氮气吸附脱附测量比表面积
- 格式:ppt
- 大小:421.50 KB
- 文档页数:18
氮气吸附法在测定材料比表面积和孑L径分布方面的应用原理1. 引言1.1 氮气吸附法的概述氮气吸附法是一种常用的表面性质测试技术,广泛应用于材料科学领域。
该方法通过吸附氮气分子到材料表面,从而确定材料的比表面积和孔径分布。
氮气吸附法的原理是基于氮气分子与材料表面发生吸附反应,通过测量吸附了氮气分子的体积和压力来推算出材料的表面性质。
这种方法具有操作简单、测试速度快、结果准确等优点,因此被广泛应用于各类材料的研究和开发中。
通过氮气吸附法可以深入了解材料的微观结构,为材料设计和改进提供重要参考。
在材料科学领域,氮气吸附法已成为不可或缺的分析手段之一,为研究人员提供了丰富的信息和指导。
1.2 应用原理氮气吸附法的应用原理主要基于氮气在材料表面的吸附和脱附过程。
氮气分子在低温下与材料表面发生物理吸附,通过测量氮气分子在不同压力下吸附量来确定材料的比表面积。
根据Brunauer-Emmett-Teller(BET)理论,可以通过构建等温吸附线和计算相应的比表面积来分析材料的吸附性能。
氮气吸附法还可以用于测定材料的孔径分布。
根据巴拉德方程,在不同相对压力下测量氮气吸附量,并结合Kelvin方程和BJH理论,可以得出材料的孔径大小和分布情况。
通过分析比表面积和孔径分布的结果,可以深入了解材料的孔结构特征和表面性质,为材料研究提供重要参考。
氮气吸附法的应用原理不仅在表面测量领域具有重要意义,还在材料科学领域有着广泛的应用前景。
2. 正文2.1 氮气吸附法测定材料比表面积的步骤氮气吸附法是一种常见的表面分析技术,用于测定材料的比表面积。
其原理是通过让氮气在固体表面上吸附并脱附,从而测量表面的吸附量,进而计算出比表面积。
以下是氮气吸附法测定材料比表面积的步骤:1. 准备样品:首先需要将待测样品充分干燥,以去除表面的水分和其他杂质。
然后粉碎样品至适当粒度,并在真空中去除任何气体残留。
2. 测定参数设定:在实验仪器中设置合适的测定参数,包括温度、压力、吸附时间等。
关于氮气等温吸脱附计算比表面积、孔径分布得若干说明我们拿到得数据,只有吸脱附曲线就是真实得,比表面积、孔径分布、孔容之类得都就是带有主观人为色彩得数据。
经常听到有同学说去做个BET,其实做得不就是BET,就是氮气等温吸脱附曲线,BET(Brunauer—Emmet-Teller)只就是对N2-Sorptionisotherm中p/p0=0。
05~0.35之间得一小段用传说中得BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。
ﻫ◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种就是BDDT(Brunauer—Deming-Deming—Teller)分类,先由此四人将大量等温线归为五类,阶梯状得第六类为Sing增加、每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0—0。
1)、中压(0.3-0。
8)、高压(0、90—1。
0)三段。
那么吸附曲线在:ﻫ低压端偏Y轴则说明材料与氮有较强作用力(І型,ІІ型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈І型;低压端偏X轴说明与材料作用力弱(ІІІ型,Ⅴ型)、中压端多为氮气在材料孔道内得冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生得孔,有序或梯度得介孔范围内孔道。
BJH方法就就是基于这一段得出得孔径数据;ﻫ高压段可粗略地瞧出粒子堆积程度,如І型中如最后上扬,则粒子未必均匀。
平常得到得总孔容通常就是取相对压力为0。
99左右时氮气吸附量得冷凝值。
◆几个常数※液氮温度77K时液氮六方密堆积氮分子横截面积0。
162平方纳米,形成单分子层铺展时认为单分子层厚度为0。
354nmﻫ※标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0、001547mLﻫ例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0、001547=400/654=约0、61mL※STP每mL氮气分子铺成单分子层占用面积4。
气体吸附(氮气吸附法)比表面积测定比表面积分析测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它比表面积测试方法,成为公认的最权威比表面积测试方法。
许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277 (Determination of the specific surface area of solid by gas adsorption-BET method)。
我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T 19587-2004《气体吸附BET法测定固体物质比表面积》。
气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。
通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。
由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和,如图所示意位置。
氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。
通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。
实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品的比表面积。
计算公式如下:Sg: 被测样品比表面积(m2/g)Vm: 标准状态下氮气分子单层饱和吸附量(ml)Am: 氮分子等效最大横截面积(密排六方理论值Am = 0.162 nm2)W: 被测样品质量(g)N: 阿佛加德罗常数(6.02x1023)代入上述数据,得到氮吸附法计算比表面积的基本公式:由上式可看出,准确测定样品表面单层饱和吸附量Vm是比表面积测定的关键。
关于氮气等温吸脱附计算比表面积、孔径散布的假设干说明咱们拿到的数据,只有吸脱附曲线是真实的,积、孔径散布、孔容之类的都是带有主观人为色彩的数据。
常常听到有同窗说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传奇中的BET公式处置了一下,取得单层吸附量数据Vm,然后据此算出比表面积,如此罢了。
◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。
每一种类型都会有一套说法,其实能够这么明白得,以相对压力为X轴,吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。
那么吸附曲线在:低压端偏Y轴那么说明材料与氮有较强作使劲(І型,ІІ型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈І型;低压端偏X轴说明与材料作使劲弱(ІІІ型,Ⅴ型)。
中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。
BJH方式确实是基于这一段得出的孔径数据;高压段可粗略地看出粒子堆积程度,如І型中如最后上扬,那么粒子未必均匀。
平常取得的总孔容一般是取相对压力为0.99左右时氮气吸附量的冷凝值。
◆几个常数※液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时以为单分子层厚度为0.354nm※标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,那么可知总孔容=400*0.001547=400/654=约0.61mL※ STP每mL分子铺成单分子层占用面积4.354平方米例:BET方式取得的比表面积那么是S/(平方米每克)=4.354*Vm,其中Vm由BET方式处置可知Vm=1/(斜率+截距)◆以SBA-15的吸附等温线为例加以说明此等温线属IUPAC 分类中的IV型,H1滞后环。
氮气等温吸脱附计算比表面积、孔径分布◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。
每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。
那么吸附曲线在:低压端偏Y轴则说明材料与氮有较强作用力(I型,II型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈?型;低压端偏X轴说明与材料作用力弱(???型,Ⅴ型)。
中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。
BJH方法就是基于这一段得出的孔径数据;高压段可粗略地看出粒子堆积程度,如?型中如最后上扬,则粒子未必均匀。
平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。
◆几个常数1.液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm2.标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL3.STP每mL氮气分子铺成单分子层占用面积4.354平方米例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距)◆以SBA-15分子筛的吸附等温线为例加以说明此等温线属IUPAC 分类中的IV型,H1滞后环。
从图中可看出,在低压段吸附量平缓增加,此时N2 分子以单层到多层吸附在介孔的内表面,对有序介孔材料用BET方法计算比表面积时取相对压力p/p0 = 0.10~0.29比较适合。
氮气等温吸脱附计算比表面积、孔径分布◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。
每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。
那么吸附曲线在低压端偏Y轴则说明材料与氮有较强作用力(I型,II型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈?型;低压端偏X轴说明与材料作用力弱(三型,Ⅴ型)。
中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。
BJH方法就是基于这一段得出的孔径数据;高压段可粗略地看出粒子堆积程度,如?型中如最后上扬,则粒子未必均匀。
平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。
◆几个常数1.液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm2.标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL3.STP每mL氮气分子铺成单分子层占用面积4.354平方米例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距)◆以SBA-15分子筛的吸附等温线为例加以说明此等温线属IUPAC 分类中的IV型,H1滞后环。
从图中可看出,在低压段吸附量平缓增加,此时N2 分子以单层到多层吸附在介孔的内表面,对有序介孔材料用BET方法计算比表面积时取相对压力p/p0 = 0.10~0.29比较适合。
【资源】关于氮气等温吸脱附计算比表面积、孔径分布的若干说明★★★★★★★★★★★★★★★★★★★★★小木虫(金币+1):奖励一下,鼓励发有价值的话题dy322112:标题高亮 2010-12-16 16:31zhangwengui330(金币+10):很好很强大,欢迎原创!! 2010-12-16 17:02:55jinkai838(金币+10):perfect 2010-12-16 20:46:19jinkai838:为什么加这么多的分,因为我们是论坛,我们鼓励原创,鼓励用自己的语言,自己的经验,来表述科学,我们也喜欢读书,但是我们更推崇这样的自己发表理解的帖子! 2010-12-16 20:48:48jinkai838:标题高亮 2010-12-16 20:49目的:是让大家对氮气等温吸脱附有一个基本的理解和概念,不会讲太多源头理论,内容不多,力求简明实用。
本人有幸接触吸脱附知识的理论和实践,做个总结一是长久以来的心愿,二则更希望能和大家共同学习、探讨和提高。
由于内容是自己的总结和认识,很可能会有部分错误,希望大家能给予建议、批评和指导,好对内容做进一步的完善。
★★注意★★我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。
经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。
◆六类吸附等温线类型几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。
每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。