (x)=0,∴在[0,1]上,∞→n lim f ’n (x)=(∞→n lim f n (x))’成立.又由][0,1x ∞n max lim ∈+→|f ’n (x)-f ’(x)|=nx 2nx lim∞n +→=21, 知 导函数列{f ’n (x)}在[0,1]上不一致收敛. 但对任意δ>0,有,1][δx sup ∈|f ’n (x)-f ’(x)|=22,1] [δx x n 1nx sup+∈≤22δn 1n+→0 (n →∞), ∴{f ’n }在(0,1]上内闭一致收敛. ∴在(0,1]上,∞→n lim f ’n (x)=(∞→n lim f n (x))’成立.定理13.12:(连续性)若函数项级数∑(x)u n 在区间[a,b]上一致收敛,且每一项都连续,则其和函数在[a,b]上也连续. 即有:∑⎪⎭⎫ ⎝⎛→(x)u lim nx n 0=()∑→(x)u lim n x n 0. 证:设x 0为[a,b]上任意一点,∑(x)u n 在区间[a,b]上一致收敛于S(x). 则∀ε>0,∃N>0,当n>N 时,对一切x ∈[a,b],有|S(x)-S n (x)|<3ε, |S n (x 0)-S(x 0)|<3ε, 又u n (x)在[a,b] 上连续(n=1,2,……), ∴对取定的n>N ,S n (x)在[a,b]上连续,∴对上述的ε,∃δ>0, 当x ∈[a,b],且|x-x 0|<δ时,|S n (x)-S n (x 0)|<3ε ,∴当x ∈[a,b]时,|S(x)-S(x 0)|=|S(x)-S n (x)+S n (x)-S n (x 0)+S n (x 0)-S(x 0)| ≤|S(x)-S n (x)|+|S n (x)-S n (x 0)|+|S n (x 0)-S(x 0)|<ε. 即S(x)在x 0连续, 从而在[a,b]上连续. 得证!定理13.13:(逐项求积) 若函数项级数∑(x)u n 在区间[a,b]上一致收敛,且每一项都连续,则∑⎰ba n (x )u dx =⎰∑ba n (x )u dx.定理13.14:(逐项求导) 若函数项级数∑(x)u n 在每一项都有连续的导函数,x 0∈[a,b]为∑(x)u n 的收敛点,且∑'(x)u n 在[a,b]上一致收敛,则∑⎪⎭⎫ ⎝⎛(x )u dx d n =()∑(x)u dxdn . 证:设∑'(x)u n 在[a,b]上一致收敛于S *(x),∵u ’n (x)在[a,b]上连续, 由定理13.12知,S *(x)在[a,b]上连续. 又由定理13.13知,∀x ∈[a,b], 有⎰xa *(t)S dt=⎰∑'ba n (t)u dt=∑⎰'xa n (t)u dt =∑(x)u n -∑(a)u n =S(x)-S(a). 等式两端对x 求导得:S ’(x)=S *(x)=∑'(x)u n ,得证!例3:设u n (x)=3n1ln(1+n 2x 2), n=1,2,…. 证明:函数项级数∑(x)u n 在[0,1]上一致收敛,并讨论其和函数在[0,1]上的连续性、可积性与可微性. 证:对每个n ,易见u n (x)在[0,1]上递增,且当t ≥1时,有ln(1+t 2)<t , ∴u n (x)≤u n (1)=3n 1ln(1+n 2)<3n 1·n=2n1, n=1,2,… 又∑2n1收敛,∴∑(x)u n 在[0,1]上一致收敛. 由每一个u n (x)在[0,1]上连续,知其和函数在[0,1]上的连续且可积.又u ’n (x)=)x n 1(n x2n 2232+=)x n 1(n 2x 22+≤)x n 1(n 2nx 222+≤2n 1, n=1,2,…知 ∑'(x)u n在[0,1]上一致收敛. ∴其和函数在[0,1]上可微.例4:证明:函数ζ(x)=∑∞=1n x n 1在(1,+∞)上有连续的各阶导函数. 证:记u n (x)=x n 1, u n (k)(x)=(ln n 1)k x n 1=(-1)k x knn ln , k=1,2,…. 对任意x ∈[a,b]⊂(1,+∞),有|u n (k)(x)|=xkn nln≤a k nnln , k=1,2,….由∞→n lim 1)/2-(a k n n ln =0知,当n 充分大时,有1)/2-(a k n nln <1,从而 xk n n ln =1)/2-(a k 1)/2(a n n ln n 1⋅+<1)/2(a n 1+, 又∑+1)/2(a n 1收敛, ∴∑∞=1n (k )n (x )u 在[a,b]上一致收敛,从而∑∞=1n (k )n (x)u 在(1,+∞)上内闭一致收敛. ∴ζ(x)在(1,+∞)上有连续的各阶导函数,且ζ (k)(x)=(-1)k xkn nln, k=1,2,….习题1、讨论下列函数列在所定义的区间上:a. {f n }与{f ’n }的一致收敛性;b. {f n }是否有定理13.9~11的条件与结论.(1)f n (x)=nx n2x ++, x ∈[0,b];(2)f n (x)=x-n x n , x ∈[0,1];(3)f n (x)=nx 2-nx e, x ∈[0,1].解:(1)记∞n lim +→f n (x)=nx n2x lim∞n +++→=1=f(x); b][0,x sup ∈|f n (x)-f(x)|=nx xsupb][0,x +∈→0 (n →∞),∴{f n }在[0,b]上一致收敛性;记∞n lim +→f ’n (x)=2∞n n)(x nlim++→=g(x); b][0,x sup ∈|f ’n (x)-g(x)|=2b][0,x n)(x nsup+∈→0 (n →∞),∴{f ’n }在[0,b]上一致收敛性. 又∵f n (x)=nx n2x ++和f ’n (x)=2n)(x n +, n=1,2,… 在[0,b]上都连续, ∴{f n }有定理13.9~11的条件与结论.(2)记∞n lim +→f n (x)=⎪⎪⎭⎫ ⎝⎛+→n x -x lim n ∞n =x=f(x); [0,1]x sup ∈|f n (x)-f(x)|=n x sup n[0,1]x ∈→0 (n →∞),∴{f n }在[0,1]上一致收敛性;记g(x)=∞n lim +→f ’n (x)=∞n lim +→(1-x n-1)=⎩⎨⎧<≤=1x 01,1 x 0,;∵{f ’n (x)}各项在[0,1]上连续,而g(x)在[0,1]不连续, ∴{f ’n }在[0,1]上不一致收敛性.又f n (x)=x-nx n, n=1,2,… 在[0,1]上都连续,∴{f n }有定理13.9~10的条件与结论,但不具有13.11的条件. 又f ’(x)=x ’=1≠∞n lim +→f ’n (x),∴{f n }也不具有13.11的条件.(3)记∞n lim +→f n (x)=2-nx ∞n nx e lim +→=0=f(x); [0,1]x sup ∈|f n (x)-f(x)|=2-nx [0,1]x nxe sup ∈=n ·2)1/2n n(e n21-=1/2e 2n →∞ (n →∞),∴{f n }在[0,1]上不一致收敛性;记g(x)=∞n lim +→f ’n (x)=2-nx ∞n ne lim +→(1-2nx 2)=⎩⎨⎧=∞+≤<0x ,1x 0 0,;∵{f ’n (x)}各项在[0,1]上连续,而g(x)在[0,1]不连续,∴{f ’n }在[0,1]上不一致收敛性. 从而{f n }不具有定理13.9~11的条件. ∵f(x)=0在[0,1]上连续,∴{f n }有定理13.9的结论.∵⎰+→10nx -∞n 2nx e lim dx=⎰+→10nx -∞n 2e 21lim d(nx 2)=⎪⎭⎫ ⎝⎛-+→n ∞n e 2121lim =21≠⎰+→10n ∞n )x (f lim dx=0. 又{f ’n (x)}在x=0不收敛;∴{f n }不具有定理13.10~11的结论.2、证明:若函数列{f n }在[a,b]上满足定理13.11的条件,则{f n }在[a,b]上一致收敛.证:设f ’n (x)⇉g(x) (n →∞), x ∈[a,b],则∀ε>0,∃N 1>0,当n>N 1时, 对一切t ∈[a,b],有|f ’n (t)-g(t)|<)a b (2ε-; 又f n (x)点x 0收敛,∴对上述的ε>0,∃N 2>0,当n>N 2时,有|f n (x 0)-f(x 0)|<2ε. ∵对任意x,x 0∈[a,b]有f n (x)=f n (x 0)+⎰'xx n 0(t)f dt ,∴f(x)=∞→n lim f n (x)=f(x 0)+⎰xx 0g(t)dt. 取N=max{N 1,N 2},则当n>N 时,有∴|f n (x)-f(x)|=|f n (x 0)-f(x 0)+[]⎰'xx ng(t)-(t)f dt | ≤|f n (x 0)-f(x 0)|+|⎰'xx ng(t)-(t)f dt |<ε. 得证.3、设S(x)=∑∞=1n 21-n nx , x ∈[-1,1],计算积分⎰x 0S(t)dt .解:∵21-n n x ≤2n 1, x ∈[-1,1],由M 判别法知∑∞=1n 21-n n x 在[-1,1]上一致收敛.又21-n n x (n=1,2,…)在[-1,1]上连续,∴⎰x 0S(t)dt =∑⎰∞=1n x 021-n dt n t =∑∞=1n 3nnx .4、S(x)=∑∞=1n nn cosnx , x ∈R ,计算积分⎰x0S(t)dt .解:∵nn cosnx ≤nn 1, x ∈R ,由M 判别法知∑∞=1n nn cosnx 在R 上一致收敛.又nn cosnx (n=1,2,…)在R 上连续,∴⎰x0S(t)dt =∑⎰∞=1n xdt nn cosnt =∑∞=1n 2nnsinnx .5、S(x)=∑∞=1n nx -ne , x>0,计算积分⎰ln3ln2S(t)dt .解:由(ne -nx )’=-n 2e -nx <0,知ne -nx 单调减,∴对任何x ∈[ln2,ln3],有 ne -nx ≤ne-nln2=n 2n . 又由n n 2n =2n n→21<1 (n →∞),知∑n 2n收敛.∴∑∞=1n nx -ne 在[ln2,ln3]上一致收敛. 又ne -nx (n=1,2,…)在[ln2,ln3]上连续,∴⎰ln3ln2S(t)dt =∑⎰∞=1n ln3ln2nt-dt ne =∑∞=⎪⎭⎫⎝⎛-1n n n3121=21.6、证明:函数f(x)=∑3n nxsin 在R 上连续,且有连续的导函数. 证:∵3n nx sin ≤3n 1, x ∈R ,由M 判别法知∑3nnxsin 在R 上一致收敛. 又3nnxsin (n=1,2,…)在R 上连续,∴f(x)在R 上连续. ∵|(3n nx sin )’|=|2n cosnx |≤2n 1,由M 判别法知∑2n cosnx在R 上一致收敛.又2ncosnx(n=1,2,…)在R 上连续,∴f(x)在R 上有连续的导函数.7、证明:定义在[0,2π]上的函数项级数∑∞=0n n cosnx r (0<r<1)满足定理13.13条件,且⎰∑⎪⎭⎫⎝⎛∞=2π0n n dt cosnx r =2π. 证: ∵|r n cosnx|≤r n (0<r<1), x ∈[0,2π],又∑ r n (0<r<1)收敛, 由M 判别法知∑∞=0n n cosnx r 在[0,2π]上一致收敛.又r ncosnx 在[0,2π]上连续,∴∑∞=0n n cosnx r (0<r<1)满足定理13.13条件,且⎰∑⎪⎭⎫ ⎝⎛∞=2π0n n dx cosnx r =∑⎰∞=0n 2π0ncosnx dx r . 又⎰2π0dx =2π,⎰2π0cosnx dx =0(n=1,2…)∴⎰∑⎪⎭⎫⎝⎛∞=2π00n n dt cosnx r =2π.8、讨论下列函数列在所定义区间上的一致收敛性及极限函数的连续性、可微性和可积性:(1)f n (x)=x 2-nx e ,n=1,2,…, x ∈[-L,L]; (2)f n (x)=1nx nx+, n=1,2,…, I. x ∈[0,+∞);II. x ∈[a,+∞) (a>0). 解:(1)∵∞n lim +→f n (x)=0=f(x), x ∈[-L,L],且L][-L,x sup ∈|f n (x)-f(x)|=L][-L,x sup ∈| x 2-nx e |≤2ne1→0 (n →∞),∴{f n (x)}在[-L,L]上一致收敛于0,且其极限函数f(x)=0在[-L,L]上连续可积可微. 又f n (x)=x 2-nx e ,n=1,2,…在[-L,L]上连续,∴()⎰+→LL -n ∞n dx (x )f lim =⎪⎭⎫ ⎝⎛⎰+→LL -n ∞n (x)dx f lim . ∵f ’n (x)=2-nx e(1-2nx 2), 且(x)f lim n ∞n '+→=⎩⎨⎧=≠≤≤ 0x 10x L x L -0,,且, ∴[(x)f lim n ∞n +→]’≠(x)f lim n ∞n '+→.(2)∵f(x)=∞n lim +→f n (x)=1=⎩⎨⎧+∞<≤<=x a 010x 0,,,且)[a,x sup +∞∈|f n (x)-f(x)|=1nx 1-sup)[a,x ++∞∈=1na 1+→0 (n →∞), ∴{f n (x)}在[a,+∞) (a>0)上一致收敛于1,在[0,+∞)上内闭一致收敛. ∴其极限函数不在[0,+∞)上连续可积可微;但在[a,+∞) (a>0)上其极限函数f(x)=1连续可微,但不可积.9、证明:函数S(x)=∑xn 1在(1,+∞)上连续,且有连续的各阶导数. 证:∀x ∈(1,+∞),取1<p<x ,则0<x n 1≤p n1,由M 判别法,知 ∑x n 1在[p,+∞)上一致收敛,在(1,+∞)上内闭一致收敛. 又x n 1在(1,+∞)上连续,∴S(x)在(1,+∞)上连续. 又)k (x n 1⎪⎭⎫ ⎝⎛=x k kn n ln )1(-, k=1,2,…在(1,+∞)上连续. ∀x ∈(1,+∞),取1<p<x ,使x k kn n ln )1(-≤p k n n ln . 固定k ,取q>p>1, 由p k n n ln /q n 1=q -p k n n ln →0 (n →∞),及∑q n1收敛,知∑p k n n ln 收敛, ∴∑-x k kn n ln )1(在[p,+∞)上一致收敛,在(1,+∞)上内闭一致收敛. ∴S (k)(x)=∑⎪⎭⎫ ⎝⎛)k (x n 1=∑-x k kn n ln )1( 在(1,+∞)上连续. 得证!10、设f 在(-∞,+∞)上有任何阶导数,记F n =f (n), 且在任何有限区间内F n ⇉φ (n →∞),试证:φ(x)=ce x (c 为常数). 证:由条件可知φ’(x)=[∞n lim +→f (n)(x)]’=∞n lim +→[f (n)(x)]’ =∞n lim +→f (n+1)(x)=φ(x). 即有φ(x )(x )φ'=1,两边取积分得:⎰'φ(x )(x )φdx =⎰dx +C ,即⎰φ(x )1d φ(x) =x+c 1, ∴ln φ(x)=x+c 1,即φ(x)=1c x e +=1c e e x =ce x (其中c=1c e 为常数).。
第十三章 函数列与函数项级数§ 1 一致收敛性一.函数列及极限函数:对定义在区间I 上的函数列)}({x f n ,介绍概念:收敛点,收敛域( 注意定义域与收敛域的区别 ),极限函数等概念.逐点收敛 ( 或称为“点态收敛” )的“N −ε”定义. 例1 对定义在) , (∞+∞−内的等比函数列)(x f n =n x , 用“N −ε”定义验证其收敛域为] 1 , 1 (−, 且∞→n lim )(x f n = ∞→n lim n x =⎩⎨⎧=<.1 , 1 ,1 || , 0 x x 例2 )(x f n=n nxsin . 用“N −ε”定义验证在) , (∞+∞−内∞→n lim )(x f n =0. 例3 考查以下函数列的收敛域与极限函数: ) (∞→n .⑴ )(x f n=x x xx n n n n −−+−. )(x f n →,sgn x R ∈x .⑵)(x f n =121+n x.)(x f n →,sgn x R ∈x .⑶ 设L L ,,,,21n r r r 为区间] 1 , 0 [上的全体有理数所成数列. 令)(x f n =⎩⎨⎧≠∈=.,,, ] 1 , 0 [ , 0,,,, , 12121n n r r r x x r r r x L L 且)(x f n →)(x D , ∈x ] 1 , 0 [.⑷)(x f n =2222x n xe n −. )(x f n →0, R ∈x . ⑸ )(x f n =⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<≤−<≤−−+ . 121 , 0,2121 ,42,210 ,4111x x x x x n n n nn nn有)(x f n →0, ∈x ] 1 , 0 [, ) (∞→n . ( 注意∫≡101)(dx x f n .)二. 函数列的一致收敛性:问题: 若在数集D 上)(x f n →)(x f , ) (∞→n . 试问: 通项)(x f n 的解析性质是否必遗传给极限函数)(x f ? 答案是否定的. 上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但∞→n lim()∫∫∞→≠110)(lim )(dxx f dx x f n n n . 用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等函数的一种手段. 对这种函数, ∞→n lim )(x f n 就是其表达式.于是,由通项函数的解析性质研究极限 函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗传给极限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓 “整体收敛”的结果.定义 ( 一致收敛 )一致收敛的几何意义.Th1 (一致收敛的Cauchy 准则 ) 函数列}{n f 在数集D 上一致收敛,⇔N , 0∃>∀ε, , , N n m >∀⇒ ε<−n m f f .( 介绍另一种形式ε<−+n p n f f .)证 )⇒ ( 利用式.f f f f f f n m n m −+−≤−))⇐ 易见逐点收敛. 设∞→n lim)(x f n =)(x f ,……,有2 |)()(|ε<−x f x f n m .令∞→m , ⇒εε<≤−2|)()(|x f x f n 对∈∀x D 成立, 即)(x f n⎯→⎯⎯→⎯)(x f ,) (∞→n ,∈x D .系1 在D 上nf ⎯→⎯⎯→⎯f , ) (∞→n ,⇔ 0|)()(|sup lim =−∞→x f x f n Dn . 系2 设在数集D 上)(x f n →)(x f , ) (∞→n . 若存在数列}{n x ⊂D , 使0 |)()(|→/−n n n x f x f , 则函数列)}({x f n 在数集D 上非一致收敛 .应用系2 判断函数列)}({x f n 在数集D 上非一致收敛时, 常选 n x 为函数=)(x F n )(x f n ―)(x f 在数集D 上的最值点.验证函数一致收敛性:例4 )(x f nn nxsin =. 证明函数列)}({x f n 在R 内一致收敛.例5)(x f n 2222x n xe n −=. 证明在R 内 )(x f n →0, 但不一致收敛. 证 显然有)(x f n →0, |)()(|x f x f n −= )(x f n 在点n x =n 21处取得极大值22121→/=⎟⎠⎞⎜⎝⎛−ne n f n ,) (∞→n . 由系2 , )}({x f n不一致收敛. 例6221)(x n xx S n +=. 证明在) , (∞+∞−内)(x S n ⎯→⎯⎯→⎯0, ) (∞→n .证 易见 ∞→n lim.0)()(==x S x S n 而n nx x n n x n x x S x S n 21)(1||2211|||)()(|222≤+⋅=+=− 在) , (∞+∞−内成立.由系1 , ⇒ ……例7 对定义在区间] 1 , 0 [上的函数列⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<=≤<−≤≤=. 11 , 0),, 2 , 1 ( , 121 ,22,210 , 2)(22x n n n x n x n n n x x n x f n L证明: ∞→n lim )(x f n =0, 但在] 1 , 0 [上不一致收敛. [1]P 38—39 E3, 参图.证 10≤<x 时, 只要1−>x n , 就有)(x f n=0. 因此, 在] 1 , 0 (上有)(x f =∞→n lim )(x f n =0. 0)0(=n f , ⇒ )0(f =∞→n lim )0(n f =0.于是, 在] 1 , 0 [上有 )(x f =∞→n lim )(x f n =0. 但由于021|)()(|max ]1,0[→/=⎟⎠⎞⎜⎝⎛=−∈n n f x f x f n n x ,) (∞→n ,因此 , 该函数列在] 1 , 0 [上不一致收敛.例8)(x f n =12sin2+n x. 考查函数列)}({x f n 在下列区间上的一致收敛性:⑴ )0( , ] , [>−l l l ; ⑵ ) , 0 [∞+.Ex [1]P 44—46 1⑴—⑸,2,9⑴; P 53—54 1⑴,2,3⑴.三. 函数项级数及其一致收敛性:1. 函数项级数及其和函数:,∑)(x un, 前n 项部分和函数列)}({x S n ,收敛点,收敛域, 和函数, 余项.例9 定义在) , (∞+∞−内的函数项级数( 称为几何级数 )LL +++++=∑∞=n n nx x x x201的部分和函数列为 )1 ( 11)(≠−−=x x x x S nn , 收敛域为) 1 , 1 (−.2. 一致收敛性: 定义一致收敛性.Th2 ( Cauchy 准则 ) 级数∑)(x un在区间D 上一致收敛, ⇔ N ,0∃>∀ε,, , N ∈∀>∀p N n ⇒ ε |)()()(|21<++++++x u x u x u p n n n L 对∈∀x D 成立.系 级数∑)(x u n 在区间D 上一致收敛, ⇒ nu )(x ⎯→⎯⎯→⎯0, ) (∞→n .Th3 级数∑)(x u n在区间D 上一致收敛, ⇔∞→n lim =∈|)(|sup x R n x D∞→n lim 0|)()(|sup =−∈x S x S n x D.例10 证明级数∑∞=−+−121) 1(n n n x在R 内一致收敛 .证 令n u )(x =n x n +−−21) 1(, 则∞→n 时≤++−+−++=+++++++ |) 1(11||)()()(|21221pn x n x x u x u x u p p n n n L L11112→+≤++≤n n x 对∈∀x R 成立. ……例11 几何级数∑∞=0n nx在区间] , [a a −)10(<<a 上一致收敛;但在) 1 , 1(−内非一致收敛.证 在区间] , [a a −上 , 有11sup |)()(|sup ],[],[→−=−−=−−−a a a x x S x S n na a n a a , ) (∞→n . ⇒∑一致收敛 ;而在区间) 1 , 1(−内 , 取∈+=1n nx n ) 1 , 1(−, 有∞→⎟⎠⎞⎜⎝⎛+=+−⎟⎠⎞⎜⎝⎛+≥−=−−−−1)1,1()1,1(1111 1sup |)()(|sup n nn n n n n nn n n x x x S x S , ) (∞→n . ⇒∑非一致收敛.( 亦可由通项nn x x u =)(在区间) 1 , 1(−内非一致收敛于零,⇒ ∑非一致收敛.)几何级数∑∞=0n nx虽然在区间) 1 , 1(−内非一致收敛 , 但在包含于) 1 , 1(−内的任何闭区间上却一致收敛 . 我们称这种情况为“闭一致收敛”. 因此 , 我们说几何级数∑∞=0n nx在区间) 1 , 1(−内闭一致收敛 .Ex [1]P 44—45 1 ⑹⑺, 4,6.四. 函数项级数一致收敛判别法:1.M - 判别法:Th 4 ( Weierstrass 判别法 ) 设级数∑)(x un定义在区间D 上,∑nM是收敛的正项级数.若当n 充分大时, 对∈∀x D 有||)(x u n n M ≤, 则∑在D 上一致收敛 .证,|)(| )( 1111∑∑∑∑==+=++=+=≤≤pi pi i n pi i n i n pi i n M M x u x u 然后用Cauchy 准则.亦称此判别法为优级数判别法. 称满足该定理条件的正项级数∑nM是级数∑)(x un的一个优级数. 于是Th 4 可以叙述为: 若级数∑)(x un在区间D 上存在优级数 , 则级数∑)(x u n在区间D 上一致收敛 . 应用时, 常可试取|})({|sup x u M n Dx n∈=.但应注意, 级数∑)(x u n在区间D 上不存在优级数 , ⇒/ 级数∑)(x u n在区间D 上非一致收敛. 参阅[1]P 45 8.注意区分用这种控制方法判别函数列和函数项级数一致收敛性的区别所在.例12 判断函数项级数∑∞=i n n nx 2sin 和 ∑∞=i n n nx 2cos 在R 内的一致收敛性 . 例13 设) , 2 , 1 ( )(L =n x u n 是区间] , [b a 上的单调函数. 试证明 : 若级数∑)(a un与∑)(b un都绝对收敛, 则级数∑)(x un在区间] , [b a 上绝对并一致收敛 .简证 , 留为作业. |)(||)(| |)(|b u a u x u n n n +≤.……2. Abel 判别法:Th 5 设 ⅰ> 级数∑)(x un在区间I 上收敛; ⅱ> 对每个∈x I , 数列)}({x v n单调 ; ⅲ> 函数列)}({x v n 在I 上一致有界, 即0 >∃M , 使对I ∈∀x 和n ∀, 有M x v n |)(|≤. 则级数∑)()(x v x u n n 在区间I 上一致收敛 . ( [1]P 43 )3。