氮气吸附-2
- 格式:ppt
- 大小:980.50 KB
- 文档页数:33
关于氮气等温吸脱附计算比表面积、孔径分布的若干说明我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。
经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。
◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。
每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。
那么吸附曲线在:低压端偏Y轴则说明材料与氮有较强作用力(І型,ІІ型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈І型;低压端偏X轴说明与材料作用力弱(ІІІ型,Ⅴ型)。
中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。
BJH方法就是基于这一段得出的孔径数据;高压段可粗略地看出粒子堆积程度,如І型中如最后上扬,则粒子未必均匀。
平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。
◆几个常数※液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm※标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL※STP每mL氮气分子铺成单分子层占用面积4.354平方米例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距)◆以SBA-15分子筛的吸附等温线为例加以说明此等温线属IUPAC 分类中的IV型,H1滞后环。
处理含氮气体的四种方法摘要:一、引言二、方法一:吸收法1.原理2.适用范围3.优缺点三、方法二:吸附法1.原理2.适用范围3.优缺点四、方法三:膜分离法1.原理2.适用范围3.优缺点五、方法四:燃烧法1.原理2.适用范围3.优缺点六、总结与展望正文:氮气在工业生产、农业生产等领域具有广泛应用,但同时也会产生含氮废气。
如何有效处理含氮气体成为了一个亟待解决的问题。
本文将对四种处理含氮气体的方法进行详细介绍,以期为相关领域提供参考。
二、方法一:吸收法1.原理吸收法是利用某些溶液对氮气及其化合物具有较好的吸收能力,将含氮气体与吸收剂接触,使其被吸收,从而达到净化气体的目的。
2.适用范围吸收法适用于处理较低浓度的含氮气体,特别是在处理含有酸性气体、碱性气体和有机物气体等方面具有较好的效果。
3.优缺点优点:设备简单,操作方便,投资较低。
缺点:吸收效率受吸收剂性质、气体浓度、温度和压力等因素影响,难以处理高浓度的含氮气体。
三、方法二:吸附法1.原理吸附法利用活性炭、分子筛等吸附剂对氮气及其化合物进行吸附,从而净化含氮气体。
2.适用范围吸附法适用于处理较低浓度的含氮气体,特别适用于处理有机物气体和有毒气体。
优点:吸附效率较高,设备相对简单,操作方便。
缺点:吸附剂的选择和再生问题限制了吸附法的应用范围,投资成本较高。
四、方法三:膜分离法1.原理膜分离法利用膜材料对氮气及其化合物进行选择性分离,实现气体的净化。
2.适用范围膜分离法适用于处理各种浓度的含氮气体,特别适用于处理混合气体中的氮气。
3.优缺点优点:分离效率高,设备紧凑,操作简便。
缺点:膜材料的选用和寿命、系统能耗问题是膜分离法需要克服的难题。
五、方法四:燃烧法1.原理燃烧法是将含氮气体中的可燃成分燃烧,生成无害的氮气和水蒸气,从而达到净化气体的目的。
2.适用范围燃烧法适用于处理含有可燃成分的含氮气体,尤其适用于处理工业废气和汽车尾气。
3.优缺点优点:处理效果显著,能实现氮气的高效净化。
分离氮气的原理分离氮气的原理主要基于氮气与其他气体在温度、压力以及吸附性能等方面的差异。
目前常用的分离氮气的方法主要包括气体吸附分离法、膜分离法、压力摩尔分数摄制法和气体液化分离法等。
下面将对这些方法进行详细介绍。
1. 气体吸附分离法气体吸附分离法是利用吸附剂对不同气体分子的吸附能力不同,通过吸附剂对气体混合物的分离作用来实现氮气的分离。
常用的吸附剂有活性炭、沸石、分子筛等。
这些吸附剂的孔径和表面性质使其具有选择性吸附某些气体的能力。
在一定的温度和压力条件下,通过调节气体进出口的压力差,使吸附剂选择性地吸附其他气体而不吸附氮气,从而实现氮气的分离。
2. 膜分离法膜分离法是利用膜对气体分子的选择性渗透来实现氮气的分离。
常见的膜分离方法有聚合物膜、无机膜和复合膜等。
这些膜的孔径大小和渗透性能使其对不同气体具有不同的分离效果。
在应用中,气体混合物通过膜表面时,膜会选择性地将氮气分子渗透透过而保留其他气体,从而实现氮气的分离。
3. 压力摩尔分数摄制法压力摩尔分数摄制法是利用不同气体在一定压力下溶解度和摩尔分数的差异来实现氮气的分离。
这种方法主要应用在低温下,通过降低温度达到氮气的液化,然后通过蒸馏或摩尔分数摄制装置来进行分离。
由于氮气在低温下较易液化,因此可以通过控制温度和压力来实现氮气的分离。
4. 气体液化分离法气体液化分离法是利用不同气体在液化过程中的沸点差异来实现氮气的分离。
这种方法主要包括常压液化法、差压液化法和深冷液化法等。
在常压液化法中,通过控制温度和压力使混合气体发生液化,然后通过蒸馏的方式将氮气与其他气体分离。
差压液化法利用不同气体的压力-温度相图差异,控制压力差实现分离。
深冷液化法则通过极低温度使混合气体发生液化,再通过蒸馏或摩尔分数摄制来实现氮气的分离。
综上所述,分离氮气的原理主要涉及温度、压力和吸附性能等因素的利用。
通过选择不同的分离方法,可以根据具体需要实现氮气的高效分离。
这些方法在工业生产和实验室研究中具有重要的应用价值。
氮气吸附理论上到500nm,但是压力传感器的分辨率和准确度一般到100nm还行,100nm 以上即使可以达到,也不可能详细分布了,在氮气分压达到0.96的时候是50nm的孔直径凝聚,到0.98是98nm的孔凝聚,到0.99就是195nm了,楼主自己可以判断了吧,50-100nm 只有0.02的分压变化区间,很难做详细的分布,所以最好用压汞法康塔公司介绍过说,微孔最好用Ar吸附,介孔用N2吸附,大孔还是压汞目的:是让大家对氮气等温吸脱附有一个基本的理解和概念,不会讲太多源头理论,内容不多,力求简明实用。
本人有幸接触吸脱附知识的理论和实践,做个总结一是长久以来的心愿,二则更希望能和大家共同学习、探讨和提高。
由于内容是自己的总结和认识,很可能会有部分错误,希望大家能给予建议、批评和指导,好对内容做进一步的完善。
★★注意★★我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。
经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。
◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。
每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。
那么吸附曲线在:低压端偏Y轴则说明材料与氮有较强作用力(І型,ІІ型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈І型;低压端偏X轴说明与材料作用力弱(ІІІ型,Ⅴ型)。
N2吸脱附曲线说明计算氮等温吸附和解吸的比表面积和孔径分布的几点注意事项我们获得的数据只是真实的吸收-解吸曲线。
比表面积、孔径分布、孔容等都是主观和人为的数据。
经常听到一些学生说要做一个BET,但他们实际做的不是BET,而是氮气等温吸附-解吸曲线。
BET(Brunauer-Emmet-Teller)只处理N2-N2-吸附等温线中p/p0=0.05~0.35之间的一小段,用著名的BET公式获得单层吸附数据Vm,然后根据它计算比表面积,如此而已。
◆六种吸附等温线几乎每一本类似的参考书都会提到前五类是BDDT(布鲁纳-戴明-戴明-泰勒)。
首先,他们四个人把大量的等温线分成五类,而第六类台阶状的是星升。
每种类型都有一组语句。
事实上,可以理解,相对压力是X轴,氮吸附量是Y轴。
X轴相对压力大致分为三个部分:低压(0.0-0.1)、中压(0.3-0.8)和高压(0.90-1.0)。
那么吸附曲线为:低压端偏离y轴表明材料对氮气有很强的作用力。
类型??类型,类型iv),许多微孔由于微孔隙中的强吸附势,显示在吸附曲线的起点?类型;材料作用力(?)对低压端偏离x轴的解释较弱??类型五)。
中压端主要是氮气在材料孔隙中的冷凝和积聚。
中孔分析来自这些数据,包括样品颗粒堆积产生的孔和有序或梯度中孔内的孔。
BJH方法基于本节获得的孔径数据。
高压段可以大致看出颗粒堆积的程度,如?如果模型最终上升,粒子可能不均匀。
通常,当相对压力约为0.99时,获得的总孔体积通常是氮吸附的冷凝值。
◆几个常数※液氮温度为77K时,液氮六方密堆积态氮分子的横截面积为0.162平方纳米,形成单层铺展时,单层厚度为0.354纳米※在标准温度和压力下冷凝1毫升氮气后(假设冷凝密度不变),体积为0.001547毫升例如,当吸附曲线p/p0在下面的吸附图中最大时,如果氮气的吸附容量为约400毫升,可以看出总孔体积= 400 * 0.001547 = 400/654 =约0.61毫升STP占地4.354平方米/毫升的氮分子铺砌成单层。
物理吸附仪操作简易教程一、开机1.打开氮气瓶和氦气瓶,调节减压阀,使分压保持在0.8MPa左右;2.将设备mains开关推上去,大约十分钟后,将electronics开关推上去;3.打开电脑,启动软件,点击connect.二、脱气1.挑选样品管,粉末样品用9mm球管,块状样品用9mm直管(6mm样品管由于难以清洗,不建议使用);2.称量空的样品管质量;3.装样,注意将样品装至样品管底部,如有样品粘附在管壁,用毛刷擦去粘附样品;4.称量装样后的总质量;5.将样品管装上脱气站。
注意脱气站共有四个脱气点,可同时对四个样品进行脱气,左边俩个为1站,右边俩个为2站。
安装样品管时,取下堵头(包括堵头,螺母,识别器,o形圈),换上样品管,依照从下往上螺母,识别器,o形圈的顺序装上样品管,拧紧螺母;6.用加热包包紧样品管,1站公用一个加热包,2站公用一个加热包;7.打开软件,右击St1或St2选择Edit program ,打开脱气编辑窗口,可分别对1站或2站进行脱气程序编辑,通过add, delete, edit编辑脱气温度、脱气时间和升温速率,complete state项选择Backfill, evacuation crossover中mode选择fine power,backfill pressure项填770torr。
点击OK键完成编辑。
8.右击St1或St2选择load,或者右击all选择load all,完成对1站或2站程序的载入开始脱气;9.注意不同的样品,选择不同的脱气时间和脱气温度,对于碳材料,推荐的脱气温度为300℃,脱气时间为四个小时。
三、分析1.当脱气状态栏显示idle时,表明脱气结束。
取下样品管,称重,用堵头堵住不用的脱气点;2.在样品管中放入合适的rod棒(注意放置rod棒时,请横放样品管)将样品管装上分析站。
注意分析站共有三个分析点,左为1,右为2,中为3,只有1点可以分析微孔。
氮气的分离氮气是一种常见的气体,在空气中的含量约占78%。
氮气的分离是指将氮气与其他气体分开,得到纯净的氮气的过程。
氮气的分离有多种方法,下面将介绍其中的几种常用方法。
1. 低温分离法低温分离法是通过气体的沸点差异来分离氮气的一种方法。
由于氮气的沸点较低,约为-196℃,而空气中的其他气体如氧气、二氧化碳等的沸点较高,因此可以利用这一差异进行分离。
在低温下,将空气逐渐冷却至氮气的沸点以下,然后将液态空气进行分馏,从而得到纯净的氮气。
2. 膜分离法膜分离法是利用半透膜的选择性透过性来分离氮气的一种方法。
半透膜是一种具有特殊结构的薄膜,能够让某些分子或离子通过,而阻挡其他分子或离子的传递。
在膜分离法中,将空气通过半透膜进行透析,根据氮气和其他气体在膜上的透过性差异,实现氮气的分离和纯化。
3. 吸附分离法吸附分离法是利用吸附剂对气体的选择性吸附能力来分离氮气的一种方法。
吸附剂是一种固体材料,能够吸附气体分子。
在吸附分离法中,将空气通过吸附剂床层,根据氮气和其他气体在吸附剂上的吸附能力差异,实现氮气的分离和纯化。
4. 压力摩擦分离法压力摩擦分离法是利用气体在高速旋转设备中的离心力和摩擦力来分离氮气的一种方法。
在高速旋转设备中,气体受到离心力的作用,使得气体组分按照密度不同分层,然后利用摩擦力将氮气与其他气体分开,实现氮气的分离和纯化。
以上是氮气分离的几种常用方法,每种方法都有其适用的场合和特点。
在工业生产中,根据不同的需求和条件选择合适的氮气分离方法,可以高效地得到纯净的氮气。
氮气的分离不仅可以用于工业制造,还可以应用于医疗、食品保鲜、科学研究等领域。
随着技术的不断发展,氮气分离技术也在不断改进和创新,为各个领域的应用提供更好的支持。