正弦信号相位测量
- 格式:docx
- 大小:33.41 KB
- 文档页数:2
实验一 元件特性的示波测量法一、实验目的1、学习用示波器测量正弦信号的相位差。
2、学习用示波器测量电压、电流、磁链、电荷等电路的基本变量3、掌握元件特性的示波测量法,加深对元件特性的理解。
二、实验任务1、 用直接测量法和李萨如图形法测量RC 移相器的相移ϕ∆即uC u sϕϕ-实验原理图如图5-6示。
2、 图5-3接线,测量下列电阻元件的电流、电压波形及相应的伏安特性曲线(电源频率在100Hz~1000Hz 内): (1)线性电阻元件(阻值自选)(2)给定非线性电阻元件(测量电压范围由指导教师给定)电路如图5-7 3、按图5-4接线,测量电容元件的库伏特性曲线。
4、测量线性电感线圈的韦安特性曲线,电路如图5-55、测量非线性电感线圈的韦安特性曲线,电源通过电源变压器供给,电路如图5-8所示。
图 5-7 图 5-8这里,电源变压器的副边没有保护接地,示波器的公共点可以选图示接地点,以减少误差。
三、思考题1、元件的特性曲线在示波器荧光屏上是如何形成的,试以线性电阻为例加以说明。
答:利用示波器的X-Y方式,此时锯齿波信号被切断,X轴输入电阻的电流信号,经放大后加至水平偏转板。
Y轴输入电阻两端的电压信号经放大后加至垂直偏转板,荧屏上呈现的是u x,u Y的合成的图形。
即电流电压的伏安特性曲线。
3、为什么用示波器测量电路中电流要加取样电阻r,说明对r的阻值有何要求?答:因为示波器不识别电流信号,只识别电压信号。
所以要把电流信号转化为电压信号,而电阻上的电流、电压信号是同相的,只相差r倍。
r的阻值尽可能小,减少对电路的影响。
一般取1-9Ω。
四、实验结果1.电阻元件输入输出波形及伏安特性2.二极管元件输入输出波形及伏安特性实验二 基尔霍夫定律、叠加定理的验证 和线性有源一端口网络等效参数的测定一、实验目的1、加深对基尔霍夫定律、叠加定理和戴维南定理的内容和使用范围的理解。
2、学习线性有源一端口网络等效电路参数的测量方法3、学习自拟实验方案,合理设计电路和正确选用元件、设备、提高分析问题和解决问题的能力 二、实验原理 1、基尔霍夫定律:基尔霍夫定律是电路普遍适用的基本定律。
正弦波相位采样电路
正弦波相位采样电路是一种能够检测正弦波信号的相位信息的电路。
在采样过程中,通过将正弦波信号转换为相应的电平信号,并利用数字信号处理技术对采样数据进行处理,可以获得正弦波信号的相位信息。
下面是一个简单的正弦波相位采样电路的实现方案:
1.模拟-数字转换器(ADC):将正弦波信号转换为数字信号,用于后续的数字信号处理。
2.采样保持电路(S/H):用于在采样期间保持正弦波信号的幅度不变,以便于ADC进行准确的采样。
3.数字信号处理器(DSP):用于对ADC输出的数字信号进行处理,包括滤波、频谱分析和相位检测等。
4.相位检测算法:用于从数字信号中提取相位信息。
可以采用多种算法,如互相关法、自相关法、基于FFT的算法等。
在具体实现时,需要根据实际情况选择合适的ADC、DSP和相位检测算法,并设计合适的采样保持电路,以保证采样的准确性和可靠性。
此外,还需要注意采样频率、采样点数等参数的选择,以满足实际应用的需求。
基于LabVIEW 的正弦信号频率与相位测量1. 前言信号频率与相位的测量具有重要的实际意义。
本文调研了频率与相位的多种测量算法,并借助LabVIEW 编程实现。
在此基础上,对各种算法进行了比较研究,且提出了行之有效的改进措施。
2. 采样定理与误差分析2.1 采样定理时域信号()f t 的频谱若只占据有限频率区间m m ωω(-,),则信号可以用等间隔的采样值唯一表示,而最低采样频率为m 2f 。
采样定理表明:信号最大变化速度决定了信号所包含的最高频率分量,要使采样信号能够不失真地反映原信号,必须满足在最高频率分量的一个周期内至少采样两个点。
2.2 误差分析对连续周期信号()a x t 进行采样得离散序列()d x n ,如果满足采样定理,则离散序列()d x n 的傅里叶级数()dg X k 是连续信号()a x t 的傅里叶级数1()ag X k ω的周期延拓,否则会出现两种形式的误差。
2.2.1 泄漏误差在连续信号()a x t 一个周期1T 内采样1N 个点,如果正好满足11s N T T =(s T 为采样间隔),则是完整周期采样,采样结果()d x n 仍为周期序列,周期为1N 。
基于()d x n 一个周期1N 个点计算离散傅里叶级数()dg X k ,由()dg X k 可以准确得到连续信号()a x t 的傅里叶级数1()ag X k ω。
如果在连续信号()a x t 的M 个周期时间内采样整数1N 个点,即11s N T MT =,也是完整周期采样。
在此情况下,采样结果()d x n 仍为周期序列,周期为1N ,但()d x n 的一个周期对应于()a x t 的M 个周期,由离散序列()d x n 仍然可以准确得到连续信号()a x t 的频谱。
如果以上两种情况都不满足,则为不完整周期抽样,()d x n 也不再是周期序列。
如果取()d x n 近似周期的1N 个点计算傅立叶级数,则产生误差,此误差称为泄漏误差。
同频正弦信号间相位差测量的设计[导读]介绍了以单片机为核心,通过倍频电路实现的两同频正弦信号相位差测量的设计,并对该系统的硬、软件作了比较详尽的阐述。
关键词:信号介绍了以单片机为核心,通过倍频电路实现的两同频正弦信号相位差测量的设计,并对该系统的硬、软件作了比较详尽的阐述。
关键词:单片机,倍频电路,相位差1 引言本设计目的在于测量出任意两相同频率正弦信号之间的相位差,并将测量结果以数字形式显示出来。
具体实现方法为:先通过比较电路将两路同频信号分别转换为相应的脉冲信号,然后将其中的一路信号通过反相器取反后与另一路信号相与,得到一等脉宽的脉冲波形,此脉冲波形的脉宽t,即表示两信号的相位差。
将原信号对应的任意一路脉冲信号(周期为T)倍频后,作为单片机计数器的计数脉冲,并对相位差脉冲记数,得记数值为W。
设倍频电路的倍频系数为A,则记数脉冲周期为T/A,可得到两信号相位差角计算公式如下:其中N=360/A,N为常数,是相位测量系统的最小精确度。
经过单片机系统编程即可实现此简单运算式,并将运算结果Q送LED显示。
原理框图如图1所示。
2 系统硬件电路原理分析与设计整个系统硬件电路由比较整形电路、倍频电路、单片机AT89C51及显示电路组成。
2.1 比较整形电路电路采用电压比较器LM339。
LM339内有4个电压比较器,取其中的两个比较器即可。
两路信号分别接两个比较器同相输入端,将反相输入端接地,即构成过零比较电路。
两比较器输出即转换为脉冲信号。
将其中一路脉冲通过反相器CC4069取反后与另一路信号通过与门CC4081相与,可得一等脉宽的脉冲信号,此脉宽即记载着两输入信号之间的相位差,我们称之为相位差脉宽。
转换过程见图2。
2.2 倍频电路由相位差计算公式可知,倍频系数A越大,测量精度就越高,测量越准确。
本电路采用A=720的倍频电路,因此相位测量精度为N=360/720=0.5°,可以满足实际需要。
倍频电路由锁相环集成电路CC4046和双BCD(Binary-Coded DecimalNotation)同步加法计数器CC4518组成。
在电路测试实验中,相位差测量(简称相位测量)的应用很广泛。
例如测量各种滤波器移相器和放大器等双口网络的频率特性时,就需要对它们的输入信号与输出信号之间的相位差进行测量,也就是测量不同频率的正弦信号在通过双口网络时所产生的相位移。
用示波器来进行相位差的测量,能测量的最小相角可达5-10度。
双踪示波器测量相位差时,可采用直接显示波形的方法。
设有两个频率的正弦信号电压
U1=Vm1sin(ωt+φ1)
U2 =Vm2sin(ωt+φ2)
它们之间的相位差为Δφ=(ωt+φ1)-(ωt+φ2)=φ1-φ2 上式中φ1为电压U1的初相,φ2为电压U2的初相,由上式可知,两个同频率的正弦电压的相位差与时间无关。
将这两个被测的正弦信号分别输入到双踪示波器的CHA和CHB两通道内,如图C 所示,此时示波器X轴的线性锯齿波电压同时对两个被测信号进行扫描,调节两条扫描线(即时基线)使之重合,于是在示波器的荧光屏上就可以同时显示出两个信号的波形,如图 D所示。
根据荧光屏上显示的U1和U2两个信号的波形,量出它们的一个周期在示波器时间基线上所占的格数(所对应的相位为360度)和两个波形相位点在时间基线上间距的格数m,从而求得相位差
Δφ=(n/m)*360度
为了读数和计算方便,测量时可以适当调节示波器面板上的相关旋钮,使荧光屏上显示的信号的一个周期恰好为X轴上坐标刻度的九格(或八格),这样X轴上的刻度值每格就代表360度/9=40度(360度/8=45度)。
关于正弦信号相位测量
这次湖北省电子竞赛有一题是多功能计数器,要求测量10到100K的正弦信号的相位,我们的学生做了该题,方案是这样的
1、将两路同频率有相位差的正弦信号整形成方波;(用比较器或者施密特触发器)
2、两路信号二分频后异或得到高电平脉宽与相位(0到360度)成正比的PWM信号(不二分频只能测得0到180度);
3、用等精度测量原理计数测量高低电平时间比,计算相位,需要高稳定度的有源晶振,我们用的是66M的有源晶振,如果器件支持100M的,精度更高。
图中:
f0为高频基准时钟
fA为第一路相位差信号
fA为第二路相位差信号
start为微处理器启动停止测量控制信号
clr为微处理器启动前复位清零信号
state为反馈信号,让微处理器检测测量过程是否开始或结束
hq、lq为计数器,反映高低电平的时间比,处理器测得结果可计算出相位差。
相位差:0x3ec/(0x3ec+0x3e8)=0.5就是360*0.5=180度。