T检验及单因素方差分析
- 格式:pdf
- 大小:2.13 MB
- 文档页数:33
《》配对t检验的目的是检验两个样本均数所代表的未知总体均数是否有差别1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。
通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。
倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。
相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现目前样本这结果的机率。
2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p值是将观察结果认为有效即具有总体代表性的犯错概率。
如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。
即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。
)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
3,T检验和F检验至於具体要检定的内容,须看你是在做哪一个统计程序。
举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。
统计中经常会用到各类查验,如何知道什么时候用什么查验呢,按照结合自己的任务来说一说:之五兆芳芳创作t查验有单样本t查验,配对t查验和两样本t查验.单样本t查验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来不雅察此组样本与总体的差别性.配对t查验:是采取配对设计办法不雅察以下几种情形,1,两个同质受试对象辨别接受两种不合的处理;2,同一受试对象接受两种不合的处理;3,同一受试对象处理前后.u查验:t查验和就是统计量为t,u的假定查验,两者均是罕有的假定查验办法.当样本含量n较大时,样本均数合适正态散布,故可用u查验进行阐发.当样本含量n小时,若不雅察值x合适正态散布,则用t查验(因此时样本均数合适t散布),当x为未知散布时应采取秩和查验.F查验又叫方差齐性查验.在两样本t查验中要用到F查验.从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性.若两总体方差相等,则直接用t查验,若不等,可采取t'查验或变量变换或秩和查验等办法.其中要判断两总体方差是否相等,就可以用F查验.复杂的说就是查验两个样本的方差是否有显著性差别这是选择何种T查验(等方差双样本查验,异方差双样本查验)的前提条件.在t查验中,如果是比较大于小于之类的就用单侧查验,等于之类的问题就用双侧查验.卡方查验是对两个或两个以上率(组成比)进行比较的统计办法,在临床和医学实验中应用十分普遍,特别是临床科研中许多资料是记数资料,就需要用到卡方查验.方差阐发用方差阐发比较多个样本均数,可有效地控制第一类错误.方差阐发(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出,以F命名其统计量,故方差阐发又称F查验.其目的是推断两组或多组资料的总体均数是否相同,查验两个或多个样本均数的差别是否有统计学意义.我们要学习的主要内容包含单因素方差阐发即完全随机设计或成组设计的方差阐发(oneway ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等.完全随机设计(completely random design)不考虑个别差别的影响,仅涉及一个处理因素,但可以有两个或多个水平,所以亦称单因素实验设计.在实验研究中按随机化原则将受试对象随机分派到一个处理因素的多个水平中去,然后不雅察各组的试验效应;在不雅察研究(调查)中按某个研究因素的不合水平分组,比较该因素的效应.两因素方差阐发即配伍组设计的方差阐发(twoway ANOVA):用途:用于随机区组设计的多个样本均数比较,其统计推断是推断各样本所代表的各总体均数是否相等.随机区组设计考虑了个别差别的影响,可阐发处理因素和个别差别对实验效应的影响,所以又称两因素实验设计,比完全随机设计的查验效率高.该设计是将受试对象先按配比条件配成配伍组(如动物实验时,可按同窝别、同性别、体重相近进行配伍),每个配伍组有三个或三个以上受试对象,再按随机化原则辨别将各配伍组中的受试对象分派到各个处理组.值得注意的是,同一受试对象不合时间(或部位)重复多次丈量所得到的资料称为重复丈量数据(repeated measurement data),对该类资料不克不及应用随机区组设计的两因素方差阐发进行处理,需用重复丈量数据的方差阐发.方差阐发的条件之一为方差齐,即各总体方差相等.因此在方差阐发之前,应首先查验各样本的方差是否具有齐性.经常使用方差齐性查验(test for homogeneity of variance)推断各总体方差是否相等.本节将介绍多个样本的方差齐性查验,本法由Bartlett于1937年提出,称Bartlett法.该查验办法所计较的统计量从命散布.经过方差阐发若拒绝了查验假定,只能说明多个样本总体均数不相等或不全相等.若要得到各组均数间更详细的信息,应在方差阐发的根本上进行多个样本均数的两两比较.。
统计中经常会用到各种检验, 如何知道何时用什么检验呢, 根据结合自己的工作来说一说:之欧侯瑞魂创t检验有单样本t检验, 配对t检验和两样本t检验.单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比力, 来观察此组样本与总体的不同性.配对t检验:是采纳配对设计方法观察以下几种情形, 1, 两个同质受试对象分别接受两种分歧的处置;2,同一受试对象接受两种分歧的处置;3, 同一受试对象处置前后.u检验:t检验和就是统计量为t,u的假设检验, 两者均是罕见的假设检验方法.当样本含量n较年夜时, 样本均数符合正态分布,故可用u检验进行分析.当样本含量n小时, 若观察值x符合正态分布, 则用t检验(因此时样本均数符合t分布), 当x为未知分布时应采纳秩和检验.F检验又叫方差齐性检验.在两样本t检验中要用到F检验.从两研究总体中随机抽取样本, 要对这两个样本进行比力的时候, 首先要判断两总体方差是否相同, 即方差齐性.若两总体方差相等,则直接用t检验, 若不等, 可采纳t'检验或变量变换或秩和检验等方法.其中要判断两总体方差是否相等, 就可以用F检验.简单的说就是检验两个样本的方差是否有显著性不同这是选择何种T检验(等方差双样本检验, 异方差双样本检验)的前提条件.在t检验中, 如果是比力年夜于小于之类的就用单侧检验, 即是之类的问题就用双侧检验.卡方检验是对两个或两个以上率(构成比)进行比力的统计方法, 在临床和医学实验中应用十分广泛, 特别是临床科研中许多资料是记数资料, 就需要用到卡方检验.方差分析用方差分析比力多个样本均数,可有效地控制第一类毛病.方差分析(analysis of variance,ANOVA)由英国统计学家R.A.Fisher首先提出, 以F命名其统计量, 故方差分析又称F检验.其目的是推断两组或多组资料的总体均数是否相同, 检验两个或多个样本均数的不同是否有统计学意义.我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析(oneway ANOVA):用途:用于完全随机设计的多个样本均数间的比力, 其统计推断是推断各样本所代表的各总体均数是否相等.完全随机设计(completely random design)不考虑个体差此外影响, 仅涉及一个处置因素, 但可以有两个或多个水平, 所以亦称单因素实验设计.在实验研究中按随机化原则将受试对象随机分配到一个处置因素的多个水平中去, 然后观察各组的试验效应;在观察研究(调查)中按某个研究因素的分歧水平分组, 比力该因素的效应.两因素方差分析即配伍组设计的方差分析(twoway ANOVA):用途:用于随机区组设计的多个样本均数比力, 其统计推断是推断各样本所代表的各总体均数是否相等.随机区组设计考虑了个体差此外影响, 可分析处置因素和个体不同对实验效应的影响, 所以又称两因素实验设计, 比完全随机设计的检验效率高.该设计是将受试对象先按配比条件配成配伍组(如植物实验时, 可按同窝别、同性别、体重相近进行配伍), 每个配伍组有三个或三个以上受试对象, 再按随机化原则分别将各配伍组中的受试对象分配到各个处置组.值得注意的是, 同一受试对象分歧时间(或部位)重复屡次丈量所获得的资料称为重复丈量数据(repeated measurement data), 对该类资料不能应用随机区组设计的两因素方差分析进行处置, 需用重复丈量数据的方差分析.方差分析的条件之一为方差齐, 即各总体方差相等.因此在方差分析之前, 应首先检验各样本的方差是否具有齐性.经常使用方差齐性检验(test for homogeneity of variance)推断各总体方差是否相等.本节将介绍多个样本的方差齐性检验, 本法由Bartlett于1937年提出, 称Bartlett法.该检验方法所计算的统计量服从分布.经过方差分析若拒绝了检验假设, 只能说明多个样本总体均数不相等或不全相等.若要获得各组均数间更详细的信息, 应在方差分析的基础上进行多个样本均数的两两比力.创作时间:二零二一年六月三十日。
T检验及单因素方差分析T检验是一种用于比较两个样本均值是否具有统计学意义的方法,而单因素方差分析则是一种用于比较三个或更多个样本均值是否具有统计学意义的方法。
本文将详细介绍T检验和单因素方差分析的基本原理、假设条件、计算公式以及实际应用。
一、T检验的基本原理T检验是由英国统计学家威廉·塞吉威德·高斯特及学生威廉·赖斯·格斯特发展而来的。
T检验基于样本均值与总体均值的比较,通过计算差异的标准误差来判断这种差异是否具有统计学意义。
T检验的基本原理是假设样本的均值服从正态分布,通过计算样本均值与总体均值之间的标准差来估计差异的大小。
二、T检验的假设条件T检验的假设条件包括正态分布假设、独立性假设和方差齐性假设。
1.正态分布假设:样本来自正态分布总体或样本容量足够大时,可以近似看作来自正态分布总体。
2.独立性假设:样本之间是相互独立的,即一个样本的观察值与另一个样本的观察值之间没有关联。
3.方差齐性假设:不同样本的方差相等,即总体的方差是相同的。
三、T检验的计算公式T检验的计算公式包括两种情况:独立样本T检验和配对样本T检验。
1.独立样本T检验:适用于两个独立的样本均值比较。
计算公式为:t = (X1 - X2) / se其中,X1和X2分别为两个样本的均值,se为标准误差,t为检验统计量。
2.配对样本T检验:适用于两个相关的样本均值比较。
计算公式为:t=(X1-X2)/(s/√n)其中,X1和X2分别为两个样本的均值,s为差异的标准差,n为样本容量,t为检验统计量。
四、单因素方差分析的基本原理单因素方差分析是用于比较三个或更多个样本均值是否具有统计学意义的方法。
它基于样本之间的差异和样本内的差异,通过计算组间方差和组内方差的比值来判断这种差异是否显著。
单因素方差分析的基本原理是假设总体均值相等,通过计算组间方差和组内方差的比值来检验这一假设。
五、单因素方差分析的假设条件单因素方差分析的假设条件包括正态分布假设、独立性假设和方差齐性假设。
t检验和方差分析的前提条件及应用误区用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。
后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。
无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。
若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。
之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。
值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。
t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。
t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。
简单、熟悉加上外界的要求,促成了t检验的流行。
但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。
将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。
以上两种情况,均不同程度地增加了得出错误结论的风险。
而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。
医学论文中常见的统计方法误用一、等级资料用卡方检验代替秩和检验卡方检验主要用于计数资料的显著性检验。
第四章 t检验和单因素方差分析命令与输出结果说明·单因素方差分析单因素方差分析又称为Oneway ANOVA,用于比较多组样本的均数是否相同,并假定:每组的数据服从正态分布,具有相同的方差,且相互独立,则无效假设。
原假设:H0:各组总体均数相同。
在STATA中可用命令:oneway 观察变量分组变量[, means bonferroni]其中子命令bonferroni是用于多组样本均数的两两比较检验。
例:测定健康男子各年龄组的淋巴细胞转化率(%),结果见表,问:各组的淋巴细胞转化率的均数之间的差别有无显著性?健康男子各年龄组淋巴细胞转化率(%)的测定结果:11-20 岁组:58 61 61 62 63 68 70 70 74 7841-50 岁组:54 57 57 58 60 60 63 64 6661-75 岁组:43 52 55 56 60用变量x 表示这些淋巴细胞转化率以及用分组变量group=1,2,3分别表示11-20岁组,41-50岁组和61-75岁组,即:数据表示为:x 58 61 61 62 63 68 70 70 74 78 54 57 group 1 1 1 1 1 1 1 1 1 1 2 2x 57 58 60 60 63 64 66 43 52 55 56 60 group 2 2 2 2 2 2 2 3 3 3 3 3则用 STATA 命令:oneway x group, mean bonferroni| Summary of xgroup | Mean ①-------------+------------1 | 66.52 | 59.8888893 | 53.2------+------------Total | 61.25 ②Analysis of VarianceSource SS df MS F Prob > F-------------------------------------------------------------------------------Between groups 616.311111③ 2 ④ 308.155556⑤ 9.77⑥ 0.0010⑦Within groups 662.188889⑧ 21⑨ 31.5328042⑴-------------------------------------------------------------------------------Total 1278.50 23 55.586956(2)Bartlett's test for equal variances:chi2(2) = 2.1977 (3)Prob>chi2=0.333Comparison of x by group(Bonferroni)Row Mean- |Col Mean | 1 2-------------- --|--------------------------------------2 | -6.61111 (4)| 0.054 (5)|3 | -13.3 (6) -6.68889(8)| 0.001 (7) 0.134 (9)①对应三个年龄组的淋巴细胞转化率的均数;②三组合并在一起的总的样本均数;③组间离均差平方和;④组间离均差平方和的自由度;⑤组间均方和(即:⑤=③/④);⑧组内离均差平方和;⑨组内离均差平方和的自由度;(1)组内均方和(即:(1)=⑧/⑨);⑥为F 统计值(即为⑤/(1));⑦为相应的p值;(2)为方差齐性的Bartlett检验;(3)方差齐性检验相应的p值;(4)第二组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(5)第二和第一组均数差的显著性检验所对应p 值;(6)第三组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(7)第三和第一组均数差的显著性检验所对应的 p 值;(8)第三组的淋巴细胞转化率样本均数—第二组的淋巴细胞转化率的样本均数的差;(9)第三和第二组均数差的显著性检验所对应的p 值。
单因素方差分析
单因素方差分析是一种测试,用于检查两组以上的数据之间是否存在显著差异,它可以用来检验一个因素对结果的影响。
单因素方差分析是一种比较几组数据样本平均值之间的差异,用来确定这些样本是否源于相同的总体。
此外,它还可以用来确定不同因素(如性别、年龄等)是否会对结果产生显著的影响。
单因素方差分析通常使用F检验,也可以使用t检验或z检验。
简而言之,单因素方差分析是一种统计技术,用于检验两组以上的数据样本之间的显著差异,以及判断单个因素是否对结果产生显著的影响。
T检验及其与方差分析的区别假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。
t 检验:1.单因素设计的小样本(n<50)计量资料2.样本来自正态分布总体3.总体标准差未知4.两样本均数比较时,要求两样本相应的总体方差相等•根据研究设计t检验可由三种形式:–单个样本的t检验–配对样本均数t检验(非独立两样本均数t检验)–两个独立样本均数t检验(1)单个样本t检验•又称单样本均数t检验(one sample t test),适用于样本均数与已知总体均数μ0的比较,其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差别。
•已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。
•单样t检验的应用条件是总体标准s未知的小样本资料( 如n<50),且服从正态分布。
(2)配对样本均数t检验•配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。
•配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。
•应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。
•配对设计处理分配方式主要有三种情况:①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对;②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例5.2资料;③自身对比(self-contrast)。
即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。
(3)两独立样本t检验两独立样本t 检验(two independent samples t-test),又称成组t 检验。