逻辑代数基础1下列等式不正确的是A1 A=1B1A=AC
- 格式:doc
- 大小:607.00 KB
- 文档页数:8
2017年上海市杨浦区高考数学二模试卷一、填空题1.(4分)三阶行列式中,5的余子式的值是.2.(4分)若实数ω>0,若函数f(x)=cos(ωx)+sin(ωx)的最小正周期为π,则ω=.3.(4分)已知圆锥的底面半径和高均为1,则该圆锥的侧面积为.4.(4分)设向量=(2,3),向量=(6,t),若与夹角为钝角,则实数t的取值范围为.5.(4分)集合A={1,3,a2},集合B={a+1,a+2},若B∪A=A,则实数a=.6.(4分)设z1、z2是方程z2+2z+3=0的两根,则|z1﹣z2|=.7.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)<﹣5的解为.8.若变量x、y满足约束条件,则z=y﹣x的最小值为.9.小明和小红各自掷一颗均匀的正方体骰子,两人相互独立地进行,则小明掷出的点数不大于2或小红掷出的点数不小于3的概率为.10.设A是椭圆+=1(a>0)上的动点,点F的坐标为(﹣2,0),若满足|AF|=10的点A有且仅有两个,则实数a的取值范围为.11.已知a>0,b>0,当(a+4b)2+取到最小值时,b=.12.设函数f a(x)=|x|+|x﹣a|,当a在实数范围内变化时,在圆盘x2+y2≤1内,且不在任一f a(x)的图象上的点的全体组成的图形的面积为.二、选择题13.设z∈C且z≠0,“z是纯虚数”是“z2∈R”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既不充分也不必要条件14.设等差数列{a n}的公差为d,d≠0,若{a n}的前10项之和大于其前21项之和,则()A.d<0 B.d>0 C.a16<0 D.a16>015.如图,N、S是球O直径的两个端点,圆C1是经过N和S点的大圆,圆C2和圆C3分别是所在平面与NS垂直的大圆和小圆,圆C1和C2交于点A、B,圆C1和C3交于点C、D,设a、b、c分别表示圆C1上劣弧CND的弧长、圆C2上半圆弧AB的弧长、圆C3上半圆弧CD的弧长,则a、b、c的大小关系为()A.b>a=c B.b=c>a C.b>a>c D.b>c>a16.对于定义在R上的函数f(x),若存在正常数a、b,使得f(x+a)≤f(x)+b 对一切x∈R均成立,则称f(x)是“控制增长函数”,在以下四个函数中:①f (x)=x2+x+1;②f(x)=; ③f(x)=sin(x2);④f(x)=x•sinx.是“控制增长函数"的有()A.②③B.③④C.②③④D.①②④三、解答题17.(14分)如图,正方体ABCD﹣A1B1C1D1中,AB=4,P、Q分别是棱BC与B1C1的中点.(1)求异面直线D1P和A1Q所成角的大小;(2)求以A1、D1、P、Q四点为四个顶点的四面体的体积.18.(14分)已知函数f(x)=.(1)判断函数f(x)的奇偶性,并证明;(2)若不等式f(x)>log9(2c﹣1)有解,求c的取值范围.19.(14分)如图,扇形ABC是一块半径为2千米,圆心角为60°的风景区,P 点在弧BC上,现欲在风景区中规划三条商业街道,要求街道PQ与AB垂直,街道PR与AC垂直,线段RQ表示第三条街道.(1)如果P位于弧BC的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ、PR、RQ每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)20.(16分)设数列{a n}满足a n=A•4n+B•n,其中A、B是两个确定的实数,B ≠0.(1)若A=B=1,求{a n}的前n项之和;(2)证明:{a n}不是等比数列;(3)若a1=a2,数列{a n}中除去开始的两项之外,是否还有相等的两项?证明你的结论.21.(18分)设双曲线Γ的方程为x2﹣=1,过其右焦点F且斜率不为零的直线l1与双曲线交于A、B两点,直线l2的方程为x=t,A、B在直线l2上的射影分别为C、D.(1)当l1垂直于x轴,t=﹣2时,求四边形ABDC的面积;(2)当t=0,l1的斜率为正实数,A在第一象限,B在第四象限时,试比较和1的大小,并说明理由;(3)是否存在实数t∈(﹣1,1),使得对满足题意的任意直线l1,直线AD和直线BC的交点总在x轴上,若存在,求出所有的t的值和此时直线AD与BC交点的位置;若不存在,说明理由.2017年上海市杨浦区高考数学二模试卷参考答案与试题解析一、填空题1.三阶行列式中,5的余子式的值是﹣12.【考点】OU:特征向量的意义.【分析】去掉5所在行与列,即得5的余子式,从而求值.【解答】解:由题意,去掉5所在行与列得:=﹣12故答案为﹣12.【点评】本题以三阶行列式为载体,考查余子式,关键是理解余子式的定义.2.若实数ω>0,若函数f(x)=cos(ωx)+sin(ωx)的最小正周期为π,则ω=2.【考点】H1:三角函数的周期性及其求法.【分析】利用两角和的正弦公式化简函数的解析式,再利用正弦函数的周期性,求得ω的值.【解答】解:实数ω>0,若函数f(x)=cos(ωx)+sin(ωx)=sin(ωx+)的最小正周期为π,∴=π,∴ω=2,故答案为:2.【点评】本题主要考查两角和的正弦公式,正弦函数的周期性,属于基础题.3.已知圆锥的底面半径和高均为1,则该圆锥的侧面积为.【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的侧面积公式代入求出即可.【解答】解:∵圆锥的底面半径为1,高为1,∴母线长l为:=,∴圆锥的侧面积为:πrl=π×1×=π,故答案为:π.【点评】题考查了圆锥的侧面积的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.4.设向量=(2,3),向量=(6,t),若与夹角为钝角,则实数t的取值范围为(﹣∞,﹣4).【考点】9S:数量积表示两个向量的夹角.【分析】由题意可得<0,且、不共线,即,由此求得实数t的取值范围.【解答】解:若与夹角为钝角,向量=(2,3),向量=(6,t),则<0,且、不共线,∴,求得t<﹣4,故答案为:(﹣∞,﹣4).【点评】本题主要考查两个向量的数量公式,两个向量共线的性质,属于基础题.5.集合A={1,3,a2},集合B={a+1,a+2},若B∪A=A,则实数a=2.【考点】18:集合的包含关系判断及应用.【分析】根据并集的意义,由A∪B=A得到集合B中的元素都属于集合A,列出关于a的方程,求出方程的解得到a的值.【解答】解:由A∪B=A,得到B⊆A,∵A={1,3,a2},集合B={a+1,a+2},∴a+1=1,a+2=a2,或a+1=a2,a+2=1,或a+1=3,a+2=a2,或a+1=a2,a+2=3,解得:a=2.故答案为2.【点评】此题考查了并集的意义,以及集合中元素的特点.集合中元素有三个特点,即确定性,互异性,无序性.学生做题时注意利用元素的特点判断得到满足题意的a的值.6.设z1、z2是方程z2+2z+3=0的两根,则|z1﹣z2|=2.【考点】A7:复数代数形式的混合运算.【分析】求出z,即可求出|z1﹣z2|.【解答】解:由题意,z=﹣1±i,∴|z1﹣z2|=|2i|=2,故答案为2.【点评】本题考查复数的运算与球模,考查学生的计算能力,比较基础.7.设f(x)是定义在R上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)<﹣5的解为(﹣∞,﹣3).【考点】3L:函数奇偶性的性质.【分析】根据函数奇偶性的性质求出当x<0的解析式,讨论x>0,x<0,x=0,解不等式即可.【解答】解:若x<0,则﹣x>0,∵当x>0时,f(x)=2x﹣3,∴当﹣x>0时,f(﹣x)=2﹣x﹣3,∵f(x)是定义在R上的奇函数,∴f(﹣x)=2﹣x﹣3=﹣f(x),则f(x)=﹣2﹣x+3,x<0,当x>0时,不等式f(x)<﹣5等价为2x﹣3<﹣5即2x<﹣2,无解,不成立;当x<0时,不等式f(x)<﹣5等价为﹣2﹣x+3<﹣5即2﹣x>8,得﹣x>3,即x<﹣3;当x=0时,f(0)=0,不等式f(x)<﹣5不成立,综上,不等式的解为x<﹣3.故不等式的解集为(﹣∞,﹣3).故答案为(﹣∞,﹣3).【点评】本题主要考查不等式的解集的求解,根据函数奇偶性的性质求出函数的解析式是解决本题的关键.8.若变量x、y满足约束条件,则z=y﹣x的最小值为﹣4.【考点】7C:简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(8,4),化目标函数z=y﹣x,得y=x+z,由图可知,当直线y=x+z过点A(8,4)时,直线在y轴上的截距最小,z有最小值为﹣4.故答案为:﹣4.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.9.小明和小红各自掷一颗均匀的正方体骰子,两人相互独立地进行,则小明掷出的点数不大于2或小红掷出的点数不小于3的概率为.【考点】CC:列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数n=6×6=36,再求出小明掷出的点数不大于2或小红掷出的点数不小于3包含的基本事件个数m=2×6+6×4﹣2×4=28,由此能求出小明掷出的点数不大于2或小红掷出的点数不小于3的概率.【解答】解:小明和小红各自掷一颗均匀的正方体骰子,两人相互独立地进行,基本事件总数n=6×6=36,小明掷出的点数不大于2或小红掷出的点数不小于3包含的基本事件个数:m=2×6+6×4﹣2×4=28,∴小明掷出的点数不大于2或小红掷出的点数不小于3的概率为:p==.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.10.设A是椭圆+=1(a>0)上的动点,点F的坐标为(﹣2,0),若满足|AF|=10的点A有且仅有两个,则实数a的取值范围为8<a<12.【考点】K4:椭圆的简单性质.【分析】由题意,F是椭圆的焦点,满足|AF|=10的点A有且仅有两个,可得a ﹣2<10<a+2,即可得出结论.【解答】解:由题意,F是椭圆的焦点,∵满足|AF|=10的点A有且仅有两个,∴a﹣2<10<a+2,∴8<a<12,故答案为:8<a<12.【点评】本题考查椭圆的方程与性质,考查学生的计算能力,比较基础.11.已知a>0,b>0,当(a+4b)2+取到最小值时,b=.【考点】7F:基本不等式.【分析】根据基本不等式,,a=4b时取等号,进而得出,进一步可求出a=1,时,取到最小值,即求出了此时的b的值.【解答】解:∵a>0,b>0;∴,当a=4b时取“=”;∴(a+4b)2≥16ab;∴=8,当,即,a=1时取“=”;此时,b=.故答案为:.【点评】考查基本不等式,注意基本不等式等号成立的条件,不等式的性质.12.设函数f a(x)=|x|+|x﹣a|,当a在实数范围内变化时,在圆盘x2+y2≤1内,且不在任一f a(x)的图象上的点的全体组成的图形的面积为.【考点】7F:基本不等式.【分析】根据题意,分析可得函数f a(x)=|x|+|x﹣a|(当a在实数范围内变化)的图象,进而可得在圆盘x2+y2≤1内,且不在任一f a(x)的图象上的点单位圆的,由圆的面积公式计算可得答案.【解答】解:根据题意,对于函数f a(x)=|x|+|x﹣a|,当a变化时,其图象为在圆盘x2+y2≤1内,且不在任一f a(x)的图象上的点单位圆的,则其面积S=×π=;故答案为:.【点评】本题考查函数的图象,关键是分析函数f a(x)=|x|+|x﹣a|(当a在实数范围内变化)的图象.二、选择题13.设z∈C且z≠0,“z是纯虚数"是“z2∈R”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】z∈C且z≠0,“z是纯虚数”⇒“z2∈R",反之不成立,例如取z=2.即可判断出结论.【解答】解:∵z∈C且z≠0,“z是纯虚数”⇒“z2∈R”,反之不成立,例如取z=2.∴“z是纯虚数”是“z2∈R”的充分不必要条件.故选:A.【点评】本题考查了纯虚数的定义、复数的运算法则、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.14.设等差数列{a n}的公差为d,d≠0,若{a n}的前10项之和大于其前21项之和,则()A.d<0 B.d>0 C.a16<0 D.a16>0【考点】85:等差数列的前n项和.【分析】由{a n}的前10项之和大于其前21项之和,得到a1<﹣15d,由此得到a16=a1+15d<0.【解答】解:等差数列{a n}的公差为d,d≠0,∵{a n}的前10项之和大于其前21项之和,∴10a1+>21a1+d,∴11a1<﹣165d,即a1<﹣15d,∴a16=a1+15d<0.故选:C.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.15.如图,N、S是球O直径的两个端点,圆C1是经过N和S点的大圆,圆C2和圆C3分别是所在平面与NS垂直的大圆和小圆,圆C1和C2交于点A、B,圆C1和C3交于点C、D,设a、b、c分别表示圆C1上劣弧CND的弧长、圆C2上半圆弧AB的弧长、圆C3上半圆弧CD的弧长,则a、b、c的大小关系为()A.b>a=c B.b=c>a C.b>a>c D.b>c>a【考点】L*:球面距离及相关计算.【分析】分别计算a,b,c,即可得出结论.【解答】解:设球的半径为R,球心角∠COD=2α,则b=πR,a=2αR,∵CD<AB,∴c<b,∵CD=2Rsinα,∴c=2πRsinα,∵0<α<,∴=>1,∴c>a,∴b>c>a,故选D.【点评】本题考查球中弧长的计算,考查学生的计算能力,正确计算是关键.16.对于定义在R上的函数f(x),若存在正常数a、b,使得f(x+a)≤f(x)+b对一切x∈R均成立,则称f(x)是“控制增长函数",在以下四个函数中:①f(x)=x2+x+1;②f(x)=;③f(x)=sin(x2);④f(x)=x•sinx.是“控制增长函数"的有()A.②③B.③④C.②③④D.①②④【考点】3T:函数的值.【分析】假设各函数为“控制增长函数",根据定义推倒f(x+a)≤f(x)+b恒成立的条件,判断a,b的存在性即可得出答案.【解答】解:对于①,f(x+a)≤f(x)+b可化为:(x+a)2+(x+a)+1≤x2+x+1+b,即2ax≤﹣a2﹣a+b,即x≤对一切x∈R均成立,由函数的定义域为R,故不存在满足条件的正常数a、b,故f(x)=x2+x+1不是“控制增长函数";对于②,若f(x)=是“控制增长函数”,则f(x+a)≤f(x)+b可化为:≤+b,∴|x+a|≤|x|+b2+2b恒成立,又|x+a|≤|x|+a,∴|x|+a≤|x|+b2+2b,∴≥,显然当a<b2时式子恒成立,∴f(x)=是“控制增长函数”;对于③,∵﹣1≤f(x)=sin(x2)≤1,∴f(x+a)﹣f(x)≤2,∴当b≥2时,a为任意正数,使f(x+a)≤f(x)+b恒成立,故f(x)=sin(x2)是“控制增长函数”;对于④,若f(x)=xsinx是“控制增长函数”,则(x+a)sin(x+a)≤xsinx+b恒成立,∵(x+a)sin(x+a)≤x+a,∴x+a≤xsinx+b≤x+b,即a≤b,∴f(x)=xsinx是“控制增长函数".故选C.【点评】本题考查了新定义的理解,函数存在性与恒成立问题研究,属于中档题.三、解答题17.(14分)(2017•杨浦区二模)如图,正方体ABCD﹣A1B1C1D1中,AB=4,P、Q 分别是棱BC与B1C1的中点.(1)求异面直线D1P和A1Q所成角的大小;(2)求以A1、D1、P、Q四点为四个顶点的四面体的体积.【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【分析】(1)以D为原点,DA,DC,DD1为x,y,z轴,建立空间直角坐标系,利用向量法能求出异面直线D1P和A1Q所成角.(2)以A1、D1、P、Q四点为四个顶点的四面体的体积V=.【解答】解:(1)以D为原点,DA,DC,DD1为x,y,z轴,建立空间直角坐标系,则D1(0,0,4),P(2,4,0),A1(4,0,4),Q(2,4,4),=(2,4,﹣4),=(﹣2,4,0),设异面直线D1P和A1Q所成角为θ,则cosθ===,∴θ=arccoa.∴异面直线D1P和A1Q所成角为arccos.(2)∵==8,PQ⊥平面A1D1Q,且PQ=4,∴以A1、D1、P、Q四点为四个顶点的四面体的体积:V===.【点评】本题考查异面直线所成角的求法,考查四面体的体积的求法,是中档题,考查推理论证能力、运算求解能力,考查转化化归思想、数形结合思想.18.(14分)(2017•杨浦区二模)已知函数f(x)=.(1)判断函数f(x)的奇偶性,并证明;(2)若不等式f(x)>log9(2c﹣1)有解,求c的取值范围.【考点】3K:函数奇偶性的判断.【分析】(1)利用奇函数的定义,即可得出结论;(2)f(x)===﹣+∈(﹣,),不等式f(x)>log9(2c﹣1)有解,可得>log9(2c﹣1),即可求c的取值范围.【解答】解:(1)函数的定义域为R,f(x)==,f(﹣x)==﹣f(x),∴函数f(x)是奇函数;(2)f(x)===﹣+∈(﹣,)∵不等式f(x)>log9(2c﹣1)有解,∴>log9(2c﹣1),∴0<2c﹣1<3,∴.【点评】本题考查奇函数的定义,考查函数的值域,考查学生分析解决问题的能力,属于中档题.19.(14分)(2017•杨浦区二模)如图,扇形ABC是一块半径为2千米,圆心角为60°的风景区,P点在弧BC上,现欲在风景区中规划三条商业街道,要求街道PQ与AB垂直,街道PR与AC垂直,线段RQ表示第三条街道.(1)如果P位于弧BC的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ、PR、RQ每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)【考点】HU:解三角形的实际应用;HS:余弦定理的应用.【分析】(1)由P为于∠BAC的角平分线上,利用几何关系,分别表示丨PQ 丨,丨PR丨,丨RQ丨,即可求得三条街道的总长度;(2)设∠PAB=θ,0<θ<60°,根据三角函数关系及余弦定理,即可求得丨PQ丨,丨PR丨,丨RQ丨,则总效益W=丨PQ丨×300+丨PR丨×200+丨RQ丨×400,利用辅助角公式及正弦函数的性质,即可求得答案.【解答】解:(1)由P位于弧BC的中点,在P位于∠BAC的角平分线上,则丨PQ丨=丨PR丨=丨PA丨sin∠PAB=2×sin30°=2×=1,丨AQ丨=丨PA丨cos∠PAB=2×=,由∠BAC=60°,且丨AQ丨=丨AR丨,∴△QAB为等边三角形,则丨RQ丨=丨AQ丨=,三条街道的总长度l=丨PQ丨+丨PR丨+丨RQ丨=1+1+=2+;(2)设∠PAB=θ,0<θ<60°,则丨PQ丨=丨AP丨sinθ=2sinθ,丨PR丨=丨AP丨sin(60°﹣θ)=2sin(60°﹣θ)=cosθ﹣sinθ,丨AQ丨=丨AP丨cosθ=2cosθ,丨AR丨=丨AP丨cos(60°﹣θ)=2cos(60°﹣θ)=cosθ+sinθ由余弦定理可知:丨RQ丨2=丨AQ丨2+丨AR丨2﹣2丨AQ丨丨AR丨cos60°, =(2cosθ)2+(cosθ+sinθ)2﹣2×2cosθ(cosθ+sinθ)cos60°,=3,则丨RQ丨=,三条街道每年能产生的经济总效益W,W=丨PQ丨×300+丨PR丨×200+丨RQ 丨×400=300×2sinθ+(cosθ﹣sinθ)×200+400=400sinθ+200cosθ+400,=200(2sinθ+cosθ)+400,=200sin(θ+φ)+400,tanφ=,当sin(θ+φ)=1时,W取最大值,最大值为200+400≈1222,三条街道每年能产生的经济总效益最高约为1222万元.【点评】本题考查三角函数的综合应用,考查余弦定理,正弦函数图象及性质,辅助角公式,考查计算能力,属于中档题.20.(16分)(2017•杨浦区二模)设数列{a n}满足a n=A•4n+B•n,其中A、B是两个确定的实数,B≠0.(1)若A=B=1,求{a n}的前n项之和;(2)证明:{a n}不是等比数列;(3)若a1=a2,数列{a n}中除去开始的两项之外,是否还有相等的两项?证明你的结论.【考点】8E:数列的求和;8H:数列递推式.【分析】(1)运用数列的求和方法:分组求和,结合等比数列和等差数列的求和公式,计算即可得到所求和;(2)运用反证法,假设{a n}是等比数列,由定义,设公比为q,化简整理推出B=0与题意矛盾,即可得证;(3)数列{a n}中除去开始的两项之外,假设还有相等的两项,由题意可得B=﹣12A,构造函数f(x)=4x﹣12x,x>0,求出导数和单调性,即可得到结论.【解答】解:(1)由a n=4n+n,可得{a n}的前n项之和为(4+42+…+4n)+(1+2+…+n)=+n(n+1)=(4n﹣1)+(n2+n);(2)证明:假设{a n}是等比数列,即有=q(q为公比),即为Aq•4n+Bq•n=A•4n+1+B•(n+1),即Aq=4A,Bq=B,B=0,解得q=4,B=0,这与B≠0矛盾,则{a n}不是等比数列;(3)若a1=a2,数列{a n}中除去开始的两项之外,假设还有相等的两项,设为a k=a m,(k,m不相等),由a1=a2,可得4A+B=16A+2B,即B=﹣12A.则a n=A•4n+B•n=A(4n﹣12•n),即有A(4k﹣12•k)=A(4m﹣12•m),即为4k﹣12•k=4m﹣12•m,构造函数f(x)=4x﹣12x,x>0,f′(x)=4x ln4﹣12,由f′(x)=0可得x0=log4∈(1,2),当x>x0时,f′(x)>0,f(x)递增,故数列{a n}中除去开始的两项之外,再没有相等的两项.【点评】本题考查数列的求和方法:分组求和,考查等比数列和等差数列的求和公式,同时考查反证法的运用,以及构造函数法,考查化简整理的运算能力,属于中档题.21.(18分)(2017•杨浦区二模)设双曲线Γ的方程为x2﹣=1,过其右焦点F且斜率不为零的直线l1与双曲线交于A、B两点,直线l2的方程为x=t,A、B 在直线l2上的射影分别为C、D.(1)当l1垂直于x轴,t=﹣2时,求四边形ABDC的面积;(2)当t=0,l1的斜率为正实数,A在第一象限,B在第四象限时,试比较和1的大小,并说明理由;(3)是否存在实数t∈(﹣1,1),使得对满足题意的任意直线l1,直线AD和直线BC的交点总在x轴上,若存在,求出所有的t的值和此时直线AD与BC交点的位置;若不存在,说明理由.【考点】KC:双曲线的简单性质.(1)由双曲线Γ的方程为x2﹣=1,可得c==2,可得右焦点F(2,0).当【分析】l1垂直于x轴,t=﹣2时,由双曲线的对称性可得:四边形ABDC为矩形.即可得出面积.(2)作出右准线MN:x=.e==2.分别作AC⊥MN,垂足为M;BD⊥MN,垂足为N.利用双曲线的第二定义可得:=,==.(3)存在实数t∈(﹣1,1),t=时,定点.下面给出证明分析:设直线AB的方程为:y=k(x﹣2),A(x1,k(x1﹣2)),B(x2,k(x2﹣2)).则C(t,k(x1﹣2)),D(t,k(x2﹣2)).直线方程与双曲线方程联立化为:(3﹣k2)x2+4k2x ﹣4k2﹣3=0,分别得出:直线AD与BC的方程,进而得出.【解答】解:(1)由双曲线Γ的方程为x2﹣=1,可得c==2,可得右焦点F(2,0).当l1垂直于x轴,t=﹣2时,由双曲线的对称性可得:四边形ABDC为矩形.代入双曲线可得:22﹣=1,焦点y=±3.∴四边形ABDC的面积S=4×6=24.(2)作出右准线MN:x=.e==2.分别作AC⊥MN,垂足为M;BD⊥MN,垂足为N.则==+.===.∵|AF|>|FB|,∴<.∴<1.(3)存在实数t∈(﹣1,1),t=时,定点.下面给出证明:设直线AB的方程为:y=k(x﹣2),A(x1,k(x1﹣2)),B(x2,k(x2﹣2)).则C(t,k(x1﹣2)),D(t,k(x2﹣2)).联立,化为:(3﹣k2)x2+4k2x﹣4k2﹣3=0,可得x1+x2=,x1•x2=.直线AD的方程为:y﹣k(x1﹣2)=(x﹣x1),令y=0,解得x=.直线BC的方程为:y﹣k(x2﹣2)=(x﹣x2),令y=0,解得x=.由=,可得:(2+t)(x1+x2)﹣2x1•x2﹣4t=0.∴(2+t)•﹣2•﹣4t=0.化为:t=,不妨取k=1,则2x2+4x﹣7=0,解得x=.不妨取x1=,x2=.定点的横坐标x===.∴定点坐标.【点评】本题考查了双曲线的第二定义、直线与双曲线相交问题、一元二次方程的根与系数的关系、直线过定点问题,考查了推理能力与计算能力,属于难题.。
第2讲一元二次函数方程和不等式专题复习要点一不等关系与不等式不等关系与不等式是高考重点考查的内容之一,在试题中多以选择题或填空题的形式考查,有时也渗透到解答题中,主要考查不等式的性质及运用.【例1】(1)如果a,b,c满足c<b<a且ac<0,那么下列选项中不一定成立的是()A.ab>acB.c(b-a)>0C.cb 2<ab 2D.ac (a -c )<0答案 C解析 因为c <a ,且ac <0,所以c <0,a >0. A 成立,因为c <b ,所以ac <ab ,即ab >ac . B 成立,因为b <a ,b -a <0,所以c (b -a )>0. C 不一定成立,当b =0时,cb 2<ab 2不成立. D 成立,因为c <a ,所以a -c >0,所以ac (a -c )<0. (2)已知2<a <3,-2<b <-1,求ab ,b 2a 的取值范围. 解 因为-2<b <-1,所以1<-b <2. 又因为2<a <3,所以2<-ab <6, 所以-6<ab <-2.因为-2<b <-1,所以1<b 2<4. 因为2<a <3,所以13<1a <12, 所以13<b 2a <2.【训练1】 已知a >0,b >0,且a ≠b ,比较a 2b +b 2a 与a +b 的大小.解 因为⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )=a 2b -b +b 2a -a =a 2-b 2b +b 2-a 2a =(a 2-b 2)⎝ ⎛⎭⎪⎫1b -1a =(a 2-b 2)a -b ab=(a -b )2(a +b )ab ,因为a >0,b >0,且a ≠b , 所以(a -b )2>0,a +b >0,ab >0,所以⎝ ⎛⎭⎪⎫a 2b +b 2a -(a +b )>0,即a 2b +b 2a >a +b .要点二 基本不等式的应用基本不等式:ab ≤a +b2(a >0,b >0)是每年高考的热点,主要考查命题判断、不等式证明以及求最值问题,特别是求最值问题往往与实际问题相结合,同时在基本不等式的使用条件上设置一些问题,实际上是考查学生恒等变形的技巧,另外,基本不等式的和与积的转化在高考中也经常出现.【例2】 设a >0,b >0,2a +b =1,则1a +2b 的最小值为________. 答案 8解析 ∵a >0,b >0,且2a +b =1, ∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=4+b a +4ab ≥4+2b a ·4ab =8,当且仅当⎩⎪⎨⎪⎧2a +b =1,b a =4a b ,即⎩⎪⎨⎪⎧a =14,b =12时等号成立.∴1a +2b 的最小值为8.【训练2】 已知x >0,y >0,且x +3y =1,则x +yxy 的最小值是________. 答案 23+4 解析x +y xy =1y +1x =⎝ ⎛⎭⎪⎫1y +1x (x +3y )=4+3y x +xy ≥4+23, 当且仅当⎩⎪⎨⎪⎧3y x =x y ,x +3y =1,即⎩⎪⎨⎪⎧x =3-12,y =3-36时取“=”号.要点三 恒成立问题对于不等式恒成立求参数范围问题常见类型及解法有以下几种 (1)变更主元法:根据实际情况的需要确定合适的主元,一般知道取值范围的变量要看作主元. (2)分离参数法:将参数分离转化为求解最值问题.(3)数形结合法:利用不等式与函数的关系将恒成立问题通过函数图象直观化.【例3】 已知y =x 2+mx -6,当1≤m ≤3时,y <0恒成立,那么实数x 的取值范围是________. 答案 -3<x <-3+332解析 ∵1≤m ≤3,y <0, ∴当m =3时,x 2+3x -6<0, 由y =x 2+3x -6<0, 得-3-332<x <-3+332;当m =1时,x 2+x -6<0, 由y =x 2+x -6<0,得-3<x <2. ∴实数x 的取值范围为-3<x <-3+332. 【训练3】 求使不等式x 2+(a -6)x +9-3a >0,-1≤a ≤1恒成立的x 的取值范围.解 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.设关于a 的一次函数为y =(x -3)a +x 2-6x +9.因为y >0,当-1≤a ≤1时恒成立,所以 (1)若x =3,则y =0,不符合题意,应舍去. (2)若x ≠3,则由一次函数的图象, 可得⎩⎨⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4.所以x 的取值范围是{x |x <2或x >4}.破解不等式“恒成立”“能成立”问题解决不等式恒成立、能成立问题,常常使用的方法为:判别式法、数形结合法、分离参数法,主参换位法等,方法灵活多变,需根据具体的条件求解,能提升学生的逻辑推理、数学运算等素养. 类型一 “Δ”法解决恒成立问题【例1】 (1)已知不等式kx 2+2kx -(k +2)<0恒成立,求实数k 的取值范围; (2)若不等式-x 2+2x +3≤a 2-3a 对任意实数x 恒成立,求实数a 的取值范围. 解 (1)当k =0时,原不等式化为-2<0,显然符合题意. 当k ≠0时,令y =kx 2+2kx -(k +2),由y <0恒成立, ∴其图象都在x 轴的下方, 即开口向下,且与x 轴无交点. ∴⎩⎨⎧k <0,4k 2+4k (k +2)<0, 解得-1<k <0.综上,实数k 的取值范围是{k |-1<k ≤0}. (2)原不等式可化为x 2-2x +a 2-3a -3≥0 , ∵该不等式对任意实数x 恒成立,∴Δ≤0, 即4-4(a 2-3a -3)≤0,即a 2-3a -4≥0, 解得a ≤-1或a ≥4,∴实数a 的取值范围是{a |a ≤-1或a ≥4}. 类型二 数形结合法解决恒成立问题【例2】 已知函数f (x )=x 2-mx +2m -4(m ∈R ). (1)当m =1时,求不等式f (x )≥0的解集;(2)当x >2时,不等式f (x )≥-1恒成立,求m 的取值范围. 解 (1)∵m =1,∴f (x )=x 2-x -2. ∴x 2-x -2≥0, 即(x -2)(x +1)≥0, 解得x ≤-1或x ≥2.故f (x )≥0的解集为{x |x ≤-1或x ≥2}.(2)f (x )≥-1,即x 2-mx +2m -3≥0在x >2恒成立,①若m2≤2,即m≤4,则如图.只需f(2)≥0,即4-2m+2m-3≥0,1≥0恒成立,∴m≤4满足题意;②若2m>2,即m>4,则如图.则需Δ=m2-4(2m-3)≤0,即(m-2)(m-6)≤0,∴2≤m≤6.综上所述,m的取值范围为(-∞,6].类型三分离参数法解决恒成立问题【例3】“∀x<0,x2+ax+2≥0”为真命题,则实数a的取值范围为() A.a≤2 2 B.a≤-22C.a≥2 2D.a≥-22答案A解析由∀x<0,x2+ax+2≥0可得a≤-x-2 x,因为-x-2x=(-x)+⎝⎛⎭⎪⎫-2x≥2(-x)×⎝⎛⎭⎪⎫-2x=22,当且仅当-x=-2 x,即x=-2时等号成立,所以a≤2 2.类型四主参换位法解决恒成立问题【例4】已知函数y=mx2-mx-6+m,若对于1≤m≤3,y<0恒成立,求实数x的取值范围.解设关于m的函数y =mx 2-mx -6+m =(x 2-x +1)m -6. 由题意知y <0对1≤m ≤3恒成立. ∵x 2-x +1>0,∴y 是关于m 的一次函数,且在1≤m ≤3上随x 的增大而增大, ∴y <0对1≤m ≤3恒成立等价于y 的最大值小于0, 即(x 2-x +1)·3-6<0⇔x 2-x -1<0⇔1-52<x <1+52.∴x的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-52<x <1+52.类型五 转化为函数的最值解决能成立问题【例5】 若存在x ∈R ,使得4x +mx 2-2x +3≥2成立,求实数m 的取值范围.解 ∵x 2-2x +3=(x -1)2+2>0, ∴4x +m ≥2(x 2-2x +3)能成立, ∴m ≥2x 2-8x +6能成立,令y =2x 2-8x +6=2(x -2)2-2≥-2,∴m ≥-2, ∴m 的取值范围为{m |m ≥-2}.尝试训练1.在R 上定义运算:x ⊗y =x (1-y ),若任意x ∈R 使得(x -a )⊗(x +a )<1成立,则实数a 的取值范围是( )A.⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a <-12或a >32B.⎩⎨⎧⎭⎬⎫a ⎪⎪⎪-12<a <32 C.⎩⎨⎧⎭⎬⎫a ⎪⎪⎪-32<a <12D.⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a <-32或a >12 答案 B解析 由题意知,(x -a )⊗(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a <1, 即-x 2+x +a 2-a -1<0在R 上恒成立, 所以Δ=1+4(a 2-a -1)=(2a -3)(2a +1)<0, 解得-12<a <32.2.已知不等式x 2-mx +4>0对任意的x >4恒成立,则实数m 的取值范围是( ) A.{m |m ≤5}B.{m |m <5}C.{m |m ≤4}D.{m |m <4}答案 A解析 若不等式x 2-mx +4>0对于任意的x >4恒成立, 则m <x +4x 对于任意的x >4恒成立, ∵当x >4时,x +4x ∈(5,+∞),∴m ≤5,即实数m 的取值范围是{m |m ≤5}.3.若关于x 的不等式(2x -1)2<ax 2的解集中的整数恰有2个,则实数a 的取值范围是( ) A.94<a <259 B.94<a ≤259 C.259<a <4916 D. 259<a ≤4916答案 B解析 原不等式等价于(-a +4)x 2-4x +1<0, 由题意,知⎩⎨⎧Δ=(-4)2-4(-a +4)=4a >0,-a +4>0,解得0<a <4, 又原不等式的解集为12+a <x <12-a, 且14<12+a<12,则1,2为原不等式的整数解, 所以2<12-a ≤3,解得94<a ≤259.4.已知不等式xy ≤ax 2+2y 2对于1≤x ≤2,2≤y ≤3恒成立,则a 的取值范围是( ) A.{a |a ≥1} B.{a |-1≤a <4} C.{a |a ≥-1} D.{a |-1≤a ≤6}答案 C解析 不等式xy ≤ax 2+2y 2对于1≤x ≤2,2≤y ≤3恒成立, 等价于a ≥y x -2⎝ ⎛⎭⎪⎫y x 2,对于1≤x ≤2,2≤y ≤3恒成立,令t =yx ,则1≤t ≤3,a ≥t -2t 2在1≤t ≤3时恒成立, y =-2t 2+t =-2⎝ ⎛⎭⎪⎫t -142+18,则当t =1时,y max =-1,a ≥-1, 故a 的取值范围是{a |a ≥-1}.课后巩固测试(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b ,c ,d ∈R ,且a >b ,c >d ,则下列结论中正确的是( ) A.ac >bd B.a -c >b -d C.a +c >b +d D.a d >b c答案 C解析 ∵a >b ,c >d ,∴a +c >b +d . 2.不等式1x <12的解集是( ) A.{x |x <2} B.{x |x >2} C.{x |0<x <2} D.{x |x <0或x >2} 答案 D解析 由1x <12,得1x -12=2-x2x <0, 即x (2-x )<0,解得x >2或x <0,故选D.3.已知不等式ax 2+bx +2>0的解集是{x |-1<x <2},则a +b 的值为( ) A.1B.-1C.0D.-2答案 C解析 易知⎩⎪⎨⎪⎧a <0,-b a =-1+2=1,2a =-1×2⇒⎩⎨⎧a =-1,b =1,∴a +b =0.4.若a <1,b >1,那么下列命题中正确的是( ) A.1a >1b B.ba >1 C.a 2<b 2 D.ab <a +b答案 D解析 利用特值法,令a =-2,b =2. 则1a <1b ,A 错;ba <0,B 错; a 2=b 2,C 错;ab <a +b ,D 正确.5.已知a >0,b >0,且满足a 3+b4=1,则ab 的最大值是( ) A.2 B.3 C.4 D.6 答案 B解析 因为a >0,b >0,且满足a 3+b4=1, 所以1≥2a 3·b 4,化为ab ≤3,当且仅当a =32,b =2时取等号,则ab 的最大值是3.6.设实数1<a <2,关于x 的一元二次不等式x 2-(a 2+3a +2)x +3a (a 2+2)<0的解集为( ) A.{x |3a <x <a 2+2} B.{x |a 2+2<x <3a } C.{x |3<x <4} D.{x |3<x <6}答案 B解析 由x 2-(a 2+3a +2)x +3a (a 2+2)<0,得(x -3a )·(x -a 2-2)<0,∵1<a <2,∴3a >a 2+2,∴关于x 的一元二次不等式x 2-(a 2+3a +2)x +3a (a 2+2)<0的解集为{x |a 2+2<x <3a }.故选B.7.已知a >0,b >0,且2a +b =1,若不等式2a +1b ≥m 恒成立,则m 的最大值等于( )A.10B.9C.8D.7 答案 B解析 2a +1b =2(2a +b )a +2a +b b =4+2b a +2a b +1=5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+2×2b a ×a b =9,当且仅当a =b =13时取等号.又2a +1b ≥m ,∴m ≤9,即m 的最大值等于9,故选B.8.若关于x 的不等式ax -b >0的解集为{x |x >1},则关于x 的不等式ax +b x -2>0的解集为( )A.{x |x <-2或x >1}B.{x |1<x <2}C.{x |x <-1或x >2}D.{x |-1<x <2} 答案 C解析 ∵不等式ax -b >0的解集为{x |x >1},∴x =1为ax -b =0的根,∴a -b =0,即a =b ,∵ax -b >0的解集为{x |x >1},∴a >0, 故ax +b x -2=a (x +1)x -2>0,等价于(x +1)(x -2)>0. ∴x >2或x <-1.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的不得分)9.已知a >b >c ,下列不等关系不成立的是( )A.ac +b 2>ab +bcB.ab +bc >b 2+acC.ac +bc >c 2+abD.a 2+bc >b 2+ab 答案 ACD解析 对于A ,若ac +b 2>ab +bc ,则ac -bc >ab -b 2,即c (a -b )>b (a -b ),不成立;对于C ,若ac +bc >c 2+ab ,则ac -c 2>ab -bc ,即c (a -c )>b (a -c ),不成立;对于D ,若a 2+bc >b 2+ab ,则a 2-ab >b 2-bc ,即a (a -b )>b (b -c ),若a =4,b =3,c =1,不成立.故选ACD.10.设a >b >1,c <0,给出下列四个结论正确的有( )A.c a >c bB.ac <bcC.a (b -c )>b (a -c )D.a c >b c答案 ABC解析 A.∵a >b >1,c <0,∴c a -c b =c (b -a )ab>0, ∴c a >c b ,故正确;B.∵-c >0,∴a ·(-c )>b ·(-c ),∴-ac >-bc ,∴ac <bc ,故正确;C.∵a >b >1,∴a (b -c )-b (a -c )=ab -ac -ab +bc =-c (a -b )>0,∴a (b -c )>b (a -c ),故正确;D.a c -b c =a -b c ,又a -b >0,c <0,所以a -b c <0,即a c <b c ,故错误.故答案为ABC.11.若a >0,b >0,与不等式-b <1x <a 不等价的是( )A.-1b <x <0或0<x <1aB.-1a <x <1bC.x <-1a 或x >1bD.x <-1b 或x >1a答案 ABC解析 若x >0,则不等式-b <1x <a 等价为1x <a ,即x >1a ,若x <0,则不等式-b <1x <a 等价为-b <1x ,即x <-1b .12.对于a >0,b >0,下列不等式中正确的是( ) A.ab 2<1a +1bB.ab ≤a 2+b 22C.ab ≤⎝ ⎛⎭⎪⎫a +b 22 D.⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22 答案 BCD解析 当a >0,b >0时,因为21a +1b≤ab , 所以2ab ≤1a +1b ,当且仅当a =b 时等号成立,故A 不正确;显然B ,C ,D 均正确.三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.不等式x 2-2x <0的解集为________.答案 {x |0<x <2}解析 不等式x 2-2x <0可化为x (x -2)<0,解得:0<x <2,∴不等式的解集为{x |0<x <2}.14.某汽车运输公司购买一批豪华大客车投入营运,据市场分析每辆车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)为二次函数关系(二次函数的图象如图所示),则每辆客车营运________年时,年平均利润最大.答案 5解析 二次函数顶点为(6,11),设为y =a (x -6)2+11,代入(4,7)得a =-1,∴y =-x 2+12x -25,年平均利润为y x =-x 2+12x -25x=-⎝ ⎛⎭⎪⎫x +25x +12≤-2 x ·25x +12=2,当且仅当x =25x ,即x =5时等号成立.15.一元二次不等式x 2+ax +b >0的解集为{x |x <-3或x >1},则a b =________,一元一次不等式ax +b <0的解集为________(第一空2分,第二空3分). 答案 18 ⎩⎨⎧⎭⎬⎫x |x <32 解析 由题意知,-3和1是方程x 2+ax +b =0的两根,所以⎩⎨⎧-3+1=-a ,-3×1=b ,解得⎩⎨⎧a =2,b =-3,故a b =18. 不等式ax +b <0即为2x -3<0,所以x <32.16.若关于x 的不等式x 2-mx +m +2>0对-2≤x ≤4恒成立,则m 的取值范围是________.答案 {m |2-23<m <2+23}解析 设y =x 2-mx +m +2=⎝ ⎛⎭⎪⎫x -m 22-m 24+m +2, ①当m 2≤-2,即m ≤-4时,当x =-2时,y 的最小值为4+2m +m +2=3m +6>0,m >-2,又m ≤-4,∴无解;②当-2<m 2<4,即-4<m <8时,当x =m 2时,y 的最小值为-m 24+m +2>0, 解得2-23<m <2+23,又-4<m <8,∴2-23<m <2+23; ③当m 2≥4,即m ≥8时,当x =4时,y 的最小值为16-4m +m +2=18-3m >0,∴m <6,又m ≥8,∴无解.综上,m 的取值范围为{m |2-23<m <2+23}.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)当x >3时,求2x 2x -3的最小值. 解 ∵x >3,∴x -3>0.∴2x 2x -3=2(x -3)2+12(x -3)+18x -3=2(x -3)+18x -3+12≥22(x -3)·18x -3+12=24. 当且仅当2(x -3)=18x -3, 即x =6时,上式等号成立,∴2x 2x -3的最小值为24. 18.(本小题满分12分)若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}.(1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R .解 (1)由题意知1-a <0且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎪⎨⎪⎧1-a <0,41-a =-2,61-a =-3,解得a =3.∴不等式2x 2+(2-a )x -a >0,即为2x 2-x -3>0,解得x <-1或x >32.∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-1或x >32. (2)ax 2+bx +3≥0,即为3x 2+bx +3≥0,若此不等式的解集为R ,则b 2-4×3×3≤0,∴-6≤b ≤6.19.(本小题满分12分)某种品牌的汽车在水泥路面上的刹车距离s m 和汽车车速x km/h 有如下关系:s =118x +1180x 2.在一次交通事故中,测得这种车的刹车距离不小于40 m ,那么这辆汽车刹车前的车速至少为多少?解 设这辆汽车刹车前的车速为x km/h.根据题意,有118x +1180x 2≥40,移项整理,得x 2+10x -7 200≥0.即(x -80)(x +90)≥0.故得不等式的解集为{x |x ≤-90或x ≥80}.在这个实际问题中x >0,所以这辆汽车刹车前的车速至少为80 km/h.20.(本小题满分12分)已知a ,b ,c 均为正数,证明:a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2≥63,并确定a ,b ,c 为何值时,等号成立.证明 因为a ,b ,c 均为正数,所以a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac .所以a 2+b 2+c 2≥ab +bc +ac .①同理1a 2+1b 2+1c 2≥1ab +1bc +1ac ,②故a 2+b 2+c 2+⎝ ⎛⎭⎪⎫1a +1b +1c 2 ≥ab +bc +ac +3ab +3bc +3ac ≥6 3.③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立,当且仅当a =b =c ,(ab )2=(bc )2=(ac )2=3时,③式等号成立.故当且仅当a =b =c =43时,原不等式等号成立.21.(本小题满分12分)某建筑队在一块长AM =30米,宽AN =20米的矩形地块AMPN 上施工,规划建设占地如图中矩形ABCD 的学生公寓,要求顶点C 在地块的对角线MN 上,B ,D 分别在边AM ,AN 上,假设AB 长度为x 米.(1)要使矩形学生公寓ABCD 的面积不小于144平方米,AB 的长度应在什么范围?(2)长度AB和宽度AD分别为多少米时矩形学生公寓ABCD的面积最大?最大值是多少平方米?解(1)依题意知△NDC∽△NAM,所以DCAM=NDNA,即x30=20-AD20,则AD=20-23x.故矩形ABCD的面积为S=20x-2 3x 2.根据条件0<x<30,要使学生公寓ABCD的面积不小于144平方米,即S=20x-23x2≥144,化简得x2-30x+216≤0,解得12≤x≤18.故AB的长度应在12米~18米内.(2)S=20x-23x2=23x(30-x)≤23⎝⎛⎭⎪⎫30-x+x22=150,当且仅当x=30-x,即x=15时,等号成立.此时AD=20-23x=10.故AB=15米,AD=10米时,学生公寓ABCD的面积最大,最大值是150平方米.22.(本小题满分12分)已知二次函数y=ax2+bx+c(a≠0)的图象过A(x1,y1),B(x2,y2)两点,且满足a2+(y1+y2)a+y1y2=0.(1)求证y1=-a或y2=-a;(2)求证函数的图象必与x轴有两个交点;(3)若y>0的解集为{x|x>m或x<n}(n<m<0),解关于x的不等式cx2-bx+a>0. (1)证明∵a2+(y1+y2)a+y1y2=0,∴(a+y1)(a+y2)=0,得y1=-a或y2=-a.(2)证明当a>0时,二次函数的图象开口向上,图象上的点A或点B的纵坐标为-a,且-a<0,∴图象与x轴有两个交点;当a<0时,二次函数的图象开口向下,图象上的点A或点B的纵坐标为-a,且-a>0,∴图象与x轴有两个交点.∴二次函数的图象必与x 轴有两个交点.(3)解 ∵ax 2+bx +c >0的解集为{x |x >m 或x <n }(n <m <0), ∴a >0且ax 2+bx +c =0的两根为m ,n ,⎩⎪⎨⎪⎧m +n =-b a ,mn =c a ,∴m +n mn =-b c 且c >0,∴cx 2-bx +a >0即x 2-b c x +a c >0,即x 2+⎝ ⎛⎭⎪⎫m +n mn x +1mn>0,∴⎝ ⎛⎭⎪⎫x +1m ⎝ ⎛⎭⎪⎫x +1n >0. ∵n <m <0,∴-1n <-1m ,∴不等式cx 2-bx +a >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >-1m 或x <-1n .。
第一章 逻辑代数基础12.下列几种说法中与BCD 码的性质不符的是 。
(1)一组四位二进制数组成的码只能表示一位十进制数; (2)BCD 码是一种人为选定的0~9十个数字的代码;(3)BCD 码是一组四位二进制数,能表示十六以内的任何一个十进制数; (4)BCD 码有多种。
16.逻辑函数F (A ,B ,C )=Σm (0,1,4,6)的最简“与非式”为 。
(1) AC B A F ∙= (2) C A B A F ∙= (3) AC AB F ∙= (4) C A B A F ∙=18.已知某电路的真值表如下表所示,该电路的逻辑表达式为 。
(1)F =C (2)F =ABC (3)F =AB +C (4)都不是23.逻辑函数的反函数= ,对偶式F '= 。
30.用公式化简法化简以下逻辑函数))((AB C B C A B A B A B A F ++++=。
解: ))((AB C B C A B A B A B A F ++++=CB A BC A C B A ++=)()(C B A C B A BC A C B A +++=C B C A +=34.用卡诺图化简逻辑函数:F (A ,B ,C ,D )=∑m (5,6,7,8,9)+∑d (10,11,12,13,14,15) 解:AB00CD01111000011110F00000111××××11××BC BD A F ++=37. 试用卡诺图法将下列具有约束条件的逻辑函数化为最简“与或”式。
F (A ,B ,C ,D )=∑m (1, 4,9,13)+ ∑d (5,6,7,10) 解:AB00CD01111000011110F01001×××010001×D C B A F +=第三章 组合逻辑电路2.比较两位二进制数A=A 1A 0和B=B 1B 0,当A >B 时输出F =1,则F 表达式是 。
第3章逻辑代数习题33. 1求下列函数的反函数(1) F = AB + C(A + D)(2)y = A(万+ C万+ CD)解:(1)F = AB + C(A + D)=AB*C(A + D)= (A + B)*(C + AD)=AC + BC + ABD(2)F = AB + C(A + D)=AB*C(A + D)= (A + B)*(C + AD)=AC + BC + ABD3. 2求下列函数的对偶式(1)Y = AB* CD* DAB(2)Y = A + C + B + C + A + B + B + C解:(1)Y = AB* CD* DABY'=A + B + C + D + D + A + B(2)Y = A + C + B + C + A + B + B + CY'=ACB^CABB^C3. 3用基本定理和公式证明下列等式(1)ABC + ABC + ABC = AB + AC(2)AB+ AC+ BC AB + C(3)A万+ BD + AD + DC^A万+ Z)(4)BC + D +万(万 + C)(DA + B) = B + D(5)AB + AB + AB + AB = 1(6)(A + B)(A + B)(A + B)(A + B) = 0(7) AB + BC + CA = AB + BC + CA(8)(A + B + C) • AB + BC + CA + ABC = (A + 万 +。
・(AB + BC + CA) + 云万©(9)A©B©C=A0BOC(10)A®B = AQB证明:(1)ABC + ABC + ABC = AB + AC左式=ABC + ABC + ABC=(ABC + ABC) + (ABC + ABC)-AB(C + C) + AC(B + B)=AB + AC =右式(2)AB+ AC+ BC AB + C左式= AB + AC + BC=AB + AC(B + B) + BC=AB + ABC + ABC + BC= B(A + AC) + B(AC + C)=AB + BC + BC=AB + C =右式(3)A万+ BD + AD + DC^AB + D左式=A万+ 切+ l£)+ OC=AB + BD + A(B + B)D + DC=B(A + AZ)) + BD + ABD + DC=AB + BD + BD + ABD + DC=AB+D+ABD+DC=AB + D =右式(4)BC + D +万(万 + C)(DA + B) = B + D左式= BC + D + D(B + C)(DA + B)=BC + D + BD(B+ C}=BC+D+BCD=BC+D+BC=B + D =右式(5)AB + AB + AB + AB = 1&^ = AB + AB + AB + AB=A(B + B) + A(B + B)= A + A=]=右式(6)(A + B)(A + 万)Q + B)Q + 万)=0左式=(A + fi)(A + B)(A + B)(A + 万)=(A + B)(A + B)(A + B)(A + B)=(A + B) + (A + B) + (A + B) + (A + B)=AB + AB + AB + AB=1 = 0 =右式(7)AB + BC + CA = AB + BC + CA根据代入规则,令A=B,,B=C,,C=A,左式= AB + BC + CA= B'C'+C'A'+ A'B'再次利用代入规则可得左式= B'C'+C'A' + A'B'= XB + §C + C如右式(8)(A + 5 + C) • AB + BC + CA + ABC = (M + 万 + C)・(AB + BC + CA) + ~ABC左式=(A + B + C) • AB + BC + CA + ABC=(A + B + C) • AB + BC + CA + ABC= (A + B + C)*(AB + BC + CA) + ABC=右式(9)A©B©C=AOB©C左式=A㊉3㊉C= A©BC + (A ㊉B R= (AOB)C+(A©5)C=A©BOC=右式(10)万= AOB左式=A®B= AB + AB-AB+AB=A0B(11)若A®B = C则= A®C = B由A©5 = A5 + A5 = CnJMB(AB + AB) = BC B* AB + AB = 5C艮"万=BC AB = BC将以上两式相加得配+ BC = A(B + B)即B©C=A同理可MA © C = B3.4 设Y ,= Z…, (0, 4,8, 12), %=£,“(1,4, 7,9, 10),试求下列逻辑函数:(1) A =匕+匕(2)L2 =匕•匕(3)L} =Y X・K解:(1)Lj = Kj + Y2A=匕+匕= £〃?(0,4,8,12) + £〃?(l,4,7,9,10)= £〃?(0,l,4,7,8,9,10,12)(2)L2 =Y t»Y2右=约•匕= £m(0,4,8,12)・£m(l,4,7,9,10)= £m(4)(3)L} =Y X・KA=K况=£m(0,4,8,12)・却1,4,7,9,10)= £〃?(0,8,12)3.5已知Y,=riM (0,2, 4, 6), 丫亓日心(1, 3, 5, 7),试求下列逻辑函数:(1) A =匕+七(2)L2 =匕・*(3)£3 =工•匕(4)L4=1T«K解:匕=f[M(0,2,4,6)= £m(0,2,4,6)K = f[M(l,3,5,7)= £〃?(1,3,5,7)(1)Lj = Kj + Y2A=匕+匕=E=0(2)L2 =匕•匕= X+Y;= £m(0,2,4,6) + £m(l,3,5,7)=0(3)L3=K•匕♦ X •七=K・M= £〃?(0,2,4,6)・£〃?(l,3,5,7)= £m(0,2,4,6)(4)L4=Y[»Y^乙4="= £m(0,2,4,6)・£m(l,3,5,7)3.6试写出图P3. 6所示电路的逻辑函数表达式。
人教A版数学必修一第一章一、单选题1.设集合A={x|x2―4x+3≤0},B={x|2<x<4},则A∪B=( )A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.集合A={x∈N|―1<x<3}的真子集的个数为( )A.3B.4C.7D.83.下列式子中,不正确的是( )A.3∈{x|x≤4}B.{―3}∩R={―3}C.{0}∪∅=∅D.{―1}⊆{x|x<0} 4.已知集合M={1,4,2x},N={1,x2},若N⊆M,则实数x=( )A.-2或2B.0或2C.-2或0D.-2或0或25.下列四个条件中,使a>b成立的必要而不充分的条件是( )A.a>b﹣1B.a>b+1C.|a|>|b|D.2a>2b6.在平面直角坐标系xOy中,设Ω为边长为1的正方形内部及其边界的点构成的集合.从Ω中的任意点P作x轴、y轴的垂线,垂足分别为M P,N p.所有点M P构成的集合为M,M中所有点的横坐标的最大值与最小值之差记为x(Ω);所有点N P构成的集合为N,N中所有点的纵坐标的最大值与最小值之差记为y(Ω).给出以下命题:①x(Ω)的最大值为2:②x(Ω)+y(Ω)的取值范围是[2,22];③x(Ω)―y(Ω)恒等于0.其中所有正确结论的序号是( )A.①②B.②③C.①③D.①②③7.已知M={(x,y)|y―3x―2=3},N={(x,y)|ax+2y+a=0}且M∩N=∅,则a=( )A.-6或-2B.-6C.2或-6D.-28.设集合A={x|(x+2)(x―3)⩽0},B={a},若A∪B=A,则a的最大值为( )A.-2B.2C.3D.4二、多选题9.已知命题p:关于x的不等式2x―1≥0,命题q:a<x<a+1,若p是q的必要非充分条件,则实数a 的取值可以为( )A.a≥0B.a≥1C.a≥2D.a≥310.已知集合M={x∣x=kπ4+π4,k∈Z},集合N={x∣x=kπ8―π4,k∈Z},则( )A.M∩N≠ϕB.M⊆N C.N⊆M D.M∪N=M11.已知正实数m,n满足9n2―24n+17―4m2+1=2m+3n―4,若方程1m +1n=t有解,则实数t的值可以为( )A.5+264B.2+32C.1D.11412.1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断下列选项中,可能成立的是( )A.M={x∈Q|x<2},N={x∈Q|x≥2}满足戴德金分割B.M没有最大元素,N有一个最小元素C.M没有最大元素,N没有最小元素D.M有一个最大元素,N有一个最小元素三、填空题13.已知集合A={x|x2+2x-3≤0},集合B={x||x-1|<1},则A∩B= .14.设集合M={x|a1x2+b1x+c1=0},N={x|a2x2+b2x+c2=0},则方程a1x2+b1x+c1a2x2+b2x+c2=0的解集用集合M、N可表示为 .15.若规定集合M={a1,a2,…,a n}(n∈N*)的子集{ a i1,a i2,… a in}(m∈N*)为M的第k个子集,其中k= 2i1―1+ 2i2―1+…+ 2i n―1,则M的第25个子集是 16.记关于x的方程a x2―2ax+1=0在区间(0,3]上的解集为A,若A有2个不同的子集,则实数a的取值范围为 .四、解答题17.已知集合M={x|―2<x<4},N={x|x+a―1>0}.(1)若M∪N={x|x>―2},求实数a的取值范围;(2)若x∈N的充分不必要条件是x∈M,求实数a的取值范围.18.已知命题p:∀x∈R,|x|+x≥0;q:关于x的方程x2+mx+1=0有实数根.(1)写出命题p的否定,并判断命题p的否定的真假;(2)若命题“p∧q”为假命题,求实数m的取值范围.19.设全集为R,集合A={x|x2―7x―8>0},B={x|a+1<x<2a―3}.(1)若a=6,求A∩∁R B;(2)在①A∪B=A;②A∩B=B;③(∁R A)∩B=∅,这三个条件中任选一个作为已知条件,求实数a的取值范围.20.已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1}.(Ⅰ)当m=-3时,求( ∁R A)∩B;(Ⅱ)当A∩B=B时,求实数m的取值范围.21.已知集合A={―1,1},B={x|x2―2ax+b=0},若B≠∅,且A∪B=A求实数a,b的值。
2023年上海市春季高考数学试卷(2023•上海)已知集合A={1,2},B={1,a},且A=B ,则a=2.【专题】转化思想;转化法;集合;数学运算.【分析】根据已知条件,结合集合相等的定义,即可求解.【解答】解:集合A={1,2},B={1,a},且A=B ,则a=2.故答案为:2.(2023•上海)已知向量a =(3,4),b =(1,2),则a -2b =(1,0).→→→→【专题】对应思想;定义法;平面向量及应用;数学运算.【分析】根据平面向量的坐标运算法则,计算即可.【解答】解:因为向量a =(3,4),b =(1,2),所以a -2b =(3-2×1,4-2×2)=(1,0).故答案为:(1,0).→→→→(2023•上海)不等式|x-1|≤2的解集为:[-1,3].(结果用集合或区间表示)【专题】计算题;不等式的解法及应用.【分析】运用|x|≤a ⇔-a≤x≤a,不等式|x-1|≤2即为-2≤x-1≤2,解出即可.【解答】解:不等式|x-1|≤2即为-2≤x-1≤2,即为-1≤x≤3,则解集为[-1,3],故答案为:[-1,3].(2023•上海)已知圆C 的一般方程为x 2+2x+y 2=0,则圆C 的半径为 1.【专题】计算题;转化思想;综合法;直线与圆;数学运算.【分析】把圆C 的一般方程化为标准方程,可得圆C 的圆心和半径.【解答】解:根据圆C 的一般方程为x 2+2x+y 2=0,可得圆C 的标准方程为(x+1)2+y 2=1,故圆C 的圆心为(-1,0),半径为1,故答案为:1.(2023•上海)已知事件A的对立事件为A,若P(A)=0.5,则P(A)=0.5.【专题】方程思想;定义法;概率与统计;数学运算.【分析】利用对立事件概率计算公式直接求解.【解答】解:事件A的对立事件为A,若P(A)=0.5,则P(A)=1-0.5=0.5.故答案为:0.5.(2023•上海)已知正实数a、b满足a+4b=1,则ab的最大值为116.【专题】计算题;转化思想;综合法;不等式的解法及应用;逻辑推理;数学运算.【分析】直接利用基本不等式求出结果.【解答】解:正实数a、b满足a+4b=1,则ab=14×a•4b≤14×(a+4b2)2=116,当且仅当a=12,b=18时等号成立.故答案为:116.(2023•上海)某校抽取100名学生测身高,其中身高最大值为186cm,最小值为154cm,根据身高数据绘制频率组距分布直方图,组距为5,且第一组下限为153.5,则组数为7.【专题】对应思想;分析法;概率与统计;数学运算.【分析】计算极差,根据组距求解组数即可.【解答】解:极差为186-154=32,组距为5,且第一组下限为153.5,325=6.4,故组数为7组,故答案为:7.(2023•上海)设(1-2x)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a4=17.【专题】转化思想;综合法;二项式定理;数学运算.【分析】根据二项式定理及组合数公式,即可求解.【解答】解:根据题意及二项式定理可得:a0+a4=C 04+C44•(−2)4=17.故答案为:17.(2023•上海)已知函数f(x)=2-x+1,且g(x)=V WX log2(x+1),x≥0f(−x),x<0,则方程g(x)=2的解为x=3.【专题】函数思想;综合法;函数的性质及应用;数学运算.【分析】分x≥0和x<0分别求解即可.【解答】解:当x≥0时,g(x)=2⇔log2(x+1)=2,解得x=3;当x<0时,g(x)=f(-x)=2x+1=2,解得x=0(舍);所以g(x)=2的解为:x=3.故答案为:x=3.(2023•上海)为了学习宣传党的二十大精神,某校学生理论宣讲团赴社区宣讲,已知有4名男生,6名女生,从10人中任选3人,则恰有1名男生2名女生的概率为0.5.【专题】对应思想;分析法;函数的性质及应用;数学运算.【分析】根据古典概型求解即可.【解答】解:从10人中任选3人的事件个数为C310=10×9×83×2×1=120,恰有1名男生2名女生的事件个数为C14C26=4×6×52×1=60,则恰有1名男生2名女生的概率为60120=0.5,故答案为:0.5.(2023•上海)已知z1,z2∈C且z1=i z2(i为虚数单位),满足|z1-1|=1,则|z1-z2|的取值范围为[0,2+2].√【专题】整体思想;综合法;数系的扩充和复数;数学运算.【分析】引入复数的三角形式,将问题转化为三角函数的值域问题求解.【解答】解:设z1-1=cosθ+isinθ,则z1=1+cosθ+isinθ,因为z1=i•z2,所以z2=sinθ+i(cosθ+1),所以|z1-z2|=(cosθ−sinθ+1)2+(sinθ−cosθ−1)2=2[2sin(θ−π4)−1]2=2|2sin(θ−π4)−1|,显然当sin(θ−π4)=22时,原式取最小值0,当sin(θ−π4)=-1时,原式取最大值2+2,√√√√√√√A.y=sinxC.y=x3D.y=2x 故|z1-z2|的取值范围为[0,2+2].故答案为:[0,2+2].√√(2023•上海)已知OA、OB、OC为空间中三组单位向量,且OA⊥OB、OA⊥OC,OB与OC夹角为60°,点P为空间任意一点,且|OP|=1,满足|OP•OC|≤|OP•OB|≤|OP•OA|,则|OP•OC|最大值为217.→→→→→→→→→→→→→→→→→→√【专题】综合题;转化思想;分析法;空间向量及应用;逻辑推理;数学运算.【分析】将问题坐标化,表示出OA,OB,OC的坐标,再设OP=(x,y,z),代入条件,结合不等式的性质求解.→→→→【解答】解:设OA=(0,0,1),OB=(32,12,0),OC=(0,1,0),OP=(x,y,z),不妨设x,y,z>0,则|OP|=x2+y2+z2=1,因为|OP•OC|≤|OP•OB|≤|OP•OA|,所以y≤32x+12y≤z,可得x≥33y,z≥y,所以1=x2+y2+z2≥13y2+y2+y2,解得y2≤37,故OP•OC=y≤217.故答案为:217.→→√→→→→→→→→→√√→→√√(2023•上海)下列函数是偶函数的是( )【专题】函数思想;定义法;函数的性质及应用;数学抽象.【分析】根据偶函数的定义逐项分析判断即可.【解答】解:对于A,由正弦函数的性质可知,y=sinx为奇函数;对于B,由正弦函数的性质可知,y=cosx为偶函数;对于C,由幂函数的性质可知,y=x3为奇函数;对于D,由指数函数的性质可知,y=2x为非奇非偶函数.故选:B.(2023•上海)如图为2017-2021年上海市货物进出口总额的条形统计图,则下列对于进出口贸易额描述错误的是( )A .从2018年开始,2021年的进出口总额增长率最大B .从2018年开始,进出口总额逐年增大D .从2018年开始,2020年的进出口总额增长率最小A .DD1C .AD1D .B 1C【专题】转化思想;综合法;概率与统计;数据分析.【分析】结合统计图中条形图的高度、增量的变化,以及增长率的计算方法,逐项判断即可.【解答】解:显然2021年相对于2020年进出口额增量增加特别明显,故最后一年的增长率最大,A 对;统计图中的每一年条形图的高度逐年增加,故B 对;2020年相对于2019的进口总额是减少的,故C 错;显然进出口总额2021年的增长率最大,而2020年相对于2019年的增量比2019年相对于2018年的增量小,且计算增长率时前者的分母还大,故2020年的增长率一定最小,D 正确.故选:C .(2023•上海)如图所示,在正方体ABCD-A 1B 1C 1D 1中,点P 为边A 1C 1上的动点,则下列直线中,始终与直线BP异面的是( )【专题】整体思想;综合法;立体几何;逻辑推理;数学运算.【分析】根据空间中的两条直线的位置关系,判断是否为异面直线即可.【解答】解:对于A ,当P 是A 1C 1的中点时,BP 与DD 1是相交直线;对于B ,根据异面直线的定义知,BP 与AC 是异面直线;A.a1,a3,a5,⋯,a2n-1,⋯为等差数到,a2,a4,a6,⋯,a2n,⋯为等比数列B.a1,a3,a5,⋯,a2n-1,⋯为等比数列,a2,a4,a6,⋯,a2n,⋯为等差数列D.a1,a2,a3,⋯,a2022为等比数列,a2022,a2023,⋯,a n,⋯为等差数列对于C,当点P与C1重合时,BP与AD1是平行直线;对于D,当点P与C1重合时,BP与B1C是相交直线.故选:B.(2023•上海)已知无穷数列{a n}的各项均为实数,S n为其前n项和,若对任意正整数k>2022都有|S k|>|S k+1|,则下列各项中可能成立的是( )【专题】分类讨论;综合法;点列、递归数列与数学归纳法;逻辑推理.【分析】由对任意正整数k>2022,都有|S k|>|S k+1|,可以知道a2022,a2033,a2024,⋯,a n不可能为等差数列,若d=0,a n=0,则|S k|=|S k+1|,矛盾;若d=0,a n<0,当n→+∞,S n→-∞,k使得|S k+1|>|S k|,矛盾;若d=0,a n>0,当n→+∞,S n→+∞,必有k使得|S k+1|>|S k|,矛盾;若d>0,当n→+∞,a n→+∞,S n→+∞必有k使得|S k+1|>|S k|,矛盾;若d<0,当n→+∞,a n→-∞,S n→-∞,必有k使得|S k+1|>|S k|,矛盾;即可判断.【解答】解:由对任意正整数k>2022,都有|S k|>|S k+1|,可以知道a2022,a2033,a2024,⋯,a n 不可能为等差数列,因为若d<0,当n→+∞,an→-∞,Sn→-∞,必有k使得|Sk+1|>|Sk|,矛盾;若d=0,a n=0,则|S k|=|S k+1|,矛盾;若d=0,a n<0,当n→+∞,S n→-∞,k使得|S k+1|>|S k|,矛盾;若d=0,a n>0,当n→+∞,S n→+∞,必有k使得|S k+1|>|S k|,矛盾;若d>0,当n→+∞,a n→+∞,S n→+∞必有k使得|S k+1|>|S k|,矛盾;所以选项B中的a2,a4,a6,⋯,a2n为等差数列与上述推理矛盾,故不可能正确;选项D中的a2022,a2023,a2024,⋯,a n为等差数列与上述推理矛盾,故不可能正确;选项A中的a1,a3,a5,⋯,a2n-1为等差数列与上述推理矛盾,故不可能正确;事实上,只需取a1=a2=⋯=a2022=−1,a n=(12)n,n≥2023,n∈N即可.故选:C.(2023•上海)已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AB=3,AC=4,M为BC中点,过点M分别作平行于平面PAB的直线交AC、PC于点E,F.(1)求直线PM与平面ABC所成角的大小;(2)求直线ME到平面PAB的距离.【专题】综合题;转化思想;综合法;空间角;数学运算.【分析】(1)连接AM,PM,∠PMA为直线PM与平面ABC所成的角,在△PAM中,求解即可;(2)先证明AC⊥平面PAB,可得AE为直线ME到平面PAB的距离.进则求AE的长即可.【解答】解:(1)连接AM,PM,∵PA⊥平面ABC,∴∠PMA为直线PM与平面ABC所成的角,在△PAM中,∵AB⊥AC,∴BC=32+42=5,∵M为BC中点,∴AM=12BC=52,∴tan∠PMA=65,即直线PM与平面ABC所成角为arctan65;(2)由ME∥平面PAB,MF∥平面PAB,ME∩MF=M,∴平面MEF∥平面PAB,∵ME⊂平面MEF,∴ME∥平面PAB,∵PA⊥平面ABC,AC⊂平面ABC,∴PA⊥AC,∵AB⊥AC,PA∩AB=A,PA,AB⊂平面PAB,∴AC⊥平面PAB,∴AE为直线ME到平面PAB的距离,∵ME∥平面PAB,ME⊂平面ABC,平面ABC∩平面PAB=AB,∴ME∥AB,∵M为BC中点,∴E为AC中点,∴AE=2,∴直线ME到平面PAB的距离为2.√(2023•上海)在△ABC中,角A、B、C所对应的边分别为a、b、c,其中b=2.(1)若A+C=120°,a=2c,求边长c;(2)若A-C=15°,a=2csinA,求△ABC的面积.√【专题】转化思想;转化法;解三角形;数学运算.【分析】(1)由已知结合和差角公式及正弦定理进行化简可求A,B,C,然后结合锐角三角函数即可求解;(2)由已知结合正弦定理先求出sinC,进而可求C,再由正弦定理求出a,结合三角形面积公式可求.【解答】解:(1)∵A+C=120°,且a=2c,∴sinA=2sinC=2sin(120°-A)=3cosA+sinA,∴cosA=0,∴A=90°,C=30°,B=60°,∵b=2,∴c=233;(2)a=2csinA,则sinA=2sinCsinA,sinA>0,∴sinC=22,∵A-C=15°,∴C为锐角,∴C=45°,A=60°,B=75°,∴a sin60°=2sin75°=82+6,∴a=432+6=32−6,∴S△ABC=12absinC=12×432+6×2×22=3-3.√√√√√√√√√√√√√√√√√(2023•上海)为了节能环保、节约材料,定义建筑物的“体形系数”S=F0V0,其中F0为建筑物暴露在空气中的面积(单位:平方米),V0为建筑物的体积(单位:立方米).(1)若有一个圆柱体建筑的底面半径为R,高度为H,暴露在空气中的部分为上底面和侧面,试求该建筑体的“体形系数”S;(结果用含R、H的代数式表示)(2)定义建筑物的“形状因子”为f=L 2A,其中A为建筑物底面面积,L为建筑物底面周长,又定义T为总建筑面积,即为每层建筑面积之和(每层建筑面积为每一层的底面面积).设n为某宿舍楼的层数,层高为3米,则可以推导出该宿舍楼的“体形系数”为S=f•nT +13n.当f=18,T=10000时,试求当该宿舍楼的层数n为多少时,“体形系数”S最小.√【专题】函数思想;分析法;函数的性质及应用;数学运算.【分析】(1)利用圆柱体的表面积和体积公式,结合题目中S的定义求解即可;(2)利用导函数求S的单调性,即可求出S最小时n的值.【解答】解:(1)由圆柱体的表面积和体积公式可得:F 0=2πRH +πR 2.V 0=πR 2H ,所以S =F 0V 0=πR (2H +R )πR 2H=2H +RHR.(2)由题意可得S=18n 10000+13n =32n 100+13n,n ∈N *,所以S′=32200n -13n2=92n 32−200600n2,令S′=0,解得n=32000081≈6.27,所以S 在[1,6.27]单调递减,在[6.27,+∞)单调递增,所以S 的最小值在n=6或7取得,当n=6时,S=32×6100+13×6≈0.31,当n=7时,S=32×7100+13×7≈0.16,所以在n=6时,该建筑体S 最小.√√√√√√√(2023•上海)已知椭圆Γ:x2m2+y 23=1(m >0且m≠3).(1)若m=2,求椭圆Γ的离心率;(2)设A 1、A 2为椭圆Γ的左右顶点,椭圆Γ上一点E 的纵坐标为1,且EA 1•EA 2=-2,求实数m 的值;(3)过椭圆Γ上一点P 作斜率为3的直线l,若直线l 与双曲线y25m2-x 25=1有且仅有一个公共点,求实数m 的取值范围.√→→√【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程;数学运算.【分析】(1)由题意可得a,b,c,可求离心率;(2)由已知得A 1(-m,0),A 2(m,0),设E (p,1),由已知可得p 2=23m 2,p 2-m 2+1=-2,求解即可;(3)设直线y=3x+t,与椭圆方程联立可得t 2≤3m 2+3,与双曲线方程联立可得t 2=5m 2-15,可求m 的取值范围.√【解答】解:(1)若m=2,则a 2=4,b 2=3,∴a=2,c=a2−b2=1,∴e=c a =12;(2)由已知得A 1(-m,0),A 2(m,0),设E (p,1),∴p2m2+13=1,即p 2=23m 2,∴EA 1=(-m-p,-1),EA 2=(m-p,-1),∴EA 1•EA 2=(-m-p,-1)•(m-p,-1)=p 2-m 2+1=-2,∵p 2=23m 2,代入求得m=3;√→→→→(3)设直线y=3x+t,联立椭圆可得x2m2+(3x +t )23=1,整理得(3+3m 2)x 2+23tm 2x+(t 2-3)m 2=0,由△≥0,∴t 2≤3m 2+3,联立双曲线可得(3x +t )25m2-x 25=1,整理得(3-m 2)x 2+23tx+(t2-5m 2)=0,由Δ=0,t 2=5m 2-15,∴5m 2-15≤3m 2+3,∴-3≤m≤3,又5m 2-15≥0,∴m≥3,∵m≠3,综上所述:m ∈(3,3].√√√√√√√√(2023•上海)已知函数f (x )=ax 3-(a+1)x 2+x,g (x )=kx+m (其中a≥0,k,m ∈R ),若任意x ∈[0,1]均有f (x )≤g (x ),则称函数y=g (x )是函数y=f (x )的“控制函数”,且对所有满足条件的函数y=g (x )在x 处取得的最小值记为f (x ).(1)若a=2,g (x )=x,试判断函数y=g (x )是否为函数y=f (x )的“控制函数”,并说明理由;(2)若a=0,曲线y=f (x )在x=14处的切线为直线y=h (x ),证明:函数y=h (x )为函数y=f (x )的“控制函数”,并求f (14)的值;(3)若曲线y=f (x )在x=x 0,x 0∈(0,1)处的切线过点(1,0),且c ∈[x 0,1],证明:当且仅当c=x 0或c=1时,f (c )=f (c ).【专题】计算题;整体思想;综合法;导数的综合应用;数学运算.【分析】(1)设h (x )=f (x )-g (x )=2x 3-3x 2,h′(x )=6x 2-6x=6x (x-1),当x ∈[0,1]时,易知h′(x )=6x (x-1)≤0,即h (x )单调减,求得最值即可判断;(2)根据题意得到f (x )≤h (x ),即y=h (x )为函数y=f (x )的“控制函数“,代入即可求解;(3)f (x )=ax 3-(a+1)x 2+x,f′(x )=3ax 2-2(a+1)x+1,y=f (x )在x=x 0(x 0∈(0,1))处的切线为t (x ),求导整理得到函数t (x )必是函数y=f (x )的“控制函数“,又此时“控制函数“g (x )必与y=f (x )相切于x 点,t (x )与y=f (x )在x =12a 处相切,且过点(1,0),在(12a,1)之间的点不可能使得y=f (x )在(12a ,1)切线下方,所以f (c )=f (c )⇒c =12a =x 0或c=1,即可得证.【解答】解:(1)f (x )=2x 3-3x 2+x,设h (x )=f (x )-g (x )=2x 3-3x 2,h′(x )=6x 2-6x=6x (x-1),当x ∈[0,1]时,易知h′(x )=6x (x-1)≤0,即h (x )单调减,∴h (x )max =h (0)=0,即f (x )-g (x )≤0⇒f (x )≤g (x ),∴g (x )是f (x )的“控制函数“;(2)f (x )=−x 2+x ,f (14)=316,f ′(x )=−2x +1,f ′(14)=12,∴h (x )=12(x −14)+316=12x +116,f (x )−h (x )=−x 2+12x −116=−(x −14)2≤0,∴f (x )≤h (x ),即y=h (x )为函数y=f (x )的“控制函数“,又f(14)=h(14)=316,且g(14)≥f(14)=316,∴f(14)=316;证明:(3)f(x)=ax3-(a+1)x2+x,f′(x)=3ax2-2(a+1)x+1,y=f(x)在x=x0(x0∈(0,1))处的切线为t(x),t(x)=f′(x0)(x-x0)+f(x0),t(x0)=f(x0),t(1)=0⇒f(1)=0,f′(x0)=3ax02−2(a+1)x0+1⇒f′(x0)(1−x0)=f(1)−f(x0)=(1−x0)[a(1+x0+x02)−(a+1) (1+x0)+1]⇒3a x02−2(a+1)x0+1=a x02−x0⇒(2a x0−1)(x0−1)=0,x0≠1⇒a=12x0∈(12,+∞)⇒x0=1 2a ,f′(x0)=3ax02−2(a+1)x0+1=3a(12a )2−2(a+1)(12a)+1=−14a,f(x0)=a(12a )3−(a+1)(12a)2+12a=2a−18a2,t(x)=f′(x0)(x−x0)+f(x0)=−14a (x−12a)+2a−18a2⇒t(x)=−14a(x−1),f(x)=x(x−1)(ax−1)≤t(x)⇒ax2−x+14a ≥0,(x−12a)2≥0恒成立,函数t(x)必是函数y=f(x)的“控制函数“,∀g(x)=kx+m≥f(x)⇒∀f(x)≥f(x),f(x)=f(x),x∈(0,1)是函数y=f(x)的“控制函数“,此时“控制函数“g(x)必与y=f(x)相切于x点,t(x)与y=f(x)在x=12a处相切,且过点(1,0),在(12a ,1)之间的点不可能使得y=f(x)在(12a,1)切线下方,所以f(c)=f(c)⇒c=12a=x0或c=1,所以曲线y=f(x)在x=x0(x0∈(0,1))处的切线过点(1,0),且c∈[x0,1],当且仅当c=x0或c=1时,f(c)=f(c).。
逻辑代数基础试题及答案1. 逻辑代数中,与运算的符号是什么?答案:与运算的符号是“∧”。
2. 逻辑代数中,或运算的符号是什么?答案:或运算的符号是“∨”。
3. 逻辑代数中,非运算的符号是什么?答案:非运算的符号是“¬”。
4. 逻辑代数中,异或运算的符号是什么?答案:异或运算的符号是“⊕”。
5. 逻辑代数中,同或运算的符号是什么?答案:同或运算的符号是“≡”。
6. 逻辑代数中,如何表示变量A和变量B的与运算?答案:变量A和变量B的与运算表示为“A∧B”。
7. 逻辑代数中,如何表示变量A和变量B的或运算?答案:变量A和变量B的或运算表示为“A∨B”。
8. 逻辑代数中,如何表示变量A的非运算?答案:变量A的非运算表示为“¬A”。
9. 逻辑代数中,如何表示变量A和变量B的异或运算?答案:变量A和变量B的异或运算表示为“A⊕B”。
10. 逻辑代数中,如何表示变量A和变量B的同或运算?答案:变量A和变量B的同或运算表示为“A≡B”。
11. 在逻辑代数中,德摩根定律是什么?答案:德摩根定律包括两个部分,即(¬A)∨(¬B) = ¬(A∧B)和 (¬A)∧(¬B) = ¬(A∨B)。
12. 逻辑代数中,如何证明A∧(A∨B) = A?答案:根据分配律,A∧(A∨B) = (A∧A)∨(A∧B)。
由于A∧A = A,所以表达式简化为A∨(A∧B)。
由于A∨A = A,最终表达式简化为A。
13. 逻辑代数中,如何证明A∨(¬A∧B) = A∨B?答案:根据分配律,A∨(¬A∧B) = (A∨¬A)∧(A∨B)。
由于A∨¬ A = 1(真),表达式简化为1∧(A∨B)。
由于任何变量与1的与运算结果都是该变量本身,最终表达式简化为A∨B。
14. 逻辑代数中,如何证明A∧(¬A∨B) = ¬A∨B?答案:根据分配律,A∧(¬A∨B) = (A∧¬A)∨(A∧B)。
第1章逻辑代数基础概述一、填空题1、将十进制数(10)10转换成二进制数是__,转换成八进制数是。
2、二进制数10111111对应的八进制数为,十进制数为。
3、(35.75)10=()24、(10011010)B =()D =()H 。
二、选择题1、十进制整数转换为二进制数一般采用()A 、除2取余法B 、除2取整法C 、除10取余法D 、除10取整法2、将十进制小数转换为二进制数一般采用()A 、乘2取余法B 、乘2取整法C 、乘10取余法D 、乘10取整法3、一位十六进制数可以用()位二进制数来表示。
A 、2B 、3C 、4D 、54、与十进制数(53.5)10等值的数或代码为()A 、(01010011.0101)8421BCDB 、(35.8)16C 、(110101.1)2D 、(65.4)85、与八进制数(47.3)8等值的数为()。
A 、(100111.011)2B 、(27.6)16C 、(27.3)16D 、(100111.11)26、和二进制数(1100110111)2等值的十六进制数是()。
A.(337)16B.(637)16C.(1467)16D.(C37)167、下列数中,最大的数是()A.(3D )16B .(111010)2C .(57)10D .(65)88、在N 进制中,字符N 的取值范围为:()A .01N - B .1NC .11N -D .0N9、欲对全班53个学生以二进制代码表示,至少需要二进制码的位数是()A.6B.5C.10D.5310、n 位二进制数最大可以表示的十进制数为()A 、nB 、2nC 、n2D 、12-n三、判断题()1、模拟量是连续的,数字量是离散的,所以模拟电路的精度要高于数字电路。
()模拟电路相比,数字电路具有较强的抗干扰能力。
()3、数字电路中用“1”和“0”分别表示两种状态,二者无大小之分。
()4、八进制数(17)8比十进制数(17)10小。
第二章逻辑代数基础1 : 下列等式不正确的是()A:1+A=1B:1•A=AC:A+A´=1D:(A+B)´=A´+B´您选择的答案: 正确答案:D知识点:(A+B)´=A´•B´---------------------------------------------------------------------------- 2 : 已知Y=A+AB´+A´B,下列结果中正确的是()A:Y=AB:Y=BC:Y=A+BD:Y=A´+B´您选择的答案: 正确答案:C知识点:利用公式A+AB´=A和A+A´B=A+B进行化简---------------------------------------------------------------------------- 3 : 下列等式不正确的是()A:(ABC)´=A´+B´+C´B:(A+B)(A+C)=A+BCC: A(A+B)´=A+B´D:AB+A´C+BC=AB+A´C您选择的答案: 正确答案:C知识点:A(A+B)´=0---------------------------------------------------------------------------- 4 : 下列等式正确的是()A:A+AB+B=A+BB:AB+AB´=A+BC:A(AB)´=A+B´D:A(A+B+C)´=B´C´您选择的答案: 正确答案:A知识点:AB+AB´=A;A(AB)´=AB´;A(A+B+C)´=0---------------------------------------------------------------------------- 5 : 下列说法不正确的是()A:逻辑代数有与、或、非三种基本运算B:任何一个复合逻辑都可以用与、或、非三种基本运算构成C:异或和同或与与、或、非运算无关D:同或和异或互为反运算您选择的答案: 正确答案:C知识点:异或和同或也是由与、或、非三种基本运算构成的复合运算----------------------------------------------------------------------------6 : 下列说法不正确的是()A:利用代入定理可将基本公式中的摩根定理推广为多变量的形式B:将逻辑式Y中的所有“• ”和“+”互换,“0 ”和“1”互换,就可得到Y´C:摩根定理只是反演定理的一个特例D:将逻辑式Y中的所有“• ”和“+”互换,“0 ”和“1”互换,就可得到YD您选择的答案: 正确答案:B知识点:区分反逻辑式和对偶式的变换方法:将逻辑式Y中的所有“• ”和“+”互换,“0 ”和“1”互换,可得到YD;将逻辑式Y中的所有“• ”和“+”互换,“0 ”和“1”互换,原变量和反变量互换,可得到Y´。
----------------------------------------------------------------------------7 : 下列说法不正确的是()A:同一个逻辑函数的不同描述方法之间可相互转换B:任何一个逻辑函数都可以化成最小项之和的标准形式C:具有逻辑相邻性的两个最小项都可以合并为一项D:任一逻辑函数的最简与或式形式是唯一的您选择的答案: 正确答案:D知识点:一个逻辑函数的最简与或式形式不是唯一的----------------------------------------------------------------------------8 : 三变量的全部最小项有()A:3个B:6个C:8个D:9个您选择的答案: 正确答案:C知识点:n变量的最小项应有2n个。
----------------------------------------------------------------------------9 : 下列说法正确的是()A:卡诺图中的每一个小方块都代表着一个最小项B:卡诺图中最小项的排列方式是按最小项从小到大数字编号顺序排列C:卡诺图中最小项的排列方式是按最小项从大到小数字编号顺序排列D:卡诺图中最小项的排列方式是随机排列您选择的答案: 正确答案:A知识点:将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上也相邻地排列起来,所得图形称为n变量最小项的卡诺图。
----------------------------------------------------------------------------10 : 下列说法不正确的是()A:卡诺图中任何两个位置相邻的最小项都具有逻辑相邻性B:任何两个逻辑相邻的最小项在平面卡诺图中的位置也是相邻的C:从几何位置上看,卡诺图实际上应是一个上下左右闭合的图形D:卡诺图两侧标注的0和1表示使对应方格内的最小项为1的变量取值您选择的答案: 正确答案:B知识点:卡诺图是一个上下左右闭合的图形,图形两侧标注的0和1表示使对应方格内的最小项为1的变量取值。
----------------------------------------------------------------------------11 : 下列说法不正确的是()A:卡诺图化简时所依据的原理是:具有相邻性的最小项可以合并,并消去不同的因子B:卡诺图中排列呈矩形的4个相邻的最小项可以合并为一项,消去2对因子C:卡诺图中排列呈矩形的6个相邻的最小项可以合并为一项,消去3对因子D:卡诺图中排列呈矩形的8个相邻的最小项可以合并为一项,消去3对因子您选择的答案: 正确答案:C知识点:卡诺图化简逻辑函数时所依据的原理是:具有相邻性的最小项可以合并,并消去不同的因子;合并最小项的规则是:如果有2^n个最小项相邻并排列成一个矩形组,则它们可以合并为一项,消去n对因子----------------------------------------------------------------------------12 : 逻辑函数Y=(A’+D)(A C+B C’) ’+A B D’ 的Y’ 是()A:(AD’+(A’+C’)(B’+C))(A’+B’+D)B:(AD’+((A’+C’)(B’+C))’)(A’+B’+D)C:AD’+(A’+C’)(B’+C)(A’+B’+D)D:AD’+((A’+C’)(B’+C))’(A’+B’+D)您选择的答案: 正确答案:B知识点:利用反演定理求Y’时,要注意:利用加括号的方式保证原来的运算顺序不变;非单个变量上的非号不变。
----------------------------------------------------------------------------13 : 逻辑函数Y=( (A + B′) (A′+ C) )′A C + B C的Y’ 是()A:((A’B+AC’)’+A’+C’)(B’+C’)B:(A’B+AC’+A’+C’)(B’+C’)C:(A’B+AC’)’+A’+C’(B’+C’)D:((A’B+AC’)’+A’+C’)B’+C’您选择的答案: 正确答案:A知识点:利用反演定理求Y’时,要注意:利用加括号的方式保证原来的运算顺序不变;非单个变量上的非号不变。
----------------------------------------------------------------------------14 : 逻辑函数Y(A,B)=A+B’的最小项之和为()A:AB+AB’+A’BB:A’B’+AB+AB’C:A+B´D:AB+A’B’+A’B您选择的答案: 正确答案:B知识点:利用基本公式A+A’=1,可以把任何一个逻辑函数化为最小项之和的标准形式----------------------------------------------------------------------------15 : 下图所示逻辑电路的输出逻辑表达式为()A:Y=((A+B)’C)’ ⊙DB:Y=(A+B)’C’⊕DC:Y=(A+B)’C’ ⊙DD:Y=((A+B)’C)’⊕D您选择的答案: 正确答案:D知识点:注意区分各种逻辑运算的逻辑符号。
----------------------------------------------------------------------------16 : 逻辑函数Y(A,B,C,D)=A⊕B+B(A⊙C)的最小项之和为()A:∑m(0,1,4,5,6,7,8,9,10,11,13,15)B:∑m(0,1,4,5,6,7,8,9,10,11,14,15)C: ∑m(0,1,2,4,5,7,8,9,10,11,13,15)D:∑m(0,1,2,4,5,7,8,9,10,11,14,15)您选择的答案: 正确答案:B知识点:利用基本公式A+A’=1,可以把任何一个逻辑函数化为最小项之和的标准形式----------------------------------------------------------------------------17 : 逻辑函数的真值表如下表所示,其最简与或式是()A:A’B’C’+AB’C’+ABC’B:A’B’C’+AB’C’+AB’CC:B’C’+AB’D:B’C’+AC’您选择的答案: 正确答案:C知识点:掌握函数的真值表转换成函数式的方法,然后将逻辑函数化简。
---------------------------------------------------------------------------- 18 : 逻辑函数Y= ABCD’+ABD+BCD’+ABCD+BC’)的最简与非式为()A:((AB)’(BC’)’(BD)’)’B:((AB)’(BC’)’(B’D)’)’C: ((AB)’(BC’)’(BCD’)’)’D:((AB)’(BC’)’(BD’)’)’您选择的答案: 正确答案:D知识点:先将逻辑函数化为最简与或式,再用摩根公式化成与非式---------------------------------------------------------------------------- 19 : 已知逻辑函数Y的真值表,其最简与非式为()A:A’B’+A’C’+B’C’B:((AC)’(BC)’(AB)’)’C: AC+BC+ABD:((A’B’)’(A’C’)’(B’C’)’)’您选择的答案: 正确答案:B知识点:先将逻辑函数化为最简与或式,再用摩根公式化成与非式----------------------------------------------------------------------------20 : 逻辑函数Y=A(B⊕C)+B(A⊙C)的最简与非式为()A:((AC)’(BC’)’)’B:((AB’C’)’(ABC)’(A’BC)’(ABC’)’)’C: ((AC’)’(BC)’)’D:((AB’C)’(ABC’)’(A’BC’)’(ABC)’)’您选择的答案: 正确答案:A知识点:先将逻辑函数化为最简与或式,再用摩根公式化成与非式。