04-01500238-2004-信号与系统B(A卷)
- 格式:pdf
- 大小:219.43 KB
- 文档页数:4
信号与系统复习题含答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】(C ))(t δ+(-6e -t +8e -2t)u(t) (D )3)(t δ +(-9e -t +12e -2t)u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A) 1 (B )2 (C )3 (D ) 48、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于10、信号()()23-=-t u te t f t的单边拉氏变换()s F 等于二、填空题(共9小题,每空3分,共30分) 1、 卷积和[()k+1u(k+1)]*)1(k -δ=________________________2、 单边z 变换F(z)= 12-z z的原序列f(k)=______________________ 3、 已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、 频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、 单边拉普拉斯变换s s s s s F +++=2213)(的原函数 f(t)=__________________________6、 已知某离散系统的差分方程为)1(2)()2()1()(2-+=----kf k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、 已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=2)()(t dxx f t y 的单边拉氏变换Y(s)=______________________________ 8、描述某连续系统方程为 该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三(8分)已知信号()()()⎪⎩⎪⎨⎧><==↔./1,0,/1,1s rad s rad jw F j F t f ωωω设有函数()(),dtt df t s =求⎪⎭⎫ ⎝⎛2ωs 的傅里叶逆变换。
全国2001年10月系号与系统考试试题一、单项选择题(本大题共16小题,每小题2分,共32分) 1.积分⎰+--0)()2(dt t t δ等于( )A.)(2t δ-B.)(2t ε-C. )2(-tε D. )2(2-t δ2. 已知系统微分方程为)(2)(2)(t f t y dt t dy =+,若)()(,34)0(t t f y ε==+,解得全响应为0,131)(2≥+=-t e t y ,则全响应中t e 234-为( )A.零输入响应分量B.零状态响应分量C.自由响应分量D.强迫响应分量 3. 系统结构框图如下,该系统单位冲激响应)(t h 的表达式为( )A.⎰∞---td T x x T τττ)]()([1 B. )()(T t x t x --C. ⎰∞---td T T ττδτδ)]()([1 D. )()(T t t --δδ4. 信号)(),(21t f t f 波形如图所示,设)()()(21t f t f t f *=则)0(f 为( )A.0B.1C.2D.35. 已知信号)(t f 如图所示,则其傅里叶变换为( )A.)21(-ωa SB. )21(+ωa SC. )1(-ωa SD. )1(+ωa S 6. 已知)()]([ωj F t f =ℑ 则信号)52(-t f 的傅里叶变换为( )A.ωω5)2(21j e j F - B.ωω5)2(j ej F - C.25)2(ωωj e j F - D.25)2(21ωωj e j F - 7. 已知信号)(t f 的傅里叶变换)()()(00ωωεωωεω--+=j F 则)(t f 为( )A.)(00t S a ωπωB. )2(00t S a ωπωC. )(200t S a ωωD. )2(200t S a ωω 8. 已知一线性时不变系统,当输入)()()(3t e e t x tt ε--+=时,其零状态响应是)()22()(4t e e t y t t ε---=,则该系统的频率响应为( )A.)521524(2++-++ωωωωj j j j B. )521524(2+++++ωωωωj j j j C. )521524(++-++ωωωωj j j j D. )521524(+++++ωωωωj j j j 9. 信号)()(2t e t f tε-=的拉氏变换及收敛域为( )A.2)Re(,21>+s s B. 2)Re(,21->+s s C.2)Re(,21>-s s D. 2)Re(,21->-s s 10.信号)2()(2(sin )(0--=t t t f εω的拉氏变换为( )A.s e s s 2202-+ω B. s e s s 2202ω+ C. s e s 22020ωω+ D. se s 2220-+ωω 11. 已知某系统的系统函数为)(s H ,唯一决定该系统单位冲激响应)(t h 函数形式的是( )1-1)(t f t tcos 111001-12t tA. )(s H 的零点B. )(s H 的极点C.系统的输入信号D.系统的输入信号与)(s H 的极点12. 若)()(),()(221t t f t e t f t εε==-则)()(21t f t f *的拉氏变换为( ) A.⎪⎭⎫ ⎝⎛+-21121s s B. ⎪⎭⎫ ⎝⎛++-21121s sC. ⎪⎭⎫ ⎝⎛++21121s sD. ⎪⎭⎫ ⎝⎛++-21141s s13. 序列)]5()2([2cos )(---=n n nn f εεπ的正确图形是( )14. 已知序列)(1n x 和)(2n x 如图(a )所示,则卷积)()()(21n x n x n y *=的图形为图(b)中的( )15. 图(b)中与图(a)所示系统等价的系统是( )16.在下列表达式中: ① )()()(z F z Y z H =②)()()(n f n h n y f *= ③=)(z H )]([n h ④=)(n y f )]()([z F z H离散系统的系统函数的正确表达式为( )A.①②③④B.①③C.②④D.④二、填空题(本大题共9小题,每小题2分,共18分)不写解答过程,将正确的答案写在每小题的空格内。
2004级自动化专业信号与系统期末考试参考答案与评分标准一、填空题(每空2分,共20分)1.非线性 时变 因果 稳定2.离散性 谐波性 收敛性3.)()(0t t k t h -=δ 0)()()(ωωϕωωj j j Ke e e H -==j H4.)()(11nT t f t f n T -∑+∞-∞=或二、计算题 1.解:)()(00)()(t t t t t t δδδδ'-='-+='+2.解:5|)243()1()122(1223=-+-=-'+-+=+∞∞-⎰t t t dt t t t t δ 3.解:令11)()1(1+-=+-s e s F S 因为)1()(1--⇔--t t se Sεε 所以)()]1()([11)(1)1(1t f e t t s e s F t S =--⇔+-=-+-εε S e s F s F 211)()(--=+---+--=∴---)]3()2([)]1()([)()2(t t e t t e t f t t εεεε4.解: )3)(2)(1(12611612)(232323++++++=++++++=s s s s s s s s s s s s s F 6116)595(1)(232+++++-+=s s s s s s F 56116)595(lim )(lim )0(2320-=+++++-==∞→→++s s s s s s t f f s t 0)(lim )(lim )(0===∞→∞→s F s t f f s t 三、综合题:1.解:如图所示:2.解:(1)此题用戴维南定理求U2(s)U0C(s)=E(s)/2; R0=6Ω. 故有: )(205.02)(3.063.0)(2s E s s s E s s s U +=⋅+= (2分) 20105.0205.0)()()(2+-=+==s s s s E s U s H …………………………………………………. (2分) )(10)(5.0)(20t et t h t εδ--=∴冲激响应为…………………………………………...…... (3分) 205.01205.0)()(2+=⋅+==s s s s s U s R ε…………………………………… . )(5.0)(20t e t r t εε-=∴阶跃响应为 …………………………………………………....…(3分)(2) )1()()(1-+=t t t e εε………………… ……………………………………(2分) )1(5.0)(5.0)1()()()1(20202--=--=∴---t e t e t r t r t u t t εεεε… ………………. .(2分)(3))1()1()()1()(2--+-=t t t t t e εε………………. .(1分))1(11111)(2222s s e s s e ss s s E ----=+-=∴………………. .(2分) )20()1(5.0205.0)1(11205.0)()()(222+--+=⎥⎦⎤⎢⎣⎡--⋅+==--s s e s e s s s s s E s H s U s s …… .(1分) )1()1(401)()211(401)()1(20202--+--=∴---t e t e t u t t εε………………. .(2分) 3.解:由零极点图:3466)53)(53(6)(2+++=++-++=s s s K j s j s s K s Z …………. .(2分)-15 24 -24 15 ω0-6-99由Z(0)=3, 得K=17。
北京交通大学2004年硕士研究生入学考试试题注:)(t ε为单位阶跃信号,)(k ε为单位阶跃序列一、选择题1. 积分dtt t ⎰-+--55)42()3(δ等于( )A. -1B. -0.5C. 0D. 0.5 2. 已知实信号)(t f 的傅立叶变换)()()(ωωωjX R j F +=,信号)]()([21)(t f t f t y -+=的傅立叶变换)(ωj Y 等于( )A. )(ωRB. )(2ωRC. )2(2ωRD.)2(ωR 3. 已知某连续时间系统的系统函数为11)(+=s s H ,该系统属于什么类型( )。
A. 低通B.高通C. 带通D. 带阻 4. 如图A-1所示周期信号)(t f ,其直流分量等于( )。
A. 0B. 2C. 4D. 6图A-15. 序列和∑-∞=kn n )(ε等于( )。
A. 1B.)(k δC.)(k k εD.)()1(k k ε+6. 以下为4个信号的拉普拉斯变换,其中那个信号不存在傅立叶变换( )。
A. s 1B. 1C. 21+sD. 21-s 7. 已知信号)(t f 的最高频率)(0Hz f ,对信号)2/(t f 取样时,其频率不混迭的最大取样间隔max T 等于( )。
A. 01fB. 02fC. 021fD. 041f 8. 已知一连续系统在输入)(t f 作用下的零状态响应)4()(t f t y =,则该系统为( )。
A. 线性时不变系统B. 线性时变系统C. 非线性时不变系统D. 非线性时变系统 9. 图A-2所示周期信号的频谱成分有( )。
A. 各次谐波的周期分量B. 各次谐波的正弦分量C. 奇次谐波的正弦分量D. 奇次谐波的余弦分量图A-210. 已知)(k f 的z 变换)2)(21(1)(++=z z z F ,)(z F 得收敛域为( )时,)(k f 是因果序列。
A.21>z B. 21<z C. 2>z D. 221<<z二、填空1. _______)22()]2()([=-⋅--t t t δεε。
第六章 离散系统的z 域分析一、单项选择题X6.1(浙江大学2003年考研题)离散时间单位延迟器的单位响应为 。
(A ))(k δ (B ))1(+k δ (C ))1(-k δ (D )1X6.2(北京邮电大学2004年考研题)已知一双边序列⎪⎩⎪⎨⎧<≥=0,30,2)(k k k f k k ,其z 变换为 。
(A )32,)3)(2(<<---z z z z (B )3,2,)3)(2(≥≤---z z z z z(C )32,)3)(2(<<--z z z z (D )32,)3)(2(1<<---z z zX6.3(东南大学2002年考研题)对于离散时间因果系统5.02)(--=z z z H ,下列说法是不对的是 。
(A )这是一个一阶系统 (B )这是一个稳定系统 (C )这是一个全通系统 ()这是一个最小相移系统X6.4(南京理工大学2000年考研题))(2)(k k f --=ε的z 变换为 。
(A )12)(-=z z z F (B )12)(--=z z z F (C )12)(-=z z F (D )12)(--=z z F X6.5(西安电子科技大学2005年考研题)序列[]∑-=-1)()1(2k i iki ε的单边z 变换为 。
(A )422-z z (B ))1)(2(+-z z z (C )422-z z(D ))1)(2(2--z z zX6.6(西安电子科技大学2004年考研题)离散序列[]∑∞=--=0)()1()(m mm k k f δ的z 变换及收敛域为 。
(A )1,1<-z z z (B )1,1>-z z z (C )1,1<+z z z (D )1,1>+z z zX6.7(北京交通大学2004年考研题)已知)(k f 的z 变换)2(211)(+⎪⎭⎫⎝⎛+=z z z F ,)(z F 的收敛域为 时,)(k f 为因果序列。
厦门大学2004年招收攻读硕士学位研究生入学考试试题答案解析科目代码:847科目名称:信号与系统招生专业:通信与信息系统、信号与信息处理、电子与通信工程(专业学位)一、(15分)设一个连续时间LTI系统的微分方程、初始条件和激励分别为yy′′(tt)−44yy(tt)=xx′(tt)+33xx(tt),yy(00−)=22,yy′(00−)=−11,xx(tt)=ee−55tt uu(tt)(1)求出该系统的零状态响应和零输入响应;(2)找出系统函数HH(ss),并由零、极点图分析系统的类型。
【考查重点】:这道题主要考查第四章的拉普拉斯正、逆变换、系统函数的概念和其响应的组成——零输入响应和零状态响应的成分。
以及从系统零、极点分布决定系统的频响特性的内容,是常考的题型。
【答案解析】:(1)对微分方程两端进行拉式变换可得到zz2YY(zz)−zzyy(0−)−yy′(0−)−4YY(zz)=zzXX(zz)−xx(0−)+3XX(zz)因为xx(tt)=ee−5tt uu(tt),所以xx(0−)=0,代入系数,可得(zz2−4)YY(zz)=(zz+3)XX(zz)+2zz−1YY(zz)=zz+3zz2−4XX(zz)+2zz−1zz2−4为求零状态响应YY ZZEE(zz),初始状态置零,所以YY ZZEE(zz)=zz+3zz2−4XX(zz)因为XX(zz)=ℒ[xx(tt)]=ℒ[ee−5tt uu(tt)]=1所以零状态响应YY ZZEE(zz)=zz+32∙1=−112+528+−221而yy zzzz(tt)= ℒ−1[YY ZZEE(zz)]=ℒ−1�−112zz+2+528zz−2+−221zz+5�=�−112ee−2tt+528ee2tt−221ee−5tt�uu(tt)为求零输入响应,激励置零,所以,YY ZZss(zz)=2zz−1=54+34而yy zzzz(tt)=ℒ−1[YY ZZss(zz)]=ℒ−1�54zz+2+34zz−2�=5ee−2tt+3ee2tt (tt≥0)(2)系统函数是零状态响应,所以HH(zz)=YY ZZEE(zz)XX(zz)=zz+3zz2−4=zz+3(zz+2)(zz−2)所以其零级点的分布如图,σσωω根据零极点图可以画出其频域特性图,由图可看出系统类型是低通滤波器。