氮气吸附脱附测量比表面积.
- 格式:ppt
- 大小:160.50 KB
- 文档页数:18
bet比表面积和氮气吸附脱附【知识】bet比表面积和氮气吸附脱附序言在材料科学和化学领域,表面积是一个重要的物性参数,它描述了固体材料与周围环境之间的接触面积。
为了量化固体材料的表面积,科学家们发展了一系列测量方法。
而在这些方法中,bet比表面积和氮气吸附脱附技术已经被广泛应用并深入研究。
本文将深入探讨bet比表面积和氮气吸附脱附的原理、应用以及其在材料科学中的意义。
一、bet比表面积的原理和测量1.1 bet比表面积的定义bet比表面积是根据贝特等温吸附方程(BET equation)来计算的,该方程基于气体在材料表面吸附的模型。
表面积越大,则吸附分子与材料表面的接触面积越大,从而导致更多的分子被吸附。
1.2 bet比表面积的测量方法目前,常用的测量bet比表面积的方法有气相吸附法和液相吸附法。
其中,气相吸附法使用的是氮气吸附脱附技术,而液相吸附法则常用吸附剂为甲苯等有机物。
二、氮气吸附脱附技术的原理和应用2.1 氮气吸附脱附技术的原理氮气吸附脱附技术是测量bet比表面积的常用方法之一。
它基于氮气在材料表面吸附和脱附的过程来获得材料的比表面积。
其中,氮气吸附的等温线通常遵循亚单分子层吸附模型,而脱附曲线则用于计算bet 比表面积。
2.2 氮气吸附脱附技术的应用氮气吸附脱附技术在材料科学中有着广泛的应用。
它可以用来表征催化剂、吸附剂、孔隙材料等材料的表面性质。
通过测量bet比表面积,可以评估材料的孔隙结构、孔隙分布以及吸附性能,从而优化材料的设计和合成。
三、bet比表面积和氮气吸附脱附在材料科学中的意义3.1 表征材料的孔隙结构bet比表面积的测量结果可以提供材料的孔隙结构信息,如孔径分布、孔隙体积等。
这些信息对于理解和控制材料的吸附、传质等过程具有重要意义。
3.2 优化材料的设计和性能通过评估材料的bet比表面积,科学家们可以优化材料的设计和性能。
在催化剂领域,高bet比表面积的材料通常具有更高的活性和选择性。
气体吸附(氮气吸附法)比表面积测定比表面积分析测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它比表面积测试方法,成为公认的最权威比表面积测试方法。
许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277 (Determination of the specific surface area of solid by gas adsorption-BET method)。
我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T 19587-2004《气体吸附BET法测定固体物质比表面积》。
气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。
通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。
由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和,如图所示意位置。
氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。
通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。
实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品的比表面积。
计算公式如下:Sg: 被测样品比表面积(m2/g)Vm: 标准状态下氮气分子单层饱和吸附量(ml)Am: 氮分子等效最大横截面积(密排六方理论值Am = 0.162 nm2)W: 被测样品质量(g)N: 阿佛加德罗常数(6.02x1023)代入上述数据,得到氮吸附法计算比表面积的基本公式:由上式可看出,准确测定样品表面单层饱和吸附量Vm是比表面积测定的关键。
氮气等温吸脱附计算比表面积、孔径分布◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。
每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。
那么吸附曲线在低压端偏Y轴则说明材料与氮有较强作用力(I型,II型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈?型;低压端偏X轴说明与材料作用力弱(三型,Ⅴ型)。
中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。
BJH方法就是基于这一段得出的孔径数据;高压段可粗略地看出粒子堆积程度,如?型中如最后上扬,则粒子未必均匀。
平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。
◆几个常数1.液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm2.标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL3.STP每mL氮气分子铺成单分子层占用面积4.354平方米例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距)◆以SBA-15分子筛的吸附等温线为例加以说明此等温线属IUPAC 分类中的IV型,H1滞后环。
从图中可看出,在低压段吸附量平缓增加,此时N2 分子以单层到多层吸附在介孔的内表面,对有序介孔材料用BET方法计算比表面积时取相对压力p/p0 = 0.10~0.29比较适合。
【资源】关于氮气等温吸脱附计算比表面积、孔径分布的若干说明★★★★★★★★★★★★★★★★★★★★★小木虫(金币+1):奖励一下,鼓励发有价值的话题dy322112:标题高亮 2010-12-16 16:31zhangwengui330(金币+10):很好很强大,欢迎原创!! 2010-12-16 17:02:55jinkai838(金币+10):perfect 2010-12-16 20:46:19jinkai838:为什么加这么多的分,因为我们是论坛,我们鼓励原创,鼓励用自己的语言,自己的经验,来表述科学,我们也喜欢读书,但是我们更推崇这样的自己发表理解的帖子! 2010-12-16 20:48:48jinkai838:标题高亮 2010-12-16 20:49目的:是让大家对氮气等温吸脱附有一个基本的理解和概念,不会讲太多源头理论,内容不多,力求简明实用。
本人有幸接触吸脱附知识的理论和实践,做个总结一是长久以来的心愿,二则更希望能和大家共同学习、探讨和提高。
由于内容是自己的总结和认识,很可能会有部分错误,希望大家能给予建议、批评和指导,好对内容做进一步的完善。
★★注意★★我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。
经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。
◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。
每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。
气体吸附(氮气吸附法)比表面积测定比表面积分析测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它比表面积测试方法,成为公认的最权威比表面积测试方法。
许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277 (Determination of the specific surface area of solid by gas adsorption-BET method)。
我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T 19587-2004《气体吸附BET法测定固体物质比表面积》。
气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。
通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。
由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和,如图所示意位置。
氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。
通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。
实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品的比表面积。
计算公式如下:Sg: 被测样品比表面积(m2/g)Vm: 标准状态下氮气分子单层饱和吸附量(ml)Am: 氮分子等效最大横截面积(密排六方理论值Am = 0.162 nm2)W:被测样品质量(g)N:阿佛加德罗常数(6.02x1023)代入上述数据,得到氮吸附法计算比表面积的基本公式:由上式可看出,准确测定样品表面单层饱和吸附量Vm是比表面积测定的关键。
关于氮气等温吸脱附计算比表面积、孔径分布的若干说明我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。
经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer—Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0。
05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。
◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer—Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加.每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0。
0-0。
1)、中压(0。
3-0。
8)、高压(0。
90-1。
0)三段.那么吸附曲线在:低压端偏Y轴则说明材料与氮有较强作用力(І型,ІІ型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈І型;低压端偏X轴说明与材料作用力弱(ІІІ型,Ⅴ型)。
中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。
BJH方法就是基于这一段得出的孔径数据;高压段可粗略地看出粒子堆积程度,如І型中如最后上扬,则粒子未必均匀。
平常得到的总孔容通常是取相对压力为0。
99左右时氮气吸附量的冷凝值.◆几个常数※液氮温度77K时液氮六方密堆积氮分子横截面积0。
162平方纳米,形成单分子层铺展时认为单分子层厚度为0。
354nm※标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0。
001547mL例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0。
001547=400/654=约0。
氮吸附法测定比表面及孔隙率的技术任何粉体表面都有吸附气体分子的能力,在液氮温度下,在含氮的气氛中,粉体表面会对氮气产生物理吸附,在回到室温的过程中,吸附的氮气会全部脱附出来。
当粉体表面吸附了满满的一层氮分子时,粉体的比表面积(Sg)可由下式求出:Sg=4.36Vm/W (Vm为氮气单层饱和吸附量,W为样品重量)而实际的吸附量V并非是单层吸附,即所谓多层吸附理论,通过对气体吸附过程的热力学与动力学分析,发现了实际的吸附量V与单层吸附量Vm之间的关系,这就是著名的BET方程,用氮吸附法测定BET 比表面及孔径分布是比较成熟而广泛采用的方法,都是利用氮气的等温吸附特性曲线:在液氮温度下,氮气在固体表面的吸附量取决于氮气的相对压力(P/P0),当P/P0在0.05?0.35范围内时,吸附量与(P/P0)符合BET方程,这是氮吸附法测定比表面积的依据;当P/P0?0.4时,由于产生毛细凝聚现象,即氮气开始在微孔中凝聚,通过实验和理论分析,可以测定孔容、孔径分布。
问题的关键是用甚么方法可以准确地把吸附的氮气量测量出来。
2.1 动态氮吸附测试技术连续流动色谱法是采用气相色谱仪中的热导检测器来测定粉体表面的氮吸附量的方法,即以氮气为吸附质,氦气为载气,两种气体按指定比例混合达到一定的氮气分压,让这种气体流经装有粉末样品的样品管,当样品管置于液氮温度时,氮气在样品表面产生物理吸附,而氦气不被吸附,这时气流中氮气的浓度减少,在热导检测器的输出端产生电信号,形成一个所谓的氮气吸附峰,当样品管回到室温时,样品表面被吸附的氮气会全部脱附出来,形成一个脱附峰。
吸(脱)附峰面积的大小正比于样品表面的氮吸附量。
动态法比表面仪中,样品与其表面流动的含氮气体处于动态平衡,由于气体流速很低,可以认为接近于平衡状态,通过调节氮气与氦气的比例来改变氮气分压,可实现BET比表面及孔径分布的测试。
2.2 静态容量法氮吸附测试技术静态容量法测量氮吸附量与动态法不同,他是在一个密闭的系统中,改变粉体样品表面的氮气压力,从0逐步变化到接近1个大气压,用高精度压力传感器测出样品吸附前后压力的变化,再根据气体状态方程计算出气体的吸附量或脱附量。
氮气吸附法在测定材料比表面积和孑L径分布方面的应用原理【摘要】氮气吸附法是一种常用的表征材料比表面积和孔径分布的方法。
本文首先介绍了氮气吸附法的工作原理,然后分别讨论了材料比表面积和孔径分布的测定原理。
接着详细探讨了氮气吸附法在比表面积和孔径分布测定中的应用,强调了它的重要性。
结论部分指出了氮气吸附法在材料表面积和孔径分布测定中的重要性,并对未来的发展进行了展望。
本文对氮气吸附法在材料研究领域具有重要的指导意义,为进一步研究提供了参考。
【关键词】氮气吸附法、比表面积、孔径分布、材料测定、重要性、展望、研究背景、研究意义、工作原理。
1. 引言1.1 研究背景氮气吸附法通过在一定温度下将氮气吸附至材料表面,利用气体分子在不同介孔中的吸附特性,来计算材料的比表面积和孔径分布。
该方法简单易操作,且能够准确快速地测定材料的表面积和孔隙结构,因此在材料研究领域得到了广泛的应用。
本文将探讨氮气吸附法在测定材料比表面积和孔径分布方面的应用原理,以期为材料研究提供新的测定方法和理论依据。
1.2 研究意义氮气吸附法在测定材料比表面积和孔径分布方面的应用具有重要的研究意义。
在材料科学领域,比表面积和孔径分布是评价材料性能和应用潜力的重要参数之一。
通过氮气吸附法可以快速准确地测定材料的比表面积和孔径分布,为材料研究和应用提供重要的参考数据。
氮气吸附法在表征材料方面具有广泛的适用性,可以应用于各种类型的材料,包括纳米材料、多孔材料和催化剂等。
通过氮气吸附法的应用,可以深入了解材料的结构特征和表面性质,为材料设计和改进提供科学依据。
研究氮气吸附法在材料比表面积和孔径分布测定中的应用原理具有重要的理论和应用价值,对于推动材料科学研究和技术发展具有重要意义。
2. 正文2.1 氮气吸附法的工作原理氮气吸附法是一种常用的表征材料比表面积和孔径分布的方法。
其基本原理是利用氮气在不同压力下对样品表面的吸附量进行测定,从而推导出样品的比表面积和孔径分布信息。