高数第10章简答
- 格式:doc
- 大小:125.23 KB
- 文档页数:2
第十章 微分方程作业20 微分方程基本概念1.写出下列条件所确定的微分方程:(1)曲线在点),(y x M 处的法线与x 轴的交点为Q ,且线段MQ 被y 轴平分; 解:法线方程为()1Y y X x y -=--',法线与x 轴的交点0,Y X x y y '=⇒=+ 由已知02022x X x x y yy y x '+++'==⇒+= (2)曲线上任意点(,)M x y 处的切线与线段OM 垂直; 解:切线的斜率为y ',线段OM 的斜率为yk x= 由已知1,yy yy x x''⋅=-⇒=- (3)曲线上任意点(,)M x y 处的切线,以及M 点与原点的连线,和x 轴所围成的三角形的面积为常数2a .解:切线方程为()Y y y X x '-=-,M 点与原点的连线为y Y X x= 切线与x 轴即直线0Y =的交点,0,y Y X x y =⇒=-'由已知()222221,2,22y y y x a xy a xy a y y y y ⎛⎫'⋅-=⇒-=±±= ⎪''⎝⎭2..求曲线簇12e e x x xy C C -=+ ),(21为任意常数C C 所满足的微分方程. 解:由已知,两边对自变量x 求导12e e x x y xy C C -'+=- 两边再对自变量x 求导122e e2xxy xy C C y xy xy -''''''+=+⇒+=3.潜水艇垂直下沉时所遇到的阻力和下沉的速度成正比,如果潜水艇的质量为m ,且是在水面由静止开始下沉,求下沉的速度所满足的微分方程和初始条件. 解:由已知,(),00dvmmg kv v dt=-=作业21 可分离变量的微分方程1.解微分方程)(2y y a y x y '+='-. 解:微分方程即2()dy y ay x a dx-=+ 分离变量2dy dxy ay x a=-+ 两边积分()()1111dx ady d ay x a ay ay ay ay ⎛⎫==- ⎪+--⎝⎭⎰⎰⎰ 从而()ln lnln ln 111ay acy acyx a c x a ay ay ay +=+=⇒+=--- 2. 求解初值问题:(1e )tan 10,x y y -'++= 0πx y ==. 解:微分方程即(1e )tan 1xdyydx-+=- 分离变量sin cos 1exydy dxy -=-+ 两边积分()1cos cos 1e 1e 1e x x x x xd e d y dx e dxy -+-=-=-=-+++⎰⎰⎰⎰从而()()ln cos ln 1ln cos 1x xy e c y c e -=-+-⇒=+由0πx y ==,()()011cos 12,cos 122xc ec c y e π=+=⇒=-=-+ 3.当0→∆x 时,α是比x ∆高阶的无穷小量,函数)(x y 在任意点处的增量21x xy y +∆=∆+α,且(0)πy =,求)1(y . 解:由已知21y y x x ∆=∆+,从而20lim 1x dy y y dx x x ∆→∆==∆+ 分离变量21dy dx y x =+ 两边积分arctan 2ln arctan ln 1xdy dx y x c y ce y x =⇒=+⇒=+⎰⎰ 由0πx y ==,arctan0arctan ,x cec c y e πππ==⇒==4.解微分方程y y y x ln ='. 解:微分方程即ln dyxy y dx= 分离变量ln dy dxy y x=两边积分ln ln ln ln ln ln ,ln ln cx dy d y dxy x c y cx y e y y y x==⇒=+⇒==⎰⎰⎰ 5.一曲线通过点(2,3),它在两坐标轴之间的任意切线段均被切点所平分,求这曲线方程. 解:由已知()()23,y Y y y X x '=-=- 当00,,2,2Y dyX Y y xy y y xy y x y dx+''==-=⇒-==- 分离变量dy dxy x=- 两边积分ln ln ln dy dx cy x c y y x x=-⇒=-+⇒=⎰⎰ 由23x y ==,63,6,2c c y x=⇒== 6.设有连接)1,1()0,0(A O 和的一段向上凸的曲线弧OA ,对于OA 上任一点(,)P x y ,曲线弧OP 与直线段OP 所围成的面积为2x ,求曲线弧OA 的方程. 解:设曲线为()y f x = 由已知()()()201,00,11222xy xy y t dt xy x y y y x '+-===⇒-=⎰微分方程即222,xy y y xy y x x x x ''-⎛⎫'-=-==- ⎪⎝⎭从而()()2,2ln 2ln y dx y x x c x c x x x=-=--=-⎰ 由11x y ==,()12ln1,1,12ln c c y x x =-⇒==-,作业22 齐次方程1.解微分方程xy y y x ln ='. 解:令,yu x=则,y ux y u xu ''==+ 微分方程x y y y x ln =',即ln ln y yy u u u xu x x ''===+()ln 1du u u xdx -=,分离变量()ln 1du dx u u x=- 两边积分()()ln 1ln 1ln 1d u du dxu u u x -==--⎰⎰⎰()1ln ln 1ln ln ,ln1,cx yu x c cx y xe x+-=+=+=2.求解初值问题(d 0(0),(1)0y x x y x y -=>=.解:令,yu x=则,y ux y u xu ''==+微分方程dy dx =,即y y u u xu x ''=+=+=+du xdx =dxx =,两边积分dx x =⎰ (2ln ln ln ,u x c y cx =+=由(1)0y =,20,1,c c y x =⇒=+=3.作适当的变量代换,求下列方程的通解:(1)2d ()d yx y x=+; 解:令222,11,,11du du du u x y y u dx dx dx u u'=+⇒=+=+⇒==++⎰⎰ ()arctan ,tan u x c y x c x =+=+-(2) 51+++-='x y x y y ;解:令,x X a y Y b =+=+,则15dY Y X b a y dX Y X b a -+-+'==++++ 再令10,503,2b a b a b a -+=++=⇒=-=-,2,3x X y Y =-=-再令2111,,111u u u Y uX Xu u Xu u u u u ----''=⇒+==-=+++ 从而()22211,111u du u dX du u u u X +⎛⎫=+=- ⎪+++⎝⎭⎰⎰⎰ ()()22arctan 2211ln 1arctan ln ln ,122u u u X c e cX u -++=--=+ ()()32arctan22223y x ec x y +-+⎡⎤=+++⎣⎦(3)1)2(2='+y y x .解:令2u x y =+,则22222121u u y u u +''=+=+=,分离变量222u du dx u =+,两边积分22222u du dx u x c u +-=⇒=++⎰⎰2,2x y x c y c +=+-= 4.求曲线()y y x =,使它正交于圆心在x 轴上且过原点的任何圆(注:两曲线正交是指在交点处两曲线的切线互相垂直).解:可设在x 轴上且过原点的任何圆为()222x a y a -+=,则()22222,,220,2x y a xx y ax a x a yy y x y+-''+==-+==由已知曲线()y y x =应满足222222y y xyy x y a x y xx x'=-=-=-+--- 令,y u x =则()()2322212,,,111u du u u u dxy ux y u xu xu u u xu u -+'''==+===--+, ()()222212,ln ln 1ln ln 1u u dx du u u x c xu u +-=-+=++⎰⎰ ()22222,1,1u yy cx cx y c x y u x x ⎛⎫==+=+ ⎪+⎝⎭作业23 一阶线性微分方程1.解微分方程d sin d y y x x x x+=. 解:对照标准的一阶线性微分方程()()d ,d yP x y Q x x+= ()()()()()1sin ,,P x dx P x dx x P x Q x y e Q x e dx C x x -⎡⎤⎰⎰⇒===+⎢⎥⎣⎦⎰ 111ln ln ln sin sin sin dx dxx x x x x x x x y e e dx C e e dx C e xdx C x x x --⎡⎤⎡⎤⎡⎤⎰⎰=+=+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰1cos sin C x xdx C x x-⎡⎤=+=⎣⎦⎰ 2.解微分方程 2d 32d yx y x x x +=++. 解:微分方程即()2d 32,d xy x x x=++ ()23221313322,23232c xy x x dx x x x c y x x x =++=+++=+++⎰ 3.解微分方程 2d (6)20d y y x y x -+=. 解:观察发现,微分方程等价为2d d 3620,,d d 2x x y y x yx y y y -+=-=- ()()()()()3,,2P y dy P y dy y P y Q y x e Q y e dy C y ---⎡⎤⎰⎰⇒===+⎢⎥⎣⎦⎰ 333ln 3ln 22dy dy y y y y y y x e e dy C e e dy C ----⎡⎤--⎰⎰⎡⎤=+=+⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎰⎰ 2333211222y y dy C y C Cy y y ⎛⎫⎛⎫=-+=+=+ ⎪ ⎪⎝⎭⎝⎭⎰4.求解初值问题d tan sec d yy x x x-=,00x y ==. 解:对照标准的一阶线性微分方程()()d ,d yP x y Q x x+= ()()tan tan tan ,sec ,sec xdx xdx P x x Q x x y e x e dx C ---⎡⎤⎰⎰⇒=-==⋅+⎢⎥⎣⎦⎰ ln cos ln cos sec cos x xx cy e x e dx C x-+⎡⎤=⋅+=⎣⎦⎰,由00x y ==,cos xy x=5.设曲线积分 2()d [2()]d Lyf x x xf x x y +-⎰在右半平面()0>x 内与路径无关,其中)(x f 可导,且1)1(=f ,求)(x f .解:由曲线积分在右半平面()0>x 内与路径无关可知,()()1()2()22,()12f x x f x f x x f x fx x''=+-+= ()()1111ln ln 22221,1,12dx dx x x x x P x Q x y e e dx C e e dx C x --⎡⎤⎡⎤⎰⎰⇒===⋅+=+⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰()322233y x c x f x ⎛⎫=+==⎪⎭由1)1(=f ,()2121,,333c c f x x =+⇒==+6.解微分方程2d 3d yxy xy x-=. 解:微分方程化为21d d 1d 13,3,3,d d d y x x xx x x y x y x y y x y y⎛⎫⎛⎫-=--=+=- ⎪ ⎪⎝⎭⎝⎭ 令1du,3,d u xu x y x=⇒+=-为一阶线性微分方程 ()()()223333223,,xx xdxxdx P x x Q x x u e x e dx C e xe dx C --⎡⎤⎡⎤⎰⎰==-=-⋅+=-+⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰ 2222233333222222113113233x x x x x u e e d x x C ee C Ce y---⎡⎤⎡⎤⎛⎫==-+=-+=-⎢⎥⎢⎥⎪⎝⎭⎣⎦⎣⎦⎰作业24 全微分方程1. 判别下列方程中哪些是全微分方程,并求全微分方程的通解: (1)2222(36)d (64)d 0x xy x x y y y +++=;解:因为2222(36)(64)=12=x xy x y y xy y x∂+∂+∂∂且连续,从而该方程是全微分方程 2222322223403d 6d 64d d 3d 3d 3x x xy x x ydy y y x y x x dy y =+++=+++32234d 33x x y y ⎛⎫=+++ ⎪⎝⎭,从而3223433x x y y c +++=(2)0sin sin )cos cos (=+-'+y x y y x y x ;解:方程即()(cos cos )sin sin 0x y x dy y x y dx ++-+=因为()sin sin (cos cos )=sin cos =y x y x y x x y y x∂-+∂+-+∂∂且连续,从而该方程是全微分方程,方程右边为某个函数(),u x y 的全微分, 即,sin sin ,cos cos x y u u y x y u x y x ∃=-+=+()()cos sin ,cos cos cos cos y u y x x y g y u x y x x x y g y '=++=+=++ ()()10,g y g y c '⇒==从而微分方程的通解为cos sin y x x y c += (3) e d (e 2)d 0yyx x y y +-=.解:因为e (e 2)==y y y x y e y x∂∂-∂∂且连续,从而该方程是全微分方程,从而该方程是全微分方程,方程右边为某个势函数(),u x y 的全微分,可用曲线积分法求一个来。
高二数学书第十章知识点第一节:平面解析几何1. 直线的方程直线的一般方程为Ax+By+C=0,其中A、B、C为实数且A与B不同时为0。
直线的斜率为-m,其中m为A/B的倒数。
通过两点求直线的方程可使用点斜式、两点式或截距式。
2. 圆的方程圆的标准方程为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径。
通过已知条件求圆的方程可使用圆的一般方程、直径式或三点式。
第二节:立体几何1. 空间直线和平面的位置关系空间直线与平面的位置关系可分为相交、平行或重合。
判断直线与平面的关系可使用直线的一般方程和平面的一般方程,通过代入坐标判断是否成立。
2. 空间几何体的计算常见的空间几何体有球、柱体、锥体等。
计算这些空间几何体的体积、表面积或侧面积时,需根据具体情况选择相应的公式进行求解。
第三节:概率与统计1. 事件与概率事件是指试验可能出现的结果,概率是指事件发生的可能性大小。
通过对事件进行统计和分析,可以计算事件发生的概率。
2. 事件的运算事件的运算包括并、交、差以及对立等运算。
通过运用集合的运算规律,可以简化事件之间的关系,并求解一系列相关概率问题。
3. 随机变量与概率分布随机变量是指试验结果的数值描述,概率分布是指随机变量取值与其对应概率的分布情况。
通过分析随机变量的概率分布,可以推断与预测事件的发生。
第四节:数理统计1. 抽样调查抽样调查是指从总体中选取一部分样本进行调查和研究。
通过合理的抽样方法和样本量,可以从有限的样本中推断出总体的统计规律。
2. 统计指标和统计图形统计指标包括均值、中位数、众数、标准差等,用于描述数据分布的中心位置、离散程度和数据的特征。
统计图形包括直方图、折线图、饼图等,能直观地展示数据的分布和趋势。
总结:高二数学书第十章主要介绍了平面解析几何、立体几何、概率与统计以及数理统计等相关的知识点。
通过学习这些知识,我们可以更好地理解和应用在实际问题中。
高等数学课后习题及参考答案(第十章)习题 10-11. 设在xOy 面内有一分布着质量的曲线弧L , 在点(x , y )处它的线密度为μ(x , y ), 用对弧长的曲线积分分别表达:(1)这曲线弧对x 轴、对y 轴的转动惯量I x , I y ; (2)这曲线弧的重心坐标x , y .解 在曲线弧L 上任取一长度很短的小弧段ds (它的长度也记做ds ), 设(x , y )为小弧段ds 上任一点.曲线L 对于x 轴和y 轴的转动惯量元素分别为 dI x =y 2μ(x , y )ds , dI y =x 2μ(x , y )ds . 曲线L 对于x 轴和y 轴的转动惯量分别为 ⎰=Lx ds y x y I ),(2μ, ⎰=Ly ds y x x I ),(2μ.曲线L 对于x 轴和y 轴的静矩元素分别为 dM x =y μ(x , y )ds , dM y =x μ(x , y )ds . 曲线L 的重心坐标为⎰⎰==L L y dsy x ds y x x M M x ),(),(μμ, ⎰⎰==LL x ds y x dsy x y M M y ),(),(μμ. 2. 利用对弧长的曲线积分的定义证明: 如果曲线弧L 分为两段光滑曲线L 1和L 2, 则⎰⎰⎰+=12),(),(),(LL L ds y x f ds y x f ds y x f .证明 划分L , 使得L 1和L 2的连接点永远作为一个分点, 则∑∑∑+===∆+∆=∆111111),(),(),(n n i i i i ni n i i i i i i i s f s f s f ηξηξηξ.令λ=max{∆s i }→0, 上式两边同时取极限∑∑∑+=→=→=→∆+∆=∆nn i i i i n i i i i ni i i i s f s f s f 111011),(lim),(lim ),(lim ηξηξηξλλλ,即得⎰⎰⎰+=12),(),(),(LL L ds y x f ds y x f ds y x f .3. 计算下列对弧长的曲线积分:(1)⎰+Ln ds y x )(22, 其中L 为圆周x =a cos t , y =a sin t (0≤t ≤2π);解⎰+L nds y x)(22⎰+-+=π20222222)cos ()sin ()sin cos (dt t a t a t a t a n=⎰+-+π20222222)cos ()sin ()sin cos (dt t a t a t a t a n ⎰++==ππ2012122n n a dt a .(2)⎰+Lds y x )(, 其中L 为连接(1, 0)及(0, 1)两点的直线段;解 L 的方程为y =1-x (0≤x ≤1);⎰⎰'-+-+=+102])1[(1)1()(dx x x x ds y x L22)1(1=-+=⎰dx x x .(3)xdx L⎰, 其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界; 解 L 1: y =x 2(0≤x ≤1), L 2: y =x (0≤x ≤1) .xdx L ⎰xdx xdx LL ⎰⎰+=21⎰⎰'++'+=102122)(1])[(1dx x x dx x x⎰⎰++=10102241xdx dx x x )12655(121-+=.(4)ds ey x L22+⎰, 其中L 为圆周x 2+y 2=a 2, 直线y =x 及x 轴在第一象限内所围成的扇形的整个边界; 解 L =L 1+L 2+L 3, 其中 L 1: x =x , y =0(0≤x ≤a ),L 2: x =a cos t , y =a sin t )40(π≤≤t ,L 3: x =x , y =x )220(a x ≤≤,因而ds eds eds eds ey x L y x L y x L y x L22322222122++++⎰⎰⎰⎰++=,⎰⎰⎰+++-++=axa ax dx e dt t a t a e dx e 220222402202211)cos ()sin (01π2)42(-+=a e a π.(5)⎰Γ++ds z y x 2221, 其中Γ为曲线x =e t cos t , y =e t sin t , z =e t 上相应于t 从0变到2的这段弧;解 dt dtdz dt dydt dx ds 222)()()(++=dt e t e t e t e t e t t t t t 222)cos sin ()sin cos (+++-=dt e t 3=,⎰⎰++=++Γ20222222223sin cos 11dt e et e t e ds z y x t t t t ⎰----=-==2220)1(23]23[23e e dt e t t .(6)⎰Γyzds x 2, 其中Γ为折线ABCD , 这里A 、B 、C 、D 依次为点(0, 0, 0)、 (0, 0, 2)、(1, 0, 2)、(1, 3, 2); 解 Γ=AB +BC +CD , 其中 AB : x =0, y =0, z =t (0≤t ≤1), BC : x =t , y =0, z =2(0≤t ≤3), CD : x =1, y =t , z =2(0≤t ≤3), 故yzds x yzds x yzds x yzds x CD BC AB 2222⎰⎰⎰⎰++=Γ9010200322231=++++=⎰⎰⎰dt t dt dt .(7)⎰Lds y 2, 其中L 为摆线的一拱x =a (t -sin t ), y =a (1-cos t )(0≤t ≤2π);解⎰⎰'+'--=L dt t a t t a t a ds y π2022222])(cos [])sin ([)cos 1(⎰--=π2023cos 1)cos 1(2dt t t a 315256a =.(8)⎰+Lds y x )(22, 其中L 为曲线x =a (cos t +t sin t ), y =a (sin t -t cos t )(0≤t ≤2π).解 dt dtdydt dx ds 22)()(+=atdt dt t at t at =+=22)sin ()cos (atdt t t t a t t t a ds y x L ])cos (sin )sin (cos [)(22202222-++=+⎰⎰π⎰+=+=πππ2023223)21(2)1(a tdt t a .4. 求半径为a , 中心角为2ϕ的均匀圆弧(线密度μ=1)的重心. 解 建立坐标系如图10-4所示, 由对称性可知0=y , 又 ⎰==L x xds a M M x ϕ21⎰-⋅=ϕϕθθϕad a a cos 21ϕϕsin a =, 所以圆弧的重心为)0 ,sin (ϕϕa5. 设螺旋形弹簧一圈的方程为x =a cos t , y =a sin t , z =kt , 其中0≤1≤2π, 它的线密度ρ(x , y , z )=x 2+y 2+z 2, 求:(1)它关于z 轴的转动惯量I z ; (2)它的重心. 解 dt t z t y t x ds )()()(222'+'+'=dt k a 22+=. (1)⎰+=Lz ds z y x y x I ),,()(22ρds z y x y x L))((22222+++=⎰dt k a t k a a ⎰++=π20222222)()43(32222222k a k a a ππ++=. (2)⎰⎰++==LLds z y x ds z y x M )(),,(222ρ⎰++=π2022222)(dt k a t k a)43(3222222k a k a ππ++=, ds z y x x M x L)(1222⎰++=⎰++=π2022222)(cos 1dt k a t k a t a M2222436k a ak ππ+=, ds z y x y M y L)(1222⎰++=⎰++=π2022222)(sin 1dt k a t k a t a M2222436k a ak ππ+-=, ds z y x z M z L)(1222⎰++=⎰++=π2022222)(1dt k a t k a kt M22222243)2(3k a k a k πππ++=,故重心坐标为)43)2(3 ,436 ,436(22222222222222k a k a k k a ak k a ak πππππππ+++-+.习题 10-21. 设L 为xOy 面内直线x =a 上的一段, 证明:⎰=L dx y x P 0),(.证明 设L 是直线x =a 上由(a , b 1)到(a , b 2)的一段, 则L : x =a , y =t , t 从b 1变到b 2. 于是00) ,())( ,(),(2121⎰⎰⎰=⋅==b b b b L dt t a P dt dtda t a P dx y x P . 2. 设L 为xOy 面内x 轴上从点(a , 0)到(b , 0)的一段直线, 证明⎰⎰=Lbadx x P dx y x P )0 ,(),(.证明L : x =x , y =0, t 从a 变到b , 所以⎰⎰⎰='=baL b adx x P dx x x P dx y x P )0 ,())(0 ,(),(.3. 计算下列对坐标的曲线积分:(1)⎰-Ldx y x )(22, 其中L 是抛物线y =x 2上从点(0, 0)到点(2, 4)的一段弧;解 L : y =x 2, x 从0变到2, 所以⎰⎰-=-=-L dx x x dx y x2042221556)()(.(2)⎰Lxydx , 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第 一象限内的区域的整个边界(按逆时针方向绕行); 解 L =L 1+L 2, 其中L 1: x =a +a cos t , y =a sin t , t 从0变到π, L 2: x =x , y =0, x 从0变到2a , 因此⎰⎰⎰+=21L L L xydx xydx xydx⎰⎰+'++=adx dt t a a t a t a 200)cos (sin )cos 1(π3020232)sin sin sin (a t td tdt a πππ-=+-=⎰⎰.(3)⎰+Lxdy ydx , 其中L 为圆周x =R cos t , y =R sin t 上对应t 从0到2π的一段弧;解 ⎰⎰+-=+L dt t tR R t R t R xdy ydx ]cos cos )sin (sin [20π⎰==20202cos πtdt R .(4)⎰+--+L y x dy y x dx y x 22)()(, 其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);解 圆周的参数方程为: x =a cos t , y =a sin t , t 从0变到2π, 所以⎰+--+L yx dyy x dx y x 22)()( ⎰---+=π202)]cos )(sin cos ()sin )(sin cos [(1dt t a t a t a t a t a t a a ⎰-=-=ππ202221dt a a .(5)ydz zdy dx x -+⎰Γ2, 其中Γ为曲线x =k θ, y =a cos θ, z =a sin θ上对应θ从0到π的一段弧; 解⎰⎰--+=-+Γπθθθθθθ022]cos cos )sin (sin )[(d a a a a k k ydz zdy dx x233220331)(a k d a k ππθθπ-=-=⎰.(6)dz y x ydy xdx )1(-+++⎰Γ, 其中Γ是从点(1, 1, 1)到点(2, 3, 4)的一段直线;解 Γ的参数方程为x =1+t , y =1+2t , z =1+3t , t 从0变到1.⎰Γ-+++dz y x ydy xdx )1(⎰-+++++++=1)]1211(3)21(2)1[(dt t t t t⎰=+=1013)146(dt t .(7)⎰Γ+-ydz dy dx , 其中Γ为有向闭折线ABCA , 这里的A , B , C依次为点(1, 0, 0), (0, 1, 0), (0, 0, 1); 解 Γ=AB +BC +CA , 其中AB : x =x , y =1-x , z =0, x 从1变到0, BC : x =0, y =1-z , z =z , z 从0变到1, CA : x =x , y =0, z =1-x , x 从0变到1, 故ydz dy dx ydz dy dx ydz dy dx ydz dy dx CA BC AB +-++-++-=+-⎰⎰⎰⎰Γ⎰⎰⎰+-+'--+'--=101010)]1()1([])1(1[dx dt z z dx x 21=.(8)dy xy y dx xy x L)2()2(22-+-⎰, 其中L 是抛物线y =x 2上从(-1, 1)到(1, 1)的一段弧.解 L : x =x , y =x 2, x 从-1变到1, 故⎰-+-L dy xy y dx xy x )2()2(22⎰--+-=113432]2)2()2[(dx x x x x x 1514)4(21042-=-=⎰dx x x 4. 计算⎰-++Ldy x y dx y x )()(, 其中L 是:(1)抛物线y =x 2上从点(1, 1)到点(4, 2)的一段弧; 解 L : x =y 2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(⎰=⋅-+⋅+=2122334]1)(2)[(dy y y y y y . (2)从点(1, 1)到点(4, 2)的直线段; 解 L : x =3y -2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(11]1)23()23[(21=⋅+-+⋅+-=⎰dy y y y y y(3)先沿直线从点(1, 1)到(1, 2), 然后再沿直线到点(4, 2)的折线; 解 L =L 1+L 2, 其中L 1: x =1, y =y , y 从1变到2, L 2: x =x , y =2, x 从1变到4, 故⎰-++L dy x y dx y x )()(dy x y dx y x dy x y dx y x L L )()()()(21-+++-++=⎰⎰14)2()1(4121=++-=⎰⎰dx x dy y .(4)沿曲线x =2t 2+t +1, y =t 2+1上从点(1, 1)到(4, 2)的一段弧. 解 L : x =2t 2+t +1, y =t 2+1, t 从0变到1, 故⎰-++L dy x y dx y x )()(332]2)()14)(23[(1022=⋅--++++=⎰dt t t t t t t .5. 一力场由沿横轴正方向的常力F 所构成, 试求当一质量为m 的质点沿圆周x 2+y 2=R 2按逆时针方向移过位于第一象限的那一段时 场力所作的功.解 已知场力为F =(|F |, 0), 曲线L 的参数方程为 x =R cos θ, y =R sin θ,θ从0变到2π, 于是场力所作的功为R F d R F dx F d W LL||)sin (||||20-=-⋅==⋅=⎰⎰⎰πθθr F .6. 设z 轴与力方向一致, 求质量为m 的质点从位置(x 1, y 1, z 1) 沿直线移到(x 2, y 2, z 2)时重力作的功.解 已知F =(0, 0, mg ). 设Γ为从(x 1, y 1, z 1)到(x 2, y 2, z 2)的直线, 则重力所作的功为⎰⎰⎰ΓΓ-==++=⋅=21)(0012z z z z mg dz mg mgdz dy dx d W r F .7. 把对坐标的曲线积分⎰+Ldy y x Q dx y x P ),(),(化成对弧长的曲线积分, 其中L 为:(1)在xOy 面内沿直线从点(0, 0)到(1, 1); 解 L 的方向余弦214cos cos cos ===πβα,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰⎰+=L ds y x Q y x P 2),(),(.(2)沿抛物线y =x 2从点(0, 0)到(1, 1);解 曲线L 上点(x , y )处的切向量为τ=(1, 2x ), 单位切向量为 )412,411()cos ,(cos 22x x x ++==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L ]cos ),(cos ),([βα+=⎰⎰++=L ds xy x xQ y x P 241),(2),(. (3)沿上半圆周x 2+y 2=2x 从点(0, 0)到(1, 1). 解 L 的方程为22x x y -=, 其上任一点的切向量为 )21 ,1(2x x x --=τ, 单位切向量为)1 ,2()cos ,(cos 2x x x --==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L ]cos ),(cos ),([βα+=⎰⎰-+-=Lds y x Q x y x P x x )],()1(),(2[2.8. 设Γ为曲线x =t , y =t 2, z =t 3上相应于t 从0变到1的曲线弧,把对坐标的曲线积分⎰Γ++Rdz Qdy Pdx 化成对弧长的曲线积分.解 曲线Γ上任一点的切向量为 τ=(1, 2t , 3t 2)=(1, 2x , 3y ), 单位切向量为)3 ,2 ,1(9211)cos ,cos ,(cos 22y x yx ++==τγβαe ,ds R Q P Rdz Qdy Pdx L ]cos cos cos [γβα++=++⎰⎰Γ⎰++++=L ds y x yRxQ P 2294132.习题 10-31. 计算下列曲线积分, 并验证格林公式的正确性:(1)⎰++-ldy y x dx x xy )()2(22, 其中L 是由抛物线y =x 2及y 2=x 所围成的区域的正向边界曲线; 解 L =L 1+L 2, 故⎰++-L dy y x dx x xy )()2(22⎰⎰++-+++-=21)()2()()2(2222L L dy y x dx x xy dy y x dx x xy⎰⎰++-+++-=112243423)](2)2[(]2)()2[(dy y y y y y dx x x x x x301)242()22(1010245235=++--++=⎰⎰dy y y y dx x x x ,而dxdy x dxdy yPx Q DD)21()(-=∂∂-∂∂⎰⎰⎰⎰⎰⎰-=102)21(y y dx x dy301)(42121=+--=⎰dy y y y y , 所以⎰⎰⎰+=∂∂-∂∂l DQdy Pdx dxdy yPx Q )(.(2)⎰-+-ldy xy y dx xy x )2()(232, 其中L 是四个顶点分别为(0, 0)、 (2, 0)、(2, 2)、和(0, 2)的正方形区域的正向边界.解 L =L 1+L 2+L 3+L 4, 故⎰-+-L dy xy y dx xy x )2()(232dy xy y dx xy x L L L L )2())((2324321-+-+++=⎰⎰⎰⎰ ⎰⎰⎰⎰+-+-+=202002022222)8()4(dy y dx x x dy y y dx x 8482020=-+=⎰⎰ydy xdx , 而 dxdy xy y dxdy y P x Q DD )32()(2+-=∂∂-∂∂⎰⎰⎰⎰ ⎰⎰+-=20220)32(dy xy y dx 8)48(20=-=⎰dx x , 所以 ⎰⎰⎰+=∂∂-∂∂l D Qdy Pdx dxdy yP x Q )(. 2. 利用曲线积分, 求下列曲线所围成的图形的面积:(1)星形线x =a cos 3t , y =a sin 3t ;解 ⎰⎰-⋅⋅-=-=L dt t t a t a ydx A π2023)sin (cos 3sin ⎰==ππ20224283cos sin 3a tdt t a . (2)椭圆9x 2+16y 2=144;解 椭圆9x 2+16y 2 =144的参数方程为x =4cos θ, y =3sin θ, 0≤θ≤2π, 故⎰-=Lydx xdy A 21 ⎰-⋅-⋅=πθθθθθ20)]sin 4(sin 3cos 3cos 4[21d ⎰==ππθ20126d . (3)圆x 2+y 2=2ax .解 圆x 2+y 2=2ax 的参数方程为x =a +a cos θ, y =a sin θ, 0≤θ≤2π,故 ⎰-=Lydx xdy A 21 ⎰-⋅-⋅+=πθθθθθ20)]sin (sin cos )cos 1([21d a a a a 2202)cos 1(2a d a ⎰=+=ππθθ.3. 计算曲线积分⎰+-L y x xdy ydx )(222, 其中L 为圆周(x -1)2+y 2=2, L 的方 向为逆时针方向.解 )(222y x y P +=, )(222y x x Q +-=. 当x 2+y 2≠0时 y P x Q ∂∂=∂∂0)(2)(22222222222=+--+-=y x y x y x y x . 在L 内作逆时针方向的ε小圆周l : x =εcos θ, y =εsin θ(0≤θ≤2π),在以L 和l 为边界的闭区域D ε上利用格林公式得0)(=∂∂-∂∂=+⎰⎰⎰-+dxdy y P x Q Qdy Pdx D l L ε, 即 ⎰⎰⎰+=+-=+-lL l dy Pdx Qdy Pdx Qdy Pdx . 因此 ⎰⎰+-=+-l L y x xdy ydx y x xdy ydx )(2)(22222⎰--=πθεθεθε20222222cos sin d ⎰-=-=ππθ2021d .4. 证明下列曲线积分在整个xOy 面内与路径无关, 并计算积分值:(1)⎰-++)3 ,2()1 ,1()()(dy y x dx y x ;解 P =x +y , Q =x -y , 显然P 、Q 在整个xOy 面内具有一阶连续偏 导数, 而且1=∂∂=∂∂xQ y P , 故在整个xOy 面内, 积分与路径无关.取L 为点(1, 1)到(2, 3)的直线y =2x -1, x 从1变到2, 则⎰⎰-+-=-++)3 ,2()1 ,1(21)]1(2)13[()()(dx x x dy y x dx y x ⎰=+=2125)1(dx x . (2)⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy ;解 P =6xy 2-y 3, Q =6x 2y -3xy 2, 显然P 、Q 在整个xOy 面内具有一阶连续偏导数, 并且2312y xy xQ y P -=∂∂=∂∂, 故积分与路径无关, 取路径 (1, 2)→(1, 4)→(3, 4)的折线, 则⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy236)6496()3642312=-+-=⎰⎰dx x dy y y .(3)⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx y xy .解 P =2xy -y 4+3, Q =x 2-4xy 3, 显然P 、Q 在整个xOy 面内具有一阶连续偏导数, 并且342y x xQ y P -=∂∂=∂∂, 所以在整个xOy 面内积分与 路径无关, 选取路径为从(1, 0)→(1, 2)→(2, 1)的折线, 则⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx y xy⎰⎰=++-=102135)1(2)41(dx x dy y .5. 利用格林公式, 计算下列曲线积分:(1)⎰-+++-Ldy x y dx y x )635()42(, 其中L 为三顶点分别为(0, 0)、 (3, 0)和(3, 2)的三角形正向边界;解 L 所围区域D 如图所示, P =2x -y +4, Q =5y +3x -6,4)1(3=--=∂∂-∂∂yP x Q , 故由格林公式,得⎰-+++-L dy x y dx y x )6315()42(dxdy y P x Q D)(∂∂-∂∂=⎰⎰ 124==⎰⎰dxdy D.(2)⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222, 其中L 为正 向星形线323232a y x =+(a >0);解 x e y x xy x y x P 22sin 2cos -+=, x ye x x Q 2sin 2-=,0)2cos sin 2()2cos sin 2(22=-+--+=∂∂-∂∂x x ye x x x x ye x x x x yP x Q , 由格林公式⎰-+-+L x x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (2220)(=∂∂-∂∂=⎰⎰dxdy yP x Q D . (3)⎰+-+-Ldy y x x y dx x y xy )3sin 21()cos 2(2223, 其中L 为在抛物线 2x =πy 2上由点(0, 0)到)1 ,2(π的一段弧; 解 x y xy P cos 223-=, 223sin 21y x x y Q +-=,0)cos 26()6cos 2(22=--+-=∂∂-∂∂x y xy xy x y yP x Q , 所以由格林公式0)(=∂∂-∂∂=+⎰⎰⎰++-dxdy yP x Q Qdy Pdx D OB OA L , 其中L 、OA 、OB 、及D 如图所示.故 ⎰⎰++=+AB OA L Qdy Pdx Qdy Pdx4)4321(02201022πππ=+-+=⎰⎰dy y y dx . (4)⎰+--L dy y x dx y x )sin ()(22, 其中L 是在圆周22x x y -=上由点(0, 0)到点(1, 1)的一段弧.解 P =x 2-y , Q =-x -sin 2y ,0)1(1=---=∂∂-∂∂y P x Q , 由格林公式有0)(=∂∂-∂∂-=+⎰⎰⎰++dxdy y P x Q Qdy Pdx DBO AB L , 其中L 、AB 、BO 及D 如图所示.故 ⎰⎰++--=+--L OB BA dy y x dx y x dy y x dx y x )sin ()()sin ()(22222sin 4167)sin 1(102102+-=++-=⎰⎰dx x dy y .6. 验证下列P (x , y )dx +Q (x , y )dy 在整个xOy 平面内是某一函数u (x , y )的全微分, 并求这样的一个u (x , y ):(1)(x +2y )dx +(2x +y )dy ;证明 因为yP x Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整 个xOy 面内的函数u (x , y )的全微分.⎰++++=),()0,0()2()2(),(y x C dy y x dx y x y x u C y xy x +++=22222. (2)2xydx +x 2dy ;解 因为y P x x Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整个 xOy 面内的函数u (x , y )的全微分.⎰++=),()0,0(22),(y x C dy x xydx y x u ⎰⎰+=++=y yC y x C xydx dy 00220. (3)4sin x sin3y cos xdx –3cos3y cos2xdy解 因为yP x y x Q ∂∂==∂∂2sin 3cos 6, 所以P (x , y )dx +Q (x , y )dy 是某个 定义在整个xOy 平面内的函数u (x , y )的全微分.⎰+-=),()0,0(2cos 3cos 3cos 3sin sin 4),(y x C xdy y xdx y x y x u C y x C xdy y dx xy +-=+-+=⎰⎰3sin 2cos 2cos 3cos 3000. (4)dy ye y x x dx xy y x y )128()83(2322++++解 因为yP xy x x Q ∂∂=+=∂∂1632, 所以P (x , y )dx +Q (x , y )dy 是某个定 义在整个xOy 平面内的函数u (x , y )的全微分. ⎰+++++=),()0,0(232)128()823(),(y x y C dy ye y x x dx xy iy xh y x u C dx xy y x dy ye yx y +++=⎰⎰0022)83(12C e ye y x y x y y +-++=)(124223.(5)dy y x x y dx x y y x )sin sin 2()cos cos 2(22-++解 因为yP y x x y x Q ∂∂=-=∂∂sin 2cos 2, 所以P (x , y )dx +Q (x , y )dy 是 某个函数u (x , y )的全微分 ⎰⎰+-+=x y C dy y x x y xdx y x u 002)sin sin 2(2),( C y x x y ++=cos sin 22.7. 设有一变力在坐标轴上的投影为X =x +y 2, Y =2xy -8, 这变力确 定了一个力场, 证明质点在此场内移动时, 场力所做的功与路径无关. 解 场力所作的功为⎰Γ-++=dy xy dx y x W )82()(2. 由于yX y x Y ∂∂==∂∂2, 故以上曲线积分与路径无关, 即场力所作的功 与路径无关.习题10-41. 设有一分布着质量的曲面∑, 在点(x , y , z )处它的面密度为μ(x , y , z ), 用对面积的曲面积分表达这曲面对于x 轴的转动惯量.解. 假设μ(x , y , z )在曲面∑上连续, 应用元素法, 在曲面∑上任意一点(x , y , z )处取包含该点的一直径很小的曲面块dS (它的面积也记做dS ), 则对于x 轴的转动惯量元素为dI x =(y 2+z 2)μ(x , y , z )dS ,对于x 轴的转动惯量为dS z y x z y I x ),,()(22μ+=∑⎰⎰.2. 按对面积的曲面积分的定义证明公式dS z y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=,其中∑是由∑1和∑2组成的.证明 划分∑1为m 部分, ∆S 1, ∆S 2, ⋅⋅⋅, ∆S m ;划分∑2为n 部分, ∆S m +1, ∆S m +2, ⋅⋅⋅, ∆S m +n ,则∆S 1, ⋅⋅⋅, ∆S m , ∆S m +1, ⋅⋅⋅, ∆S m +n 为∑的一个划分, 并且i i i i nm m i i i i i m i i i i i n m i S f S f S f ∆∑+∆∑=∆∑++==+=),,(),,(),,(111ζηξζηξζηξ. 令}{max 11i mi S ∆=≤≤λ, }{max 12i n m i m S ∆=+≤≤+λ, } ,max{21λλλ=, 则当 λ→0时, 有dS z y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=.3. 当∑是xOy 面内的一个闭区域时, 曲面积分dSz y x f ),,(∑⎰⎰与二重积分有什么关系?解 ∑的方程为z =0, (x , y )∈D ,dxdy dxdy z z dS y x=++=221, 故 dxdy z y x f dS z y x f D),,(),,(⎰⎰⎰⎰=∑.4. 计算曲面积分dS z y x f ),,(∑⎰⎰, 其中∑为抛物面z =2-(x 2+y 2)在xOy 面上方的部分, f (x , y , z )分别如下:(1) f (x , y , z )=1;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,dxdy y x dxdy z z dS y x22224411++=++=. 因此 dxdy y x dS z y x f xyD 22441),,(++=⎰⎰⎰⎰∑ ⎰⎰+=πθ2020241rdr r d ππ313])41(121[2202/32=+=r . (2) f (x , y , z )=x 2+y 2;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2, dxdy y x dxdy z z dS y x22224411++=++=. 因此 dxdy y x y x dS z y x f xyD 2222441)(),,(+++=⎰⎰⎰⎰∑ ⎰⎰+=πθ2020241rdr r d ππ301494122022=+=⎰rdr r r . (3) f (x , y , z )=3z .解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,dxdy y x dxdy z z dS y x22224411++=++=. 因此 dS z y x f ),,(∑⎰⎰dxdy y x y x xyD 2222441)](2[3+++-=⎰⎰⎰⎰+-=πθ20202241)2(3rdr r r d ππ1011141)2(62022=+-=⎰rdr r r . 5. 计算dS y x )(22+∑⎰⎰, 其中∑是: (1)锥面22y x z +=及平面z =1所围成的区域的整个边界曲面;解 将∑分解为∑=∑1+∑2, 其中∑1: z =1 , D 1: x 2+y 2≤1, dS =dxdy ;∑1:22y x z +=, D 2: x 2+y 2≤1, dxdy dxdy z z dS y x2122=++=. dS y x dS y x dS y x )()()(22222221+++=+∑∑∑⎰⎰⎰⎰⎰⎰ dxdy y x dxdy y x D D )()(222221+++=⎰⎰⎰⎰⎰⎰=πθ20103dr r d +⎰⎰πθ201032dr r d πππ221222+=+=. 提示: dxdy dxdy yx y y x x dS 21222222=++++=.(2)锥面z 2=3(x 2+y 2)被平面z =0及z =3所截得的部分. 解 ∑:223y x z +=, D xy : x 2+y 2≤3,dxdy dxdy z z dS y x2122=++=, 因而 πθπ922)()(302202222==+=+⎰⎰⎰⎰⎰⎰∑rdr r d dxdy y x dS y x xy D . 提示: dxdy dxdy y x y y x x dS 2])(326[])(326[1222222=++++=.6. 计算下面对面积的曲面积分:(1)dS y x z )342(++∑⎰⎰, 其中∑为平面1432=++z y x 在第一象限中的部分;解 y x z 3424:--=∑, x y x D xy 2310 ,20 :-≤≤≤≤, dxdy z z dS y x 221++=dxdy 361=, 61436143614)342(==⋅=++⎰⎰⎰⎰⎰⎰∑dxdy dxdy dS y x z xy xyD D . (2)dS z x x xy )22(2+--∑⎰⎰, 其中∑为平面2x +2y +z =6在第一象限中的部分;解 ∑: z =6-2x -2y , D xy : 0≤y ≤3-x , 0≤x ≤3,dxdy dxdy z z dS y x3122=++=, dS z x x xy )22(2+--∑⎰⎰ dxdy y x x x xy xyD 3)22622(2--+--=⎰⎰⎰⎰--+--=x dy y xy x x dx 30230)22236(3 427)9103(33023-=+-=⎰dx x x . (3)dS z y x )(++∑⎰⎰, 其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分;解 ∑:222y x a z --=, D xy : x 2+y 2≤a 2-h 2,dxdy z z dS y x 221++=dxdy y x a a 222--=,dxdy yx a a y x a y x dS z y x xy D 222222)()(----++=++⎰⎰⎰⎰∑ )(||22h a a D a adxdy xy D xy-===⎰⎰π(根据区域的对称性及函数的奇偶性).提示: dxdy yx a y y x a x dS 22222222)()(1+--++--+=dxdy y x a a 222--=, (4)dS zx yz xy )(++∑⎰⎰, 其中∑为锥面22y x z +=被x 2+y 2=2ax所截得的有限部分.解 ∑: 22y x z +=, D xy : x 2+y 2≤2ax ,dxdy dxdy z z dS y x2122=++=, dxdy y x y x xy dS zx yz xy xyD ])([2)(22+++=++⎰⎰⎰⎰∑ ⎰⎰++=-θππθθθθcos 202222)]sin (cos cos sin [2a rdr q r r dθθθθθθππd a )cos sin cos cos (sin 24422554⎰-++= 421564a =. 提示: dxdy yx y y x x dS 2222221++++=. 7. 求抛物面壳)10)((2122≤≤+=z y x z 的质量, 此壳的面密度为μ=z .解 ∑: )(2122y x z +=, D xy : x 2+y 2≤2, dxdy y x dxdy z z dS y x222211++=++=.故 dxdy y x y x zdS M xyD 22221)(21+++==⎰⎰⎰⎰∑ ⎰⎰+=πθ202022121rdr r r d )136(152+=π. 8. 求面密度为μ0的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量. 解 ∑: 222y x a z --=, D xy : x 2+y 2≤a 2,dxdy z z dS y x 221++=dxdy yx a a 222--=, dxdy y x a a y x dS y x I z 222022022)()(--+=+=∑∑⎰⎰⎰⎰μμ ⎰⎰-=a dr ya r d a 0223200πθμ 4034a πμ=.提示:dxdy yx a y y x a x dS 22222222)()(1---+---+=dxdy y x a a 222--=.习题10-51. 按对坐标的曲面积分的定义证明公式:dydz z y x P z y x P )],,(),,([21±∑⎰⎰dydz z y x P dydz z y x P )],,(),,(21∑∑⎰⎰⎰⎰±=.解 证明把∑分成n 块小曲面∆S i (∆S i 同时又表示第i 块小曲面的面 积), ∆S i 在yOz 面上的投影为(∆S i )yz , (ξi , ηi ,ζi )是∆S i 上任意取定的一点, λ是各小块曲面的直径的最大值, 则dydzz y x P z y x P )],,(),,([21±∑⎰⎰ yz i i i i i i i n i S P P ))](,(),([lim ,2,110∆±==→∑ζηξζηξλyz i i i i ni yz i i i i n i S P S P ))(,(lim ))(,(lim ,210,110∆±∆==→=→∑∑ζηξζηξλλ dydz z y x P dydz z y x P )],,(),,(21∑∑⎰⎰⎰⎰±=.2. 当∑为xOy 面内的一个闭区域时, 曲面积分dxdy z y x R ),,(∑⎰⎰与二重积分有什么关系?解 因为∑: z =0, (x , y )∈D xy , 故dxdy z y x R dxdy z y x R xyD ),,(),,(⎰⎰⎰⎰±=∑,当∑取的是上侧时为正号, ∑取的是下侧时为负号.3. 计算下列对坐标的曲面积分:(1)zdxdy y x 22∑⎰⎰其中∑是球面x 2+y 2+z 2=R 2的下半部分的下侧;解 ∑的方程为222y x R z ---=, D xy : x 2+y 2≤R , 于是zdxdy y x 22∑⎰⎰dxdy y x R y x xyD )(22222----=⎰⎰ ⎰⎰⋅-⋅⋅=πθθθ20222202sin cos rdr r R r r d R⎰⎰-=πθθ20052222sin 41R dr r r R d 71052R π=. (2)ydzdx xdydz zdxdy ++∑⎰⎰, 其中z 是柱面x 2+y 2=1被平面z =0及z =3所截得的第一卦限内的部分的前侧;解 ∑在xOy 面的投影为零, 故0=∑⎰⎰zdxdy .∑可表示为21y x -=, (y , z )∈D yz ={(y , z )|0≤y ≤1, 0≤z ≤3}, 故 ⎰⎰⎰⎰⎰⎰⎰-=-=-=∑3010102221311dy y dy y dz dydz y xdyz yz D ∑可表示为21x y -=, (z , x )∈D zx ={(z , x )|0≤z ≤3, 0≤x ≤1}, 故dzdx x ydzdx zx D 21-=⎰⎰⎰⎰∑⎰⎰⎰-=-=30101022131dx x dx x dz . 因此 ydzdx xdydz zdxdy ++∑⎰⎰)13(2102dx x ⎰-=ππ2346=⨯=. 解法二 ∑前侧的法向量为n =(2x , 2y , 0), 单位法向量为)0 , ,(1)cos ,cos ,(cos 22y x y x +=γβα, 由两种曲面积分之间的关系,dS z y x ydzdx xdydz zdxdy )cos cos cos (γβα++=++∑∑⎰⎰⎰⎰π23)(222222==+=+⋅++⋅=∑∑∑⎰⎰⎰⎰⎰⎰dS dS y x dS y x y y y x x x . 提示: dS ∑⎰⎰表示曲面的面积.(3)dxdy z z y x f dzdx y z y x f dydz x z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰, 其中f (x , y , z )为连续函数, ∑是平面x -y +z =1在第四卦限部分的上侧; 解 曲面∑可表示为z =1-x +y , (x , y )∈D xy ={(x , y )|0≤x ≤1, 0≤y ≤x -1}, ∑上侧的法向量为n =(1, -1, 1), 单位法向量为)31 ,31 ,31()cos ,cos ,(cos -=γβα, 由两类曲面积分之间的联系可得dxdy z z y x f dzdx y z y x f dydz x z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰dS z f y f x f ]cos )(cos )2(cos )[(γβα+++++=∑⎰⎰dS z f y f x f ]31)()31()2(31)(⋅++-⋅++⋅+=∑⎰⎰ 2131)(31===+-=⎰⎰⎰⎰⎰⎰∑∑dxdy dS dS z y x xyD .(4)⎰⎰∑++yzdzdx xydydz xzdxdy , 其中∑是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧.解 ∑=∑1+∑2+∑3+∑4, 其中∑1: x =0, D yz : 0≤y ≤1, 0≤z ≤1-y ,∑2: y =0, D zx : 0≤z 1, 0≤x ≤1-z ,∑3: z =0, D xy : 0≤x ≤1, 0≤y ≤1-x ,∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x ,于是 ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑∑+++=4321xzdxdy xzdxdy 4000∑⎰⎰+++= dxdy y x x xy D )1(--=⎰⎰⎰⎰-=--=1010241)1(x dy y x xdx . 由积分变元的轮换对称性可知241⎰⎰⎰⎰∑∑==yzdzdx xydydz . 因此⎰⎰∑=⨯=++812413yzdzdx xydydz xzdxdy .解 ∑=∑1+∑2+∑3+∑4, 其中∑1、∑2、∑3是位于坐标面上的三块; ∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x .显然在∑1、∑2、∑3上的曲面积分均为零, 于是⎰⎰∑++yzdzdx xydydz xzdxdyyzdzdx xydydz xzdxdy ++=∑⎰⎰4dS xz yz xy )cos cos cos (4γβα++=∑⎰⎰dS xz yz xy )(34++=∑⎰⎰81)]1)(([3=--++=⎰⎰dxdy y x y x xy xyD . 4. 把对坐标的曲面积分dxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(++∑⎰⎰化成对面积的曲面积分:(1)∑为平面63223=++z y x 在第一卦限的部分的上侧;解 令63223),,(-++=z y x z y x F , ∑上侧的法向量为:)32 ,2 ,3(),,(==z y x F F F n ,单位法向量为)32 ,2 ,3(51)cos ,cos ,(cos =γβα, 于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰dS R Q P )cos cos cos (γβα++=∑⎰⎰dS R Q P )3223(51++=∑⎰⎰. (2)∑是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解 令F (x , y , z )=z +x 2+y 2-8, ∑上侧的法向量n =(F x , F y , F z )=(2x , 2y , 1),单位法向量为)1 ,2 ,2(4411)cos ,cos ,(cos 22y x y x ++=γβα, 于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰dS R Q P )cos cos cos (γβα++=∑⎰⎰dS R yQ xP yx )22(441122++++=∑⎰⎰.10-61. 利用高斯公式计算曲面积分:(1)⎰⎰∑++dxdy z dzdx y dydz x 222, 其中∑为平面x =0, y =0, z =0, x =a ,y =a , z =a 所围成的立体的表面的外侧;解 由高斯公式原式dv z y x dv z R y Q x P )(2)(++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰⎰⎰⎰===Ωaa a a dz dy xdx xdv 0400366(这里用了对称性).(2)⎰⎰∑++dxdy z dzdx y dydz x 333, 其中∑为球面x 2+y 2+z 2=a 2的外侧;解 由高斯公式原式dv z y x dv z R y Q x P )(3)(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ20004sin 3a dr r d d 5512a π=. (3)⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz )2()(2322, 其中∑为上半球体 x 2+y 2≤a 2, 2220y x a z --≤≤的表面外侧;解 由高斯公式原式dv y x z d z R y Q x P )()(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ2020022sin a dr r r d d 552a π=. (4)⎰⎰∑++zdxdy ydzdx xdydz 其中∑界于z =0和z =3之间的圆柱体x 2+y 2≤9的整个表面的外侧;解 由高斯公式原式π813)(==∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰dv dv z R y Q x P . (5)⎰⎰∑+-yzdxdy dzdx y xzdydz 24,其中∑为平面x =0, y =0, z =0, x =1,y =1, z =1所围成的立体的全表面的外侧.解 由高斯公式原式dv y y z dv z R y Q x P )24()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=-=10101023)4(dz y z dy dx . 2. 求下列向量A 穿过曲面∑流向指定侧的通量: (1)A =yz i +xz j +xy k , ∑为圆柱x +y 2≤a 2(0≤z ≤h )的全表面, 流向外侧; 解 P =yz , Q =xz , R =xy ,⎰⎰∑++=Φxydxdy xzdzdx yzdydzdv z xy y xz x yz ))()()((∂∂+∂∂+∂∂=Ω⎰⎰⎰00==Ω⎰⎰⎰dv . (2)A =(2x -z )i +x 2y j - xz 2k , ∑为立方体0≤x ≤a , 0≤y ≤a , 0≤z ≤a ,的全表面, 流向外侧;解 P =2x -z , Q =x 2y , R =-xz 2,⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv xz x dv z r y Q x P )22()(2-+=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰-=-+=a a a a a dz xz x dy dx 023200)62()22(. (3)A =(2x +3z )i -(xz +y )j +(y 2+2z )k , ∑是以点(3, -1, 2)为球心, 半径R =3的球面, 流向外侧.解 P =2x +3z , Q =-(xz +y ), R =y 2+2z ,⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv dv z R y Q x P )212()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰π1083==Ω⎰⎰⎰dv . 3. 求下列向量A 的散度:(1)A =(x 2+yz )i +(y 2+xz )j +(z 2+xy )k ;解 P =x 2+yz , Q =y 2+xz , R =-z 2+xy ,)(2222div z y x z y x zR y Q x P ++=++=∂∂+∂∂+∂∂=A . (2)A =e xy i +cos(xy )j +cos(xz 2)k ;解 P =e xy , Q =cos(xy ), R =cos(xz 2),)sin(2sin div 2xz xz xy x ye zR y Q x P xy --=∂∂+∂∂+∂∂=A . (3)A =y 2z i +xy j +xz k ;解 P =y 2, Q =xy , R =xz ,x x x zR y Q x P 20div =++=∂∂+∂∂+∂∂=A . 4. 设u (x , y , z )、v (x , y , z )是两个定义在闭区域Ω上的具有二阶连续 偏导数的函数, n u ∂∂, nv ∂∂依次表示u (x , y , z )、v (x , y , z )沿∑的外法线方向 的方向导数. 证明dS n u v n v u dxdydz u v v u )()∂∂-∂∂=∆-∆⎰⎰⎰⎰⎰∑Ω, 其中∑是空间闭区间Ω的整个边界曲面, 这个公式叫作林第二公式. 证明 由第一格林公式(见书中例3)知dxdydz z v y v x v u )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰ dxdydz z v z u y v y u x v x u dS n v u )(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω, dxdydz z u y u x u v )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰dxdydz z v z u y v y u x v x u dS n u v )(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω. 将上面两个式子相减, 即得dxdyd z u y u x u v z v y v x v u )]()([222222222222∂∂+∂∂+∂∂-∂∂+∂∂+∂∂Ω⎰⎰⎰ ⎰⎰∑∂∂-∂∂=dS n u v n v u )(. 5. 利用高斯公式推证阿基米德原理: 浸没在液体中所受液体的压力 的合力(即浮力)的方向铅直向上, 大小等于这物体所排开的液体的重力. 证明 取液面为xOy 面, z 轴沿铅直向下, 设液体的密度为ρ, 在物 体表面∑上取元素dS 上一点, 并设∑在点(x , y , z )处的外法线的方向余 弦为cos α, cos β, cos γ, 则dS 所受液体的压力在坐标轴x , y , z 上的分量 分别为-ρz cos αdS , -ρz cos β dS , -ρz cos γ dS ,∑所受的压力利用高斯公式进行计算得00cos ==-=Ω∑⎰⎰⎰⎰⎰dv dS z F x αρ,00cos ==-=Ω∑⎰⎰⎰⎰⎰dv dS z F y βρ,||cos Ω-=-=-=-=ΩΩ∑⎰⎰⎰⎰⎰⎰⎰⎰ρρργρdv dv dS z F z ,其中|Ω|为物体的体积. 因此在液体中的物体所受液体的压力的合力, 其方向铅直向上, 大小等于这物体所排开的液体所受的重力, 即阿基 米德原理得证.习题10-71. 利用斯托克斯公式, 计算下列曲线积分:(1)⎰Γ++xdz zdy ydx , 其中Γ为圆周x 2+y 2+z 2=a 2, , 若从z 轴 的正向看去, 这圆周取逆时针方向;解 设∑为平面x +y +z =0上Γ所围成的部分, 则∑上侧的单位法向量为)31,31,31()cos ,cos ,(cos ==γβαn .于是 ⎰Γ++xdz zdy ydx dS x z y zy x ∂∂∂∂∂∂=∑⎰⎰γβαcos cos cos 2333)cos cos cos (a dS dS πγβα-=-=---=∑∑⎰⎰⎰⎰.提示:dS ∑⎰⎰表示∑的面积, ∑是半径为a 的圆.(2)⎰Γ-+-+-dz y x dy x z dz z y )()()(, 其中Γ为椭圆x 2+y 2=a 2, 1=+b z a x(a >0, b >0), 若从x 轴正向看去, 这椭圆取逆时针方向;解 设∑为平面1=+b z a x 上Γ所围成的部分, 则∑上侧的单位法向量为) ,0 ,()cos ,cos ,(cos 2222b a b b a b ++==γβαn . 于是 ⎰Γ-+-+-dz y x dy x z dx z y )()()(dS y x x z z y zy x ---∂∂∂∂∂∂=∑⎰⎰γβαcos cos cos dS b a b a dS ∑∑⎰⎰⎰⎰++-=---=22)(2)cos 2cos 2cos 2(γβα)(2)(2)(22222b a a dxdy a b a dxdy a b a b a b a xyxyD D +-=+-=+++-=⎰⎰⎰⎰π.提示: ∑(即x ab b z -=)的面积元素为dxdy a b a dxdy a b dS 222)(1+=+=.(3)⎰Γ+-dz yz xzdy ydx 23, 其中Γ为圆周x 2+y 2=2z , z =2, 若从z 轴的正向看去, 这圆周是取逆时针方向;解 设∑为平面z =2上Γ所围成的部分的上侧, 则⎰Γ+-dz yz xzdy ydx 2323yz xz y zy x dxdydzdx dydz -∂∂∂∂∂∂=∑⎰⎰ ππ2025)3()(22-=⨯-=+-+=∑⎰⎰dxdy z dydz x z .(4)⎰Γ-+dz z xdy ydx 232, 其中Γ为圆周x 2+y 2+z 2=9, z =0, 若从z 轴的正向看去, 这圆周是取逆时针方向.解 设∑为xOy 面上的圆x 2+y 2≤9的上侧, 则⎰Γ-+dz z xdy ydx 232232z x y zy x dxdydzdx dydz -∂∂∂∂∂∂=∑⎰⎰ π9===⎰⎰⎰⎰∑dxdy dxdy xyD .2. 求下列向量场A 的旋度: (1)A =(2z -3y )i +(3x -z )j +(-2x )k ;解 k j i kj i A 6422332++=---∂∂∂∂∂∂=x y z x y z z y x rot . (2)A =(sin y )i -(z -x cos y )k ;解 j i kji A +=--+∂∂∂∂∂∂=0)cos (sin y x z y z z yx rot . (3)A =x 2sin y i +y 2sin(xz )j +xy sin(cos z )k .解 )sin(cos )sin(sin 22z xy xz y y x z y x ∂∂∂∂∂∂=kj i A rot=[x sin(cos z )-xy 2cos(xz )]i -y sin(cos z )j +[y 2z cos(xz )-x 2cos y ]k . 3. 利用斯托克斯公式把曲面积分dS n A ⋅∑⎰⎰rot 化为曲线积分, 并计算积分值,其中A 、∑及n 分别如下:(1)A =y 2i +xy j +xz k , ∑为上半球面221y x z --=, 的上侧, n 是∑的 单位法向量;解 设∑的边界Γ : x 2+y 2=1, z =0, 取逆时针方向, 其参数方程为 x =cos θ, y =sin θ, z =0(0≤θ≤2π, 由托斯公式dS n A ⋅∑⎰⎰rot ⎰Γ++=Rdz Qdy Pdx ⎰Γ++=xzdz xydy dx y 2⎰=+-=πθθθθθ20220]sin cos )sin ([sin d .(2)A =(y -z )i +yz j -xz k , ∑为立方体0≤x ≤2, 0≤y ≤2, 0≤z ≤2的表面外侧 去掉xOy 面上的那个底面, n 是∑的单位法向量. 解dS n A ⋅∑⎰⎰rot ⎰Γ++=Rdz Qdy Pdx⎰Γ-++-=dz xz yzdy dx x y )()(⎰⎰Γ-===0242dx ydx .4. 求下列向量场A 沿闭曲线Γ(从z 轴正向看依逆时针方向)的环流量: (1)A =-y i +x j +c k (c 为常量), Γ为圆周x 2+y 2=1, z =0; 解θθθθθπd cdz xdy ydx L ]cos cos )sin ()(sin [(20+--=++-⎰⎰⎰==ππθ202d .(2)A =(x -z )i +(x 3+yz )j -3xy 2k , 其中Γ为圆周222y x z +-=, z =0. 解 有向闭曲线Γ的参数方程为x =2cos θ, y =2sin θ, z =0(0≤π≤2π). 向量场A 沿闭曲线Γ的环流量为⎰⎰-++-=++LL dz xy dy yz x dx z x Rdz Qdy Pdx 223)()(。
习题十1. 根据二重积分性质,比较ln()d Dx y σ+⎰⎰与2[ln()]d Dx y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形;(2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x+y=1与x+y=2之间,显然有图10-112x y ≤+≤从而0l n ()1x y ≤+<故有2l n ()[l n ()]x y x y +≥+ 所以2l n ()d [l n ()]dDDx y x yσσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2 从而 ln(x+y)>1 故有2l n ()[l n ()]x y x y +<+ 所以2l n ()d [l n ()]dDDx y x yσσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值:(1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}DI x y D x y x y σ==≤≤≤≤⎰⎰;(3)2222(49)d ,{(,)|4}DI x y D x y x y σ=++=+≤⎰⎰.解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而04xy ≤≤.从而2≤≤故2d DD σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而d Dσσ=⎰⎰(σ为区域D 的面积),由σ=4得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d DDDx y σσσ≤≤⎰⎰⎰⎰⎰⎰即220sin sin d d DDx y σσσ≤≤=⎰⎰⎰⎰而2πσ=所以2220sin sin d πDx y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以 22229494()925x y x y ≤++≤++≤故229d (49)d 25d DDDx y σσσ≤++≤⎰⎰⎰⎰⎰⎰即 229(49)d 25Dx y σσσ≤++≤⎰⎰而2π24πσ=⋅=所以 2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值:(1)222(,{(,)|};Da D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,Da σ-⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3D a a σ=⎰⎰(2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰4. 设f(x ,y)为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f(x ,y)为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x0,y0)为圆心,r 为半径的圆盘,所以当0r→时,00(,)(,),x y ξη→于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d Df x y σ⎰⎰化为累次积分:(1){(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥(3)2{(,)|,2,2}D x y y y x x x =≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yDy f x y y f x y xσ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y=x-2与抛物线x=y2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y Dyf x y y f x y xσ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y=2x 与曲线2y x =的交点(1,2),与x=2的交点为(2,4),曲线2y x =与x=2的交点为(2,1),区域D 可表示为22,1 2.y x x x ≤≤≤≤图10-5所以2221(,)d d (,)d xDxf x y x f x y yσ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序:(1)2220d (,)d yy y f x y x⎰⎰; (2)eln 1d (,)d xx f x y y⎰⎰;(3)1320d (,)d y y f x y x-⎰; (4)πsin 0sin2d (,)d xxx f x y y-⎰⎰;(5)123301d (,)d d (,)d yyy f x y y y f x y x-+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以22242d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D:1e,0ln.x y x≤≤≤≤如图10-7所示.图10-7D亦可表示为:01,e e,yy x≤≤≤≤所以e ln1e100ed(,)d d(,)dyxx f x y y y f x y x=⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y≤≤≤≤-如图10-8所示.图10-8D亦可看成D1与D2的和,其中D1:201,0,x y x≤≤≤≤D2:113,0(3).2x y x≤≤≤≤-所以2113213(3)200010d(,)d d(,)d d(,)dy x xy f x y x x f x y y x f x y y--=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D为:0π,sin sin.2xx y x≤≤-≤≤如图10-9所示.图10-9D亦可看成由D1与D2两部分之和,其中D1:10,2arcsinπ;y y x-≤≤-≤≤D2:01,arcsinπarcsin.y y x y≤≤≤≤-所以πsin 0π1πarcsin 0sin12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx yyx f x y y y f x y x y f x y x----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D1与D2两部分组成,其中 D1:01,02,y x y ≤≤≤≤ D2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤-所以()123323012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y--+=⎰⎰⎰⎰⎰⎰7. 求下列立体体积:(1)旋转抛物面z=x2+y2,平面z=0与柱面x2+y2=ax 所围; (2)旋转抛物面z=x2+y2,柱面y=x2及平面y=1和z=0所围. 解:(1)由二重积分的几何意义知,所围立体的体积V=22()d d Dx y x y+⎰⎰其中D :22{(,)|}x y x y ax +≤由被积函数及积分区域的对称性知,V=2122()d d D x y x y+⎰⎰,其中D1为D 在第一象限的部分.利用极坐标计算上述二重积分得cos πππcos 344442220001132d d 2d cos d π4232a a V r r r a a θθθθθθ====⎰⎰⎰⎰.(2) 由二重积分的几何意义知,所围立体的体积22()d d ,DV x y x y =+⎰⎰其中积分区域D 为xOy 面上由曲线y=x2及直线y=1所围成的区域,如图10-11所示.图10-11D 可表示为:211, 1.x x y -≤≤≤≤所以21122221()d d d ()d DxV x y x y x x y y-=+=+⎰⎰⎰⎰2111232461111188d ()d .333105x x y y x x x x x --⎡⎤=+=+--=⎢⎥⎣⎦⎰⎰ 8. 计算下列二重积分:(1)221d d ,:12,;Dx x y D x y x y x ≤≤≤≤⎰⎰(2)e d d ,x yDx y ⎰⎰D 由抛物线y2=x,直线x=0与y=1所围;(3)d ,x y ⎰⎰D 是以O(0,0),A(1,-1),B(1,1)为顶点的三角形;(4)cos()d d ,{(,)|0π,π}Dx y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx Dx xx x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000e d d d e d d e d()xx x y y y y yD xx y y x y y y ==⎰⎰⎰⎰⎰⎰ 21111ed (e 1)d e d d y x y y yy y y y y y y y==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰(3) 积分区域D 如图10-13所示.图10-13 D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxx x y x y x y xx --⎡==+⎢⎣⎰⎰⎰⎰⎰112300ππ1πd .2236x x x ==⋅=⎰ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x xx x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224sin (1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d xx x ⎰求不出来,故应改变积分次序。
高等数学第十章复习要点
1. 复数的定义与表示方法,复数的加减法、乘法、除法、共轭及求模、求幅角等运算法则;
2. 复数的三角表示法及欧拉公式,复数的分解形式;
3. 幂次方与指数函数,幂次根与对数函数;
4. 解代数方程及其根与系数的关系,解特殊代数方程;
5. 解代数方程组及其根的判别式、克莱姆法则、高斯消元法;
6. 解矩阵方程及其性质,矩阵方程的通解与特解;
7. 线性方程组及其解法,矩阵消元法、逆矩阵法、克莱姆法则;
8. 向量的基本概念与运算,向量的线性相关性和线性无关性,向量组的秩与极大线性无关组;
9. 向量的点乘积与叉乘积,应用与几何意义;
10. 常微分方程及其解法,一阶线性微分方程的解法,二阶常
系数齐次线性微分方程的解法,欧拉方程的求解;
11. 偏微分方程的基本概念,偏导数,二元函数的泰勒公式;
12. 两个变量函数的最大值和最小值,二元函数的一阶偏导数
与二阶偏导数;
13. 多元函数与多元函数的极值,约束条件下的极值问题;
14. 双重积分的基本概念,二重积分的计算、应用与公式;
15. 三重积分的基本概念与计算方法,三重积分的改变积分顺序;
16. 曲线积分与曲面积分,曲线积分与曲面积分的计算方法及
应用。
第 10 章 (之1)(总第53次)* 1. 设 a b a b ==+=2232,,,则(,)a b ∧= .答:65π. ** 2.设向量 a 与 b 不平行,c a b =+,则(,)(,) a c b c ∧∧=的充分必要条件为 .答:||||b a =.** 3.设直线L 经过点0P 且平行于向量a , 点0P 的径向量为0r ,设P 是直线L 的任意一点,试用向量0r ,a 表示点P 的径向量r . 解:∵a P P ||0, ∴a t P P=0, 而P P r r 00+=,∴a t r r+=0∴P 点的径向量为 a t r+0.** 4.设 3,2==b a ,a 与b 的夹角等于π32,求:(1)b a ⋅; (2))2()23(b a b a +⋅-; (3)b a )(; (4)b a 23-.解:(1)〉〈=⋅b a b a a ,cos b 332cos 32-=⨯⨯=π.(2)()()b a b a223+⋅-b a b a 44322+-=()3634342322-=-⨯+⨯-⨯=.(3)()133-=-=⋅=bb a a b.(4)()()b a b a b a 2323232-⋅-=-b a b a124922-+=()108312342922=-⨯-⨯+⨯=,3610823==-b a.** 5.设5,4==b a ,a 与b 的夹角等于π31,求:(1)b a b a -+)(;(2)b a 25+与b a -的夹角.解:(1)()()b a ba b a--=-⋅2b a b a 222-+=213cos 5425422=⨯⨯-+=π,∴21=-b a,()()()b a b a b a ba ba--+=+⋅-2122b a -=215422-=7213-=. (2)()()b a ba-+⋅25b a b a 32522--=03cos543524522=⨯⨯-⨯-⨯=π,∴向量b a b a-+,25垂直.** 6. 若a ,b 为非零向量,且b a b a -=+,试证b a ⊥.解:b a b a -=+,∴ 22b a b a -=+,∴()()()()b a ba b a ba --=++⋅⋅,∴b a b a b a b a222222-+=++, ∴0=⋅b a, ∴b a⊥.***7.用向量的方法证明半圆的圆周角必是直角. 解:如图所示,AC 为直径,B 为圆周上任一点, =→--OA →---OC , ||→--OB ==→--||OA ||→--OC ,则有 →--AB →--=OB →---OA ,→--CB →--=OB →---OC →--=OB →--+OA ,→--AB →--⋅CB →--=OB (⋅→---)OA →--OB ()→--+OA 0||||22=-=→--→--OA OB ,∴ 半圆的圆周角必为直角.第 10 章(之2)(总第54次)B教学内容:§10.2空间直角坐标系与向量代数1.填空题*(1) 点A (2,-3,-1)关于点M (3,1,-2)的对称点是______ .答:(4,5,3-)**(2) 设平行四边形ABCD 的三个顶点为A B C (,,),(,,),(,,)231243313----,则 D 点为______ . 答:(5,8,7--)**(3) 已知{}{}a b z =-=-45314,,,,,,且 a b a b +=-,则z =______ .答:8-**2. A,B 两点的坐标分别为)1,3,(),,5,2(--q p ,线段AB 与y 轴相交且被y 轴平分,求qp ,之值及交点坐标.解:令AB 与y 轴相交于C 点,即C 为AB 的中点,则C 点的坐标为 )21,235,22(+-+-p q , 又C 点在y 轴上,所以021,022=+=+-p q,即 1,2-==p q , 故C 点的坐标为)0,1,0(,即交点的坐标为)0,1,0(.**3.设A,B 两点的坐标分别为()()1,0,1,1,2,0-.求 (1)向量AB 的模; (2)向量AB 的方向余弦; (3)使AB AC 2=的C 点坐标.解:(1)}2,2,1{-=, 则32)2(1222=+-+=,所以的模为3. (2)32cos ,32cos ,31cos =-==r βα.(3) 设C 的坐标为(x ,y ,z ),由2-= 则2)2(1)2(10=-+-⨯+=x , 2)2(1)2(02-=-+-⨯+=y , 3)2(1)2(1)1(=-+-⨯+-=z ,所以C 点的坐标为)3,2,2(-.**4. 求q p ,的值,使向量}4,,2{-p 与},0,1{q -平行,再求一组使此两向量垂直的q p ,值. 解:向量}4,,2{-=p u 与},0,1{q v -=平行,即:v uλ=,∴q p 4012-==-, ∴2,0==q p , 向量u 与v 垂直时,0=⋅v u, ∴()()04012=⨯-+⨯+-⨯q p . ∴21-=q , p 为任意值.**5.求作用于某点三个力}5,4,3{},4,3,2{},3,2,1{321-=--==F F F 之合力的大小及方向.解:321F F F F ++=合{}{}{}{}4,1,25,4,34,3,23,2,1=-+--+=,合力的大小 21412222=++=合F,214cos ,211cos ,212cos ===γβα,其中γβα,,分别为合F与x 轴,y 轴,z 轴的夹角.** 6.试在xy 平面上求一与 }1,1,1{=a 成正交的向量.解:设所求向量为 {}z y x b ,,=, ∵ 在xy 平面上,∴0=z , 且 0=⋅b a,即:{}{}01,1,10,,=⋅y x , ∴0=+y x ,y x -=,取 1,1-==y x , ∴ 向量 {}0,1,1-=b 与 {}1,1,1=a 正交. ** 7.设}2,2,1{-=a ,}4,0,3{-=b ,求:(1)j a⋅; (2)k b ⨯;(3))()2(b a b a -⋅+; (4))3()(b a b a -⨯+.解:(1)2)22(-=⋅+-=⋅j k j i j a . (2)j k i k k i k b 33)43(-=⨯=⨯-=⨯.(3))}4(2,2,31{}422),2(2,312{)()2(----⋅-⨯-⨯+⨯=-⋅+b a b a260)2()4()2(5}6,2,2{}0,4,5{-=⨯+-⨯-+-⨯=--⋅-=. (4)}24,40,32{}10,6,0{}2,2,4{)3()(---=-⨯--=-⨯+. ** 8.设}1,1,0{-=a ,}1,1,2{-=b ,求:(1)a b b a )(,)(; (2)a 与b 的夹角. 解:(1)11)1()2(}1,1,2{}1,1,0{)(22-=+-+-⋅-==b a ;(){}{}()2111,1,01,1,222-=-+-⋅-=⋅=aa b b a;(2)θcos =⋅, 即 θc o s 222⨯⨯=-, 则 22cos -=θ, 又 πθ≤≤0,所以 43πθ=,即a 与的夹角为43π.** 9.在yz 平面内求模为10的向量b ,使它和向量 k j i a 348+-= 垂直.解:∵ 向量b在yz 平面内, ∴ 可设坐标为 {}z y ,,0,∵ a b ⊥, ∴ 0=⋅a b,即:{}{}03,4,8,,0=-⋅z y , ∴034=+-z y ,又 1022=+=z y b , ∴6,8==y z , 或 6,8-=-=y z ,∴向量b的坐标为:{}8,6,0 或 {}8,6,0--.*** 10. 试证明∑∑∑===≥⋅31312312i ii i ii iba ba.其中321,,a a a 及321,,b b b 为任意实数.解:设b a,的坐标分别为{}{}321321,,,,,b b b a a a ,b a b a b a b a⋅≤〉〈⋅=⋅,cos ,即:232221232221332211b b b a a a b a b a b a ++⋅++≤++,∴∑∑∑===≥⋅31312312i ii i ii iba ba.第 10 章(之3)(总第55次)教学内容:§10.3平面与直线[10.3.1]**1.解下列各题(1) 平行于x 轴,且过点)2,1,3(-=P 及)0,1,0(=Q 的平面方程是______ . 答:y z +=1(2) 与xOy 坐标平面垂直的平面的一般方程为______ . 答:Ax By d A B ++=+≠0022()(3) 过点)1,2,1(=P 与向量k j S k j i S--=--=21,32平行的平面方程为_____ .答:x y z -+=0(4) 点 )1,2,6(0-=M 到平面 0622=++-z y x 的距离为=d ___________. 解: ()()222161222622=+-++-⨯+⨯-=d .(5)平面3360x y --=是 ( ) (A )平行于xOy 平面 (B )平行于 z 轴,但不通过 z 轴 (C )垂直于y 轴(D )通过z 轴答:B**2.填表讨论一般方程0=+++D Cz Bx Ax 中,系数A,B,C,D 中有一个或数个等于零的解:0=+++D Cz By Ax , (1)0,0≠=ABD C 平行于z 轴(不包括过z 轴)的平面.(2)0,0≠⋅==C B D A 过x 轴的平面(不包括过y 轴、z 轴的平面).(3))0(,0,022≠⋅≠+==B A B A D C 过z 轴的平面. (4)0,0==≠C A B 平面垂直于y 轴.3.在下列各题中,求出满足给定条件的平面方程:**(1)过点()2,3,1--=P 及()1,2,0-=Q 且平行于向量{}1,1,2--=l;解:所求平面的法向量n垂直于向量{}1,1,2--=l 与由点()2,3,1--=P 与点()1,2,0-=Q 构成的向量{}1,1,1-=,故取{}1,3,2112111=---=⨯=kj i l n.故可得所求平面方程为 ()()()023312=++-++z y x , 即 0532=-++z y x .**(2)过z 轴且垂直于平面0723=+--z y x ; 解:平面0723=+--z y x 的法向量 {}1,2,3--=n ,故所求平面法向量n与0n 垂直,与z 轴正交,故可取{}0,3,21123--=--=⨯=kj i k n n ,所求平面过z 轴,故此平面必经过原点()0,0,0, 故可得所求平面方程为 0032=+--z y x , 即 032=+y x .**(3)垂直于yz 坐标面,且过点()2,0,4-=P 和()7,1,15=Q ;解:由题意可知()2,0,4-=P 、()7,1,15=Q ,所以{}9,1,1=PQ .又由题意可知所求平面法向量 n即与x 轴垂直,又与向量PQ 垂直,故可取{}1,9,0001911-==⨯=kj i i PQ n, 故可得所求平面方程为:()()()02109=+-+-z y , 即: 029=--z y .***4.自点)5,3,2(0-=P 分别向各坐标面作垂线,求过三个垂足的平面方程. 解:垂足分别为:)0,3,2(=A 、)5,3,0(-=B 和)5,0,2(-=C ,所以}5,3,0{},5,0,2{--=--=AC AB平面法向量为}6,10,15{530502--=----=⨯=kj i n故平面方程为:15106600x y z +--= .*** 5. 过两点)3,4,0(-=M 和)3,4,6(-=N 作平面,使之不过原点,且使其在坐标轴上截距之和等于零,求此平面方程. 解:设平面方程为:x a y b z a b+-+=1,由于它过M N ,两点,则⎪⎩⎪⎨⎧=+--=++1346134ba b a b a b 解得:a b ==-326,,,故平面方程为: 2366x y z --= 或 63218x y z +-=. **6. 判断下列各组平面相对位置,是平行,垂直还是相交,重合.(1)ππ1221022430:,:x y z x y z -+-=-+-=(2)ππ122210220:,:x y z x y z ---=+-=解:(1)ππ12,法向量分别为n n n n 12211122242=-=-={,,},{,,}取π1上一点(,,)100,显然不在π2上,故ππ12,平行,不重合. (2)ππ12,法向量分别为n n n n 12212211220=--=-⋅={,,},{,,},故n n 21,垂直,从而ππ12,垂直.第 10 章(之4)(总第56次)教学内容:§10.3平面与直线[10.3.2,10.3.3]**1.解下列各题:(1) 过点M M 12321102(,,),(,,)--的直线方程为⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ . 答:x y z +=-=--14221(2) 直线x y z x y z -+-=+-+=⎧⎨⎩2302260在xOz 坐标面上的交点为=P ____________,并利用该点的坐标,写出此直线的对称式方程和参数方程.答: )3,0,0(=P .对称式方程为x y z 3435==-,参数方程为⎪⎩⎪⎨⎧+===3543t z t y tx(3)直线kzy a x =-=+21在平面3=-+z y x 上的充要条件是=a ______,=k _____. 答:2-=a ,3=k .因为点)0,1,(a P -=在平面上,直线的方向向量{}k l ,2,1=→与平面的法向量{}1,1,1-=→n 必须垂直.**2.求经过点)2,0,3(-=A 且与两个平面1=+z x 及1=++z y x 同时平行的直线方程.解:所求直线L 的方向向量 {}1,0,11=⊥n l,且 {}1,1,12=⊥n l ,∴ 可取 {}1,0,111110121-==⨯=k j i n n l,∴ 所求直线方程为:2013-==-+z yx .**3.求经过点)0,1,2(-=A 且与两条直线z y x ==及11201-=-=+zy x 同时垂直的直线方程.解:所求直线L 的方向向量 {}1,1,11=⊥l l ,且 {}1,1,02-=⊥l l,∴可取{}1,1,211011121-=-=⨯=kj i l l l,∴所求直线方程为:z y x =+=--1122. **4. 求出过点)3,4,1(--=A 且与下列两条直线⎩⎨⎧-=+=+-53142:1y x z y x L ⎪⎩⎪⎨⎧+-=--=+=tz t y tx L 23142:2均垂直的直线方程.解:⎩⎨⎧-=+=+-53142:1y x z y x L,{}1,4,211-=⊥n l,{}0,3,121=⊥n l∴ 可取 {}10,1,3211-=⨯=n n l,23114223114223142:2+=-+=-⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=-+=-⇒⎪⎩⎪⎨⎧+-=--=+=z y x t z t y tx t z t y t x L ,∴ 可取 {}2,1,42-=l ,1l l ⊥,且2l l⊥.∴ 可取 {}1,46,1221-=⨯=l l l,∴所求直线方程为13464121--=+=+z y x . **5.求通过点()5,1,20-=M 且与直线12131-=-=+zy x 相交并垂直的直线方程. 解法一:直线132131:1--=-=+z y x L 上取一点()0,1,11-=M ,过点0M 与直线1L 的平面π的法向量n ,则1l n ⊥ 且 10M M n ⊥,∴{}{}{}6,12,105,0,31,2,3101-=-⨯-=⨯M M l ,故n 可取为 {}3,6,5-=n .因所求直线L 过点0M 点且与1L 相交,故L 亦在平面π上,故 {}28,14,0,1--=⨯⊥n l n l , 故可取 {}2,1,0=l.故所求直线方程为251102+=-=-z y x . 解法二:过点0M 作垂直于直线1L 的平面π:()()()051223=+--+-z y x ,即01323=--+z y x直线1L 与平面π的交点M 的坐标满足: ⎪⎩⎪⎨⎧-====⇒⎪⎩⎪⎨⎧=-=-=+=--+13211213101323z y x t t zy x z y x∴M 点坐标为()1,3,2-,∴{}4,2,00=M , ∴所求直线方程为:251102+=-=-z y x .** 6. 试求k 值,使两条直线7144933:,33541:21+=--=+--=+=-z y x L z y k x L 相交. 解:将第二条直线的参数方程⎪⎩⎪⎨⎧-=+-=-=1479433t z t y t x 代入第一条直线方程,有3441357173t k t t -=-+=--解得 k =2**7.求直线l x y z 112110:-=--=+与l x y z 211032:-=+=-之间的夹角. 解:l 1,l 2方向向量分别为S S 12110102=-=-{,,},{,,},cos(,)||||S S S S 121212110∧==-,故l 1,l 2之间的夹角为 arccos 110. **8.已知直线1121-=-=+zp y x 和平面126=+-z y qx 垂直,求常数q p ,之值.解: {}{}2,6,//1,,2-=-=q n p l,∴3,42162=-=⇒-=-=p q p q .**9.求过直线⎩⎨⎧=-+-=--+04207572z y x z y x 且在x 轴和y 轴上的截距相等的平面方程.解:过直线⎩⎨⎧=-+-=--+04207572z y x z y x 的平面束方程可设为()()(*)427572=-+-+--+z y x v z y x u令0==z y ,求得在x 轴截距v u vu x 2247++=,令0==z x ,求得在y 轴截距vu vu y -+=747.∵y x = ∴vu vu v u v u -+=++7472247,∴v u v u v u -=+=+722047或,即:5374=-=v u v u 或,代入(*)式,可得满足条件的平面有两个 (1)()()042757274=-+-+--+-z y x z y x ,即:027356=+-z y x ; (2)()()042757253=-+-+--+z y x z y x ,即:41101616=-+z y x .***10. 求直线z y x ==在平面135=-+z y x 上的投影直线.解:直线L 的方向向量 {}1,1,1=→l .在直线L 上取一点()0,0,0=A ,显然不满足方程135=-+z y x , ∴A 不在该平面上.设过A 做与平面135:0=-+z y x π的垂直的平面π.则平面π的法向量可取为 {}1,1,243511110---=-=⨯=kj i n l n,这就得到了π的方程为02=--z y x .从而得到投影直线方程为⎩⎨⎧=--=-+02135z y x z y x .第 10 章(之5)(总第57次)教学内容:§10.4空间曲面1. 选择题 *(1) 曲面z x y =+22是 ( )(A )zox 平面上曲线z x =绕z 轴旋转而成的旋转曲面 (B )zoy 平面上曲线z y =绕z 轴旋转而成的旋转曲面 (C )zox 平面上曲线z x =绕x 轴旋转而成的旋转曲面 (D )zoy 平面上曲线z y =绕y 轴旋转而成的旋转曲面 答:B** (2) 方程122=+z x 在空间表示 ( )(A )z 轴 (B )球面(C )母线平行y 轴的柱面 (D )锥面答:C*(3) 方程x y z 2229251+-=-是 ( ) (A) 单叶双曲面 (B) 双叶双曲面 (C) 椭球面 (D) 双曲抛物面答:B*(4) 双曲面x y z 222491--=与yoz 平面 ( ) (A) 交于一双曲线(B) 交于一对相交直线(C) 不交 (D) 交于一椭圆答:C*2. 求以)1,1,1(),5,4,1(21==M M 为直径的两个端点的球面的方程. 解:M M 12,中点为)3,25,1(0=M ,M M 125=. 即直径为5,半径为5/2.故球面方程为()()()()x y z -+-+-=1523522222.即x y z x y z 222256100++---+= .**3. 动点M 到两定点)0,0,4(),0,0,(21a P a P ==的两个距离之比等于1:2,求动点M 的轨迹方程.解:设动点M =(,,)x y zP M P M 1212::= 即 44222222[()]()x a y z x a y z -++=-++, 即 x y z a 22222++=() .**4.动点),,(z y x M =到点()2,0,0=A 的距离和它到xy 平面的距离相等,求动点M 的轨迹方程.解:动点),,(z y x M =到点()2,0,0=A 的距离为 ()22212-++=z y x d ,动点M 到xOy 平面的距离为 212d d zd ==,∴动点M 的轨迹方程为 ()22222z z y x =-++, 整理得:4422-=+z y x 是旋转抛物面.**5. 求yOz 平面上曲线y z 221-=分别绕y 轴,z 轴而成的旋转曲面的方程. 解:绕y 轴 -+-=x y z 2221; 绕z 轴 x y z 2221+-=.6. 把下列方程化为标准形式,从而指出方程所表示曲面的名称并画出图形. **(1)01422222=-++-+y x z y x ; 解:01422222=-++-+y x z y x ,()()1422222=-+++z y y x x,()()142141222=-+++z y x ,是一个单叶双曲面, 中心为()0,1,10--=M .**(2)09284222=--+--z y z y x .解:09284222=--+--z y z y x , ()()9224222=+---z z y y x ,()()4114222=+---z y x ,()()14114222=+---z y x ,是一个双叶双曲面,中心为()1,1,00-=M .第 10 章(之6)(总第58次)教学内容:§10.5向量函数 空间曲线基本知识**1. 求曲线x y z x z 22216451230+-=-+=⎧⎨⎪⎩⎪在xoy 平面上的投影柱面方程.解:消去z ,得x y x 2220241160+--=, 即为所求投影柱面方程.**2.求以曲线⎩⎨⎧=+-=++112222222z y x z y x 为准线,母线平行于z 轴的柱面方程. 解:1311222222222=-⇒⎪⎩⎪⎨⎧=+-=++y x z y x z y x z消 故所求柱面方程为1322=-y x .**3. 求曲线z x y x y z =+++=⎧⎨⎩221在各坐标平面上的投影曲线方程.解:消去z ,得x y x y 221+++=故在xoy 平面上,投影曲线为 ⎩⎨⎧==+++0122z y x y x消去x ,得z y z y =--+()122故在yoz 平面上,投影曲线为 ⎩⎨⎧=+--=0)1(22x y z y z消去y ,得z x x z =+--221()故在xoz 平面上,投影曲线为 ⎩⎨⎧=--+=0)1(22y z x x z** 4.把曲面1222=++z y x 和1=+y x 的交线改写为母线分别平行于x 轴与y 轴的两个柱面的交线. 解:)1(11222⎩⎨⎧=+=++y x z y x由(1)消去x ()022*******=+-⇒=++-⇒z y y z y y , 由(1)消去y ()022*******=+-⇒=++-⇒z x x z x x ,交线可写为⎩⎨⎧=-+=-+0220222222x z x y z y .**5. 求由曲面322x y z +=和z y =-12所围成的立体在 xOy 平面上的投影区域.解:投影区域由交线⎩⎨⎧-==+22213y z zy x 在xOy 平面上投影曲线所围成 投影曲线为⎩⎨⎧=-=+013222z y y x , 故投影区域为 ⎩⎨⎧=≤+012322z y x .**6. 试求曲线()k e j e i t t r t t-++= 对应于0=t 点出的切线方程.解:()k e j e i t r t t-++=θ,∴此空间曲线的参数方程为 ()()()()()()⎪⎩⎪⎨⎧-===⇒⎪⎩⎪⎨⎧===--t t t t e t z e t y t x e t z e t y t t x ''1'.∴在对应于0=t 时, 000010ee z e e y x --=-=-, 即:111--=-=z y x .**7. 试求曲线()()()k t j t i t t r23sin 23cos 2++= 从0=t 到4=t 这一段的弧长.解:空间曲线的参数方程为()()()()()()()()⎪⎩⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧===t t z t t y t t x t t z t t y t t x 2'3cos 6'3sin 6'3sin 23cos 22.∴ 弧长()[]()[]()[]dt t z t y t x s ⎰++=40222''' dt t t t ⎰++=422243cos 363sin 363ln 9209242+=+=⎰dt t .。
高等数学(化地生类专业)(下册)姜作廉主编《习题解答》习题102222221.0x 0(3)arcsin ||||0(4)cot ()(n )14(6))x y y yz xy x x z x y x y n x y u r R y z r x y π+>->=≤≠=++≠≤+≤<<++=+2求定义域(1)z=lnxyxy>0,即x>0,y>0或x<0,y<0且且为正整数(5)定义域为介于x 和2222(,)(,)(,),0.()110,(,)(,),,(1,)(,)(,)(1,),(1,)(),f (,)k k k k k z R z f x y f tx ty t f x y t yF xy t f tx ty t f x y t f f x y x x xy y y f x y x f f F x y x x x x +===≠∀≠======k 之间的空间部分以及球面若函数满足关系式则称该函数为k 次齐次函数。
试证k 次齐次函数z=f(x,y)可以表示为z=x 的形式证:对均有不妨令则即令则222222222()3(,),(,)(,)()(72)4(,,),(,,)(,,)()()5(,)tan ,(,)(,)()()tan(tan vx y w u v xy x yF x f u v u f xy x y f xy x y xy P f u v w u w f x y x y xy f x y x y xy x y xy xf x y x y xy f tx ty yxf tx ty tx ty t xy yxt x y xy y ++=++==++-+-=++=+-=+-=+-得证已知求解:已知求解:已知求解:0000002)61)2cos (2)lim123cos 123lim cos cos lim 1123lim(123)sin (3)limx y x x y y x x y x x xy x o y x y x y e y x y y x y e ye y x y x y xy →→→→→→→→→→→→→→→→==++++==++++x 求下列极限(1)解:解:由e 与在(0,0)连续则原式=00222200sin lim1lim 2ln(1)(4)lim x x y y x y x xyy y xy x y x y →→→→→→===+++解:2222222200000000y 00ln(1)lim lim 17lim )0(0,0)1ii (0,0).2x x y y x y x x y x y x y x y x y x y i y →→→→→→→→→→+++===++=+==解:试问解:沿趋于原极限=0x )沿y=趋于原极限,由于沿不同的路径趋于x-1(0,0)极限值不等,故原极限不存在。