信号与系统A期末考试试卷A答案
- 格式:doc
- 大小:967.18 KB
- 文档页数:7
信号与系统期末考试试题一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的)1、 卷积f 1(k+5)*f 2(k-3) 等于 。
(A )f 1(k)*f 2(k) (B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3)2、 积分dt t t ⎰∞∞--+)21()2(δ等于 。
(A )1.25(B )2.5(C )3(D )53、 序列f(k)=-u(-k)的z 变换等于 。
(A )1-z z (B )-1-z z (C )11-z (D )11--z 4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。
(A ))2(41t y (B ))2(21t y (C ))4(41t y (D ))4(21t y 5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —t u(t)时,系统的零状态响应y f (t)等于(A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t)(C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性(C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A ) 1(B )2(C )3(D )48、序列和()∑∞-∞=-k k 1δ等于 (A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()s e ss s F 2212-+=的愿函数等于 10、信号()()23-=-t u te t f t 的单边拉氏变换()s F 等于二、填空题(共9小题,每空3分,共30分)1、卷积和[(0.5)k+1u(k+1)]*)1(k -δ=________________________2、单边z 变换F(z)=12-z z 的原序列f(k)=______________________3、已知函数f(t)的单边拉普拉斯变换F(s)=1+s s ,则函数y(t)=3e -2t ·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换s s s s s F +++=2213)(的原函数f(t)=__________________________6、已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=20)()(t dx x f t y 的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三、(8分)四、(10分)如图所示信号()t f ,其傅里叶变换 ()()[]t f jw F F =,求(1) ()0F (2)()⎰∞∞-dw jw F 六、(10分)某LTI 系统的系统函数()1222++=s s s s H ,已知初始状态()(),20,00=='=--y y 激励()(),t u t f =求该系统的完全响应。
2012–2013学年第一学期期终考试试卷(A 卷)开课学院: 物理与电子信息学院 课程名称: 信号与系统 (评分标准及参考答案) 考试形式:闭卷,所需时间120分钟2、学生答题前将密封线外的内容填写清楚,答题不得超出密封线;3、答题请用蓝、黑钢笔或圆珠笔。
一、选择题(共20分,每题2分)1. 系统r (t )=e (t )u (t )的性质是( C )。
A 线性、时不变B 非线性、时不变C 线性、时变D 非线性、时变2. 若y (n)=x 1(n )*x 2(n ),其中x 1(n )=u (n +2)-u (n -2),x 2(n )=n [u (n -2)-u (n -5)],则y (1)=( D )。
A 0B 1C 3D 53. 已知某LTI 系统的单位冲激响应h (t )如图1所示,若输入信号为u (t ),则y(3/2)=( C )。
A 0B 1C 11/4D 2 4. 理想不失真传输系统的传输函数H(jω)是( B )。
A 0j t Ke ω-B 0t j Ke ω-C 00j t Keω-D []0()()j t c c Keu u ωωωωω-+--(其中00,,,c t k ωω为常数)5. 如图2所示周期信号的傅里叶级数的特点是( A )。
A 只有奇次谐波的正弦分量 B 只有偶次谐波的正弦分量 C 只有奇次谐波的余弦分量 D 只有偶次谐波的余弦分量6. 系统的幅频特性和相频特性如图3所示,当激励为e (t )=2sin6πt +sin8πt 时,系统响应r (t )的失真情况为( A )。
A 无失真B 仅有幅度失真C 仅有相位失真D 幅度和相位均有失真 7. 某LTI 系统H(s)具有三个极点(p 1=-2, p 2=-1, p 3=1)和一个零点(z 1=2),则该系统可能的收敛域数量为( D )。
A 1B 2C 3D 4 8. 信号()()tf t h t d λλλ=-⎰的拉氏变换为( C )。
上 海 海 事 大 学 试 卷2017 — 2018 学年第二学期期末考试《 信号与系统 》(A 卷)班级 学号 姓名 总分一、简答题(35分)(需要有简单计算或者说明,没有过程不给分,每小题5分) 1. 假设信号()t f 满足狄利赫里条件,试给出()t f 在正交基{}tjk e0ω( ,2,1,0±±=k )下的傅里叶级数展开式(4分),试给出()t f 在正交基()()⎭⎬⎫⎩⎨⎧t k sin t k cos 0021,21,1ωω ( ,2,1=k )下的傅里叶级数展开式(1分)。
2. 已知系统输入输出方程:()()()1--=n x n x n y ,试问该系统的四性(是否满足线性、时不变、因果、稳定)(4分),并求该系统的逆系统单位阶跃响应(1分)。
3. 已知:()⎩⎨⎧<<=elset t f 05321,()⎩⎨⎧<<=elset t f 010632,记:()()()t f t f t f 21*=,试求:()∑=514k k f 。
4. 已知信号()t f 的傅里叶变换为()ωj F ,试求()()b at t f -*δ的傅里叶变换。
(5分)5. 已知信号()t f 的傅里叶变换为()ωj F ,带宽为m ω,假设该信号连续可微,试给出信号()2⎥⎦⎤⎢⎣⎡dt t df 的奈奎斯特采样频率。
6. 已知某周期信号()()∑+∞-∞=-=n snT t f t f ,其中()()()τ--=t u t u t f s(T <<τ0),试求该信号的拉氏变换()s F 。
(5分) 7. 已知电容的VCR 方程:()()t Cu t i c c '=,--------------------------------------------------------------------------------------装订线------------------------------------------------------------------------------------。
《 信号与系统 》考试试卷(时间120分钟)院/系 专业 姓名 学号一、填空题(每小题2分,共20分)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?)2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常 数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (Fωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
《信号与系统》期末考试姓名 学号 班级 成绩一、选择及填空(20分 每题2分):1. 以下系统,哪个可进行无失真传输_B _ωωϕωωωδωωωωωωωω-6)( )1()(H )( )()(H )( 3)(H )( )1()1()(H )( 33=-===--=-且;;;D ej C e j B e j A j j j U答:(B)2. 下列哪一项是理想低通滤波器的系统函数_C _⎩⎨⎧<>=⎩⎨⎧><==--=-20 020 )(H )( 20 020 )(H )( 3)(H )( )1()1()(H )(3 33ωωωωωωωωωωωωωωj j j j e j D e j C e j B e j A ;;;U答:(C )3. 对于一个LTI ,如果激励f 1(t)对应响应是)(3t U e t -, 激励f 2(t)对应响应是t 3sin ,则激励f 1(t)+5f 2(t)对应响应是_t t U e t 3sin 5)(3+-__;则激励3f 1(t+1)+5f 2(t-3)对应响应是_)3 (3sin 5)1(33-++--t t U e t __。
4. 已知},2,2,2,2{01)( --=n f ,}32,8,4,2,1{)(2↑=n f ,则=+)2()1(21f f _10_,用)(n δ表示)3(32)2(8)1(4)(2)1()(2-+-+-+++=n n n n n n f δδδδδ________________________。
5. }2,8,4{}3,1,2,3{11----*=_{12,32,14,-8,-26,-6}-2__,}2,1,0{}5,3,6{00*=_{0,6,15,11,10}0__ 6. (课本P152 例4-17)已知)(t f 的象函数ss s s s F 5323)(23+++=,则)0(+f =__0_;)(∞f =_2/5__。
《信号与系统》考核试卷
专业班级:电子、通信工程考核方式:闭卷考试时量:120 分钟试卷类型: A
第2页共 8 页第1页共 8 页
图:
域模型图:
)的表达式:
第3页共 8 页第4页共 8 页
(a)
(b) (c) (d)
A 、
B 、
C 、
D 、
Y(w):
5、已知离散系统的差分方程为)(2)2(2)1(3)(n f n y n y n y =-+-+,求该
系统的系统函数)(z H 、单位响应)(n h 以及当激励信号)(2)(n n f n ε=时,
系统的零状态响应)(n y 。
(13分)
利用z 变换的移位特性,将差分方程变换为零状态下的z 域方程:
)(2)(2)(3)(21z F z Y z z Y z z Y =++--
2
322312)()()
(2221++=
++==--z z z z z z F z Y z H
2
412232)(22+++-=++=z z
z z z z z z H )(])2(4)1(2{)(n n h n n ε+--=∴
当激励信号)(2)(n n f n ε=时,2
)(-=
z z
z F 22)()()(3
2==z z z z H z F z Y 2
2
-
z
z 第5页 共 8 页
④由于该系统函数的所有极点均在
所以该系统是稳定系统。
第7页共页第8页共页第9页共页第10页共页
第7页共 8 页第8页共 8 页。
120 信号与系统期末试题答案一、填空题(4小题,每空2分,共20分)1.线性 时变 因果 稳定2. 离散性 谐波性 收敛性3.)()(0t t k t h -=δ 0)()()(ωωϕωωj j j Ke e e H -==j H4.)()(11nT t f t f n T -∑+∞-∞=或二、简答题(5小题,共 25 分)1、解:该方程的一项系数是y(t)的函数,而y(2t)将使系统随时间变化,故描述的系统是非线性时变系统。
(每个知识点1分)(4分)2、解:当脉冲持续时间τ不变,周期T 变大时,谱线间的间隔减小,同频率分量的振幅减小(2分);当脉冲持续时间τ变小,周期T 不变时,谱线间的间隔不变,同频率分量的振幅减小(3分)。
(5分)3、解:信号通过线性系统不产生失真时,)()(0t t k t h -=δ0)()()(ωωϕωωj j j Ke e e H -==j H (每个知识点2分)(4分)4、解: 由于是二阶系统,所以系统的稳定性只需要其特征多项式的各系数大于零。
则本系统稳定的条件为:K-5>0(3分)和3K+1>0(3分).解之可得K>5(2分)。
(8分)5、解:香农取样定理:为了能从抽样信号 f s(t)中恢复原信号 f (t),必须满足两个条件:(1)被抽样的信号f (t)必须是有限频带信号,其频谱在|ω|>ωm 时为零。
(1分)(2)抽样频率 ωs ≥2ωm 或抽样间隔 mm S f T ωπ=≤21(1分) 。
其最低允许抽样频率m s f f 2=或m ωω2=称为奈奎斯特频率(1分),其最大允许抽样间隔mm N f T ωπ==21 (1分)称为奈奎斯特抽样间隔。
(每个知识点1分)(4分) 三.简单计算(5小题,5分/题,共25分)1.(5分)解:cos(101)t +的基波周期为15π, sin(41)t -的基波周期为12π 二者的最小公倍数为π,故())14sin()110cos(2--+=t t t f 的基波周期为π。
《信号与系统》卷子〔A 卷〕一、填空题〔每空1分,共18分〕1.假设)()(s F t f ↔,则↔)3(t F 。
2.ℒ()n t t ε⎡⎤=⎣⎦,其收敛域为 。
3.()(21)f t t ε=-的拉氏变换)(s F = ,其收敛域为 。
4.利用拉氏变换的初、终值定理,可以不经反变换计算,直接由)(s F 决定出()+o f 及)(∞f 来。
今已知)3)(2(3)(+++=s s s s s F ,[]Re 0s > 则)0(+f ,)(∞f = 。
5.已知ℒ[]022()(1)f t s ωω=++,Re[]1s >-,则()F j ω=ℱ[()]f t = 。
6.已知ℒ0220[()](1)f t s ωω=-+,Re[]1s >,则()F j ω=ℱ[()]f t = 。
7.已知()[3(1)](1)t f t e Sin t t ε-=--,试写出其拉氏变换()F s 的解析式。
即()F s = 。
8.对连续时间信号进行均匀冲激取样后,就得到 时间信号。
9.在LTI 离散系统分析中, 变换的作用类似于连续系统分析中的拉普拉斯变换。
10.Z 变换能把描述离散系统的 方程变换为代数方程。
11.ℒ 0(3)k t k δ∞=⎡⎤-=⎢⎥⎣⎦∑ 。
12.已知()()f t F s ↔,Re[]s α>,则↔--)1()1(t t f e t ε ,其收敛域为 。
13.已知22()(1)sse F s s ω-=++,Re[]1s >-,则=)(t f 。
14.单位样值函数)(k δ的z 变换是 。
二、单项选择题〔在每题的备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。
每题1分,共8分〕 1.转移函数为327()56sH s s s s=++的系统,有〔 〕极点。
A .0个 B .1个 C .2个 D .3个 2.假设11)(1+↔s t f ,Re[]1s >-;)2)(1(1)(2++↔s s t f ,Re[]1s >-,则[]12()()()y t f t f t =-的拉氏变换()Y s 的收敛区是〔 〕。
《信号与系统》期末试卷A 卷班级: 学号:__________ 姓名:________ _ 成绩:_____________一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 D 。
A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 C 。
A.因果时不变B.因果时变C.非因果时不变D. 非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u et h t,该系统是 A 。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 D 。
A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 B 。
A.tt22sin B.t t π2sin C. t t 44sin D. ttπ4sin 6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 A 。
A.∑∞-∞=-k k )52(52πωδπB. ∑∞-∞=-k k)52(25πωδπ C. ∑∞-∞=-k k )10(10πωδπD.∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为C 。
A. )}(Re{ωj eX j B. )}(Re{ωj e X C. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 D 。
A. 500 B. 1000 C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 C 。
格式《信号与系统》考试试卷(时间 120 分钟)院 / 系专业姓名学号题号一二三四五六七总分得分一、填空题(每小题 2 分,共 20 分)得分1.系统的激励是 e(t) ,响应为 r(t) ,若满足de(t)r ( t) ,则该系统为线性、时不变、因果。
dt(是否线性、时不变、因果?)2 的值为 5。
2.求积分 (t1)(t2)dt3.当信号是脉冲信号f(t)时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。
4.若信号f(t)的最高频率是2kHz,则 f(2t)的乃奎斯特抽样频率为8kHz。
5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为一常数相频特性为 _一过原点的直线(群时延)。
6.系统阶跃响应的上升时间和系统的截止频率成反比。
.若信号的F(s)=3s j37。
,求该信号的 F ( j)(s+4)(s+2) (j+4)(j+2)8.为使LTI 连续系统是稳定的,其系统函数H(s ) 的极点必须在S 平面的左半平面。
1。
9.已知信号的频谱函数是0)()F(( ,则其时间信号f(t)为0j)sin(t)js110.若信号 f(t)的F ( s ) ,则其初始值f(0)1。
2(s1 )得分二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题 2 分,共 10 分)《信号与系统》试卷第1页共 7页专业资料整理格式1.单位冲激函数总是满足 ( t )( t ) (√)2.满足绝对可积条件 f ( t ) dt 的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
(×)3.非周期信号的脉冲宽度越小,其频带宽度越宽。
(√)4.连续 LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
(√)5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
(×)得分三、计算分析题(1、 3、 4、 5 题每题 10 分, 2 题 5 分,6 题15 分,共 60 分)t 10t11.信号f(t)2eu(t) ,1,信号 f ,试求 f 1 (t)*f 2 (t)。
西南交通大学2011-2012学年第(1)学期考试试卷课程代码 3122400 课程名称 信号与系统A 考试时间 120分钟阅卷教师签字: 一、选择题:(20分)本题共10个小题,每题回答正确得2分,否则得零分。
每小题所给答案中只有一个是正确的。
1. 已知f (t )的傅里叶变换为)(ωj F ,则f (1-t )的傅里叶变换为( C ) (A )ωωj e j F )(-- (B )ωωj ej F -)((C )ωωj e j F --)((D )ωωj ej F )(-2.连续周期信号的频谱具有( D )(A )连续性、周期性 (B )连续性、非周期性 (C )离散性、周期性 (D )离散性、非周期性3.某系统的系统函数为H (s ),若同时存在频响函数H (j ω),则该系统必须满足条件(C ) (A )时不变系统 (B )因果系统 (C )稳定系统 (D )线性系统4. 已知)(1n f 是1N 点的时限序列,)(2n f 是2N 点的时限序列,且12N N >,则)()()(21n f n f n y *= 是( A )点时限序列。
(A )121-+N N (B )2N (C )1N (D )21N N +5. 若对f (t )进行理想取样,其奈奎斯特取样频率为f s ,则对)231(-t f 进行取样,其奈奎斯特取样频率为( B )。
(A )3f s (B )s f 31 (C )3(f s -2) (D ))2(31-s f 班 级 学 号 姓 名密封装订线 密封装订线 密封装订线6. 周期信号f(t)如题图所示,其直流分量等于( B )(A )0 (B )4 (C )2(D )67. 理想不失真传输系统的传输函数H (jω)是 ( B )。
(A )0j tKe ω- (B )0t j Ke ω-(C )0t j Ke ω-[]()()c c u u ωωωω+--(D )00j t Keω- (00,,,c t k ωω为常数)8.已知)()(ωj F t f ↔,则信号)5()()(-=t t f t y δ的频谱函数 )(ωj Y 为( A )。
院(系): 专业: 年级: 学生姓名: 学号:------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------第 1 页(共 4 页)4.一个连续时间周期信号,其傅里叶级数表示为∑∞-∞==kt jke k t x 502)cos()(ππ,该信号是( )Consider the continuous-time periodic signal whose Fourier series representation is∑∞-∞==kt jke k t x 502)cos()(ππ, what is the signal ?A 不是实值函数 not realB 实奇函数real and oddC 实偶函数 real and evenD 不能确定cannot be ascertained 5.如果)(t f 的傅里叶变换是)(ωj F ,则)3()(-t t f δ的傅里叶变换是( )。
)(ωj F is the Fourier transform of )(t f , which of the following is the Fourier transformof )3()(-t t f δ?A ωj e f 3)3(-B ωωj e j F 3)(-C ωj e f 3)3(D ωωj e j F 3)( 6.有多少个信号在其收敛域内都有如下所示的拉普拉斯变换( ) How many signals have a Laplace transform that may be expressed as below?A 2个B 3个C 4个D 5个 得分 评阅人 II. 填空题Fill in the blanks (每空3分3 points for each correct answer )1.一个连续时间线性系统S 的输入为,)(21t j e t x =对应的输出为,)(31t j e t y =输入为,)(2-2t j e t x =对应的输出为,)(3-2t j e t y =若输入),2cos()(3t t x =求系统S 的输出=)(3t y 。
《信号与系统》期末试卷A 卷班级: 学号:__________ 姓名:________ _ 成绩:_____________一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 。
A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 。
A.因果时不变B.因果时变C.非因果时不变D. 非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u et h t,该系统是 。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 。
A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。
A.tt22sin B.t t π2sin C. t t 44sin D. ttπ4sin 6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 。
A.∑∞-∞=-k k )52(52πωδπB. ∑∞-∞=-k k)52(25πωδπ C. ∑∞-∞=-k k )10(10πωδπD.∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 。
A. )}(Re{ωj eX j B. )}(Re{ωj e X C. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 。
A. 500 B. 1000 C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 。
信号与系统期末考试题库及答案1.下列信号的分类方法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2。
下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y (t )一定是周期信号。
B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y (t ) 是周期信号。
C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y (t )是周期信号.D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y (t )是周期信号.3。
下列说法不正确的是( D ). A 、一般周期信号为功率信号。
B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。
C 、ε(t )是功率信号;D 、e t 为能量信号;4。
将信号f (t )变换为( A )称为对信号f (t )的平移或移位。
A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (—t )5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换. A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6。
下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D ).A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。
淮南师范学院201 -201学年第 学期《信号与系统》A 卷参考答案及评分标准一、填空题(每题2分,共10分)1.离散信号2.()f t3.冲激信号或()t δ4.可加性5.()t δ二、选择题(每题2分,共10分)1. (B)2. (C)3. (C)4. (A)5. (C)三、判断题(每题2分,共10分)1. ×2. √3. √4. √5. √四、简答题(每题5分,共10分)1. 简述根据数学模型的不同,列出系统常用的几种分类。
(本题5分)答:根据数学模型的不同,系统可分为4种类型. -----------------------(1分)(1) 即时系统与动态系统 -----------------------(1分)(2) 连续系统与离散系统 -----------------------(1分)(3) 线性系统与非线性系统 -----------------------(1分)(4) 时变系统与时不变系统 -----------------------(1分)2. 简述稳定系统的概念及连续时间系统时域稳定的充分必要条件。
(本题5分)答:(1)一个系统(连续的或离散的)如果对任意的有界输入,其零状态响应也是有界的则称该系统是有界输入有界输出稳定系统。
-----------------------(2分)(2)连续时间系统时域稳定的充分必要条件是()h t dt M ∞-∞≤⎰-----------------------(3分)五、计算题(每题10分,共60分)1、如有两个序列试求卷积和12()()()f k f k f k =*(本题10分)解: 1 1 1⨯ 1 2 3--------------------------3 3 32 2 21 1 1---------------------------------1 3 6 5 3 -----------------------(5分){}12()()()0,1,3,6,5,3,00f k f k f k k =*=↑= -----------------------(5分)2、求象函数2()(2)(4)s F s s s =++的拉普拉斯逆变换()f t (本题10分) 解:12()24k k F S s s =+++2424s s =-+++ -----------------------(5分) 24()(24)()t t f t e e t ε--∴=-+ -----------------------(5分)3. 已知某LTI 离散系统的差分方程为()(1)2(2)2()y k y k y k f k +---=, 求单位序列响应()h k (本题10分)解:12()()2()2()Y Z Z Y Z Z Y Z F Z --+-= -----------------------(2分) ()()()Y Z H Z F Z =12212z Z --=+-2222Z Z Z =+- -----------------------(2分) ()2(2)(1)H Z Z Z Z Z =+-21413132Z Z =⋅+⋅-+ -----------------------(2分) 24()3132Z Z H Z Z Z =⋅+⋅-+ -----------------------(2分) 24()[(2)]()33k h k k ε=+⋅- -----------------------(2分) 4. 已知002,()0,F jw ωωωω⎧<⎪=⎨>⎪⎩ ,求()F jw 的傅里叶逆变换(本题10分)解:1()()2j t f t F j e d ωωωπ+∞=-∞⎰ 0011j t e d ωωωωπ=⋅-⎰ -----------------------(5分)0011j t e jtωωωπ=⋅⋅- 02sin()t t ωπ= -----------------------(5分) 5. 已知某系统框图其中()()f t t ε=(1) 求该系统的冲激响应()h t(2) 求该系统的零状态响应()zs y t(本题10分)解:''()3'()2()4'()()y t y t y t f t f t ++=+2(32)()(41)()S S Y S S F S ++=+ -----------------------(2分) 2()(41)()()(32)Y S S H S F S S S +==++ 113712S S =-⋅+⋅++ -----------------------(2分) (1) 冲激响应 2()[(3)7]()t t h t ee t ε--=-⋅+ -----------------------(2分) (2) 41()()()(1)(2)zs S Y S H S F S S S S +=⋅=++ -----------------------(1分)1117132122S S S =⋅+⋅-⋅++ -----------------------(1分) 零状态响应217()(3)()22t t zs y t e e t ε--=+- -----------------------(2分) 6. 如图所示的电路,写出以)(t u s 为输入,以)(t u c 为响应的微分方程。
《信号与系统》参考答案及评分标准基本题:一、答:二、答: (a) √ (b)× (c)× (d)√ (e)×三、解:(a) 周期 (1分), (1分)。
()()22443()2sin(4)3sin(2)2j t j t j t j t x t t t j e e j e e --=+=----(3分) (b)周期 (1分), (1分)。
225533[]22j n j n x n e e ππ-=+(3分) 四、解:()()j t X j x t e dt ωω+∞--∞=⎰(2分)011t j t j t e e dt e dt ωω---∞-=-⎰⎰(3分) 11j ω=-(2分)2sin ωω-(3分) 五、解:t5分()[]j j n n X e x n e ωω+∞-=-∞=∑(2分)101132n nj n j n n n e e ωω-+∞---==-∞⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭∑∑(3分) 1113j e ω-=-(2分)112j e ω---(3分) 六、解: ()()st X s x t e dt +∞--∞=⎰(2分) ()st t e dt δ∞--∞=⎰(1分)0t st e e dt ∞---⎰(1分)0t st e e dt --∞-⎰(1分) 1=(1分)11s -+(1分)11s +-(1分) ROC: (2分)七、解:211()34()(1)(3)X j j j j j ωωωωω==++++(2分) 1213A A j j ωω=+++(2分) 1111(1)(1)(3)2v A v v v =-=+=++(4分) 2311(3)(1)(3)2v A v v v =-=+=-++(4分) ∴ 1()()2t x t e u t -=(2分)31()2t e u t --(2分) 八、解: 211/25/2()(1)(3)13s X s s s s s +-==+++++(2分) 其极点 (1分), 因而收敛域及反变换可能有三种情况:(1) []1:Re 1ROC s >-(2分)时, 351()()()22t t x t e u t e u t --=-(5分) (2) []2:1Re 3ROC s ->>-(2分)时, 351()()()22t t x t e u t e u t --=+-(5分) (3) (2分)时, (5分)附加题:解:(1) 对系统方程的两端分别求傅里叶变换可得32()()5()()9()5()()j Y j j Y j j Y j Y j X j ωωωωωωωω+++=所以321()()5()95H j j j j ωωωω=+++(5分) 由于22111()(1)(45)1()45H j j j j j j ωωωωωωω==⋅+-+++++ 因此系统幅频响应的波特图近似如下图。
第二学期《信号与系统》A 卷答案及评分标准一、选择题(每题4分,共20分)1.D 2.D 3.C 4.C 5.A二、填空题(每题4分,共24分)1.-12.u(t)+u(t-1)+u(t-2)3.稳定4.jdF(w)/dw-2F(w)5.线性,非线性6.0.5n u(n)三、计算题(共56分)1.f(t)=Ecos(πτt),22t ττ-≤≤ F(w)=22()jwt f t e dt ττ--⎰=22cos()jwt E t e dt ττπτ--⎰=202cos()cos E t tdt τπωτ⎰ =20[cos()cos()]E t t dt τππωωττ++-⎰ =2222cos 2E πτωτπτω- 共6分,写出表达式给2分,写对傅立叶变换公式给2分,积分过程及结果2分。
2.f(t)= f 1(t)*f 2(t)=sintu(t)*u(t-1)=sin ()(1)u u t d ττττ∞-∞--⎰ =10sin t d ττ-⎰=10cos |t τ--=1-cos(t-1),t>1 共8分,写对两个函数的表达式分别各给2分,带入卷积公式正确得2分,积分过程2分,结果表达正确2分。
3. 当输入为f(t)时, r(t)=(2e -t +cos2t)u(t)=r zs (t)+r zi (t)(2分)当输入为3f(t)时, r(t)=(e -t +cos2t)u(t)=3 r zs (t)+ r zi (t)(2分)联立上面两式得,r zs (t)= - 0.5e -t u(t)(1分) r zi (t)=(2.5 e -t +cos2t)u(t)(1分)当输入为5f(t)时,r(t)=5 r zs (t)+ r zi (t)(1分)=(-2.5 e -t +2.5 e -t +cos2t)=cos2t u(t)(1分)4.解:(1)冲激相应应满足方程h ’’(t)+4h ’(t)+3h(t)=δ’(t)+2δ(t)。
西南交通大学2013-2014学年第(2)学期考试试卷
课程代码 3122400 课程名称 信号与系统A 考试时间 120分钟
阅卷教师签字: A 卷 DABBD DBCCD 一、选择题:(20分)
本题共10个小题,每题回答正确得2分,否则得零分。
每小题所给答案中只有一个是正确的。
1.已知若序列)(n x 的Z 变换为)(z X ,则)()5.0(n x n -的Z 变换为( ) (A ))2(2z X (B ))2(2z X - (C ))2(z X
(D ))2(z X -
2.积分
⎰∞
∞
-dt t t f )()(δ的结果为( )
(A ))0(f (B ))(t f (C ))()(t t f δ (D ))()0(t f δ 3.某信号的频谱密度函数为3()[(2)(2)],j F j u u e ωωωπωπ-=+--则=)(t f ( ) (A ))]3(2[-t Sa π (B )2)]3(2[-t Sa π (C ))2(t Sa π (D )2)2(t Sa π
4. 已知周期电流i (t )=1+t t 2cos 22cos 22+,则该电流信号的平均功率P T 为 ( ) (A )17W (B )9W (C )4W
(D )10W
5.一个因果、稳定的离散时间系统函数()H z 的极点必定在z 平面的( )。
(A )单位圆以外 (B )实轴上(C )左半平面(D )单位圆以内
6.如果一连续时间系统的系统H (s)只有一对在虚轴上的共轭极点,则它的h (t)应是( )。
(A )指数增长信号 (B )指数衰减振荡信号 (C )常数 (D )等幅振荡信号
7. 理想低通滤波器一定是( )
(A )稳定的物理可实现系统 (B )稳定的物理不可实现系统 (C )不稳定的物理可实现系统 (D )不稳定的物理不可实现系统
班 级 学 号 姓 名
密封装订线 密封装订线 密封装订线
8.欲使信号通过系统后只产生相位变化,则该系统一定是( )
(A )高通滤波网络 (B )带通滤波网络 (C )全通网络 (D )最小相移网络
9.某系统的系统函数为H (s ),若同时存在频响函数H (j ω),则该系统必须满足条件( ) (A )时不变系统 (B )因果系统 (C )稳定系统
(D )线性系统
10. 设一个矩形脉冲()f t 的面积为S ,则矩形脉冲的傅里叶变换()F j ω在原点处的函数值
()0F j 等于( )
(A )S /2 (B )S /3 (C )S /4 (D )S 二、(14分)计算题
1.已知)(t f 的波形图如图所示,画出)2()2(t u t f --的波形。
答案:
2.如题图所示LTI 系统,由几个子系统组合而成,各子系统的冲激响应分别为: ()(1)a h t t δ=-,()()(3)b h t u t u t =-- 求:复合系统的冲激响应。
答案:()()(1)(2)(3)(4)(5)h t u t u t u t u t u t u t =+-+------- 三、(10分)如图所示信号()t f ,其傅里叶变换()()[]t f j F F =ω,不计算傅里
叶变换,利用定义和性质求: (1) ()0F
(2)()⎰∞
∞-ωωd j F
解:(1)2)()0()()(==∴=⎰⎰∞
∞
--∞∞
-dt t f F dt e t f F t j ωω
(2) ωωπ
ωd e
F t f t
j ⎰
∞
∞
-=
)(21)( ππωω4)0(2)(==∴⎰∞
∞
-f d F
四、(10分)
图(a
)所示系统,其中sin 2()2t
f t t
π=,)1000cos(
)(t t s =,系统中理想带通滤波器的频率响应如图(b )所示,其相
频特性
()0,ϕω=求输出信号)(t y 。
解:带通滤波器的输入频谱:
[])2()2(2
1
)(--+=ωωωu u j F
[][][])1000(2
1
)1000(211000cos )(-++=
ωωj F j F t t f F
)
(ωj F ω
2
2-2
1[]
t t f F 1000cos )(⋅ω
1000
-1000
1002
1002-998998-4
1
[])(1000cos )()(ωωj H t t f F j Y ⋅=
t
t
t t t sa t y ππ21000cos sin 1000cos )(21)(=
=
(0≥t )
()h t 的冲(2k ωπ-
试求:
(1) ()p t 的时域表达式,并画出频谱图和时域波形;
(2)求出)(t x 的表达式并画出)(t x 的时域波形;
(3) 求输出响应)(t y 并画出时域波形。
(4) 子系统)
(t h 解:(1)()()n p t t n δ+∞
=-∞
=-∑
(2))()()(t p t e t x ⋅=∑∑+∞
-∞
=+∞-∞
==-⋅=n n n e n t t e ()()(δ
(3)
e )t 图(a)
图(b)
图(c)
)
(ωj P ω
π
2-)2(ππ
2
)
(t p t
2-)
1(1
2
1
-
∑∑∞
+-∞
=+∞
-∞
=-=
-*
=*=n n n t h n e n t n e t h t h t x t y )
()()
()()()()()(δ
(4))(t h 是因果信号,所以子系统是物理可实现的。
六、(16分)某因果LTI 最小相位系统的系统函数)
100)(10()
1(1000)(+++=
s s s s H 。
已知输入信号
)()(t u t f =,1)0(=-y ,10)0(='-y ,试求以下问题:
(1)求出系统的微分方程;
(2)系统的零输入响应)(t y zi 、零状态响应)(t y zs 和全响应)(t y ; (3)说明全响应)(t y 中哪些是自由响应分量,哪些是受迫响应分量; (4)画出系统的直接型实现的模拟框图; 解:(1))
()
(100011010001000)100)(10()1(1000)(2s F s Y s s s s s s s H =+++=+++=
)(1000)(1000)(1000)(110)(t f t f t y t y t y +'=+'+'' (2)
)(1000)(1000)(1000)0(110)(110)0()0()(2s F s sF s Y y s sY y sy s Y s +=+-+'-----
)(1000110)
1(10001000110)0(110)0()0()(22s F s s s s s y y sy s Y ⋅+++++++'+=---
100
1
9210191110010)100)(10(1201000110)0(110)0()0()(212
+⋅-+⋅=+++=+++=+++'+=
---s s s k s k s s s s s y y sy s Y zi )()92
911()(10010t u e e t y t t zi ---=
100
10)100)(10()1(1000)(1000110)1(1000)(32
12++++=+++=⋅+++=
s k s k s k s s s s s F s s s s Y zs
10011
10101)(+-++=s s s s Y zs
)()11101()(10010t u e e t y t t zs ---+=
)()9
2
1192111()(10010t u e e t y t t ---+=
(3)自由响应:)()9
2
119211()(10010t u e e t y t t h ---=
1000
受迫响应:)()(t u t y p =
(4)2
12
121000110110001000100011010001000)(----+++=+++=s s s s s s s s H
七、(14分)有一LTI 系统,其输入()x n 和输出()y n 由方框图所示,求: (1) 系统函数)(z H 表达式;
(2) 若要求系统因果稳定,确定k 的取值范围; (3) 若8.0-=k ,求因果系统的单位冲激响应)(n h ; (4) 求关联()y n 和()x n 的差分方程; 解:(1))
1(1
)5.01(1)(11---⋅+=
kz z z H
(2)极点k p p =-=21,5.0,若因果稳定,极点在单位圆内,则1<k
(3))
8.01(1
)5.01(1)(1
1--+⋅+=z z z H ,8.01385.0135)8.0)(5.0()(2+⋅++⋅-=++=z z z z z z z z H )()8.0(38)5.0(35)(n u n h n n ⎥⎦
⎤
⎢⎣⎡-+--=
(4))
()
(4.03.111)8.0)(5.0()(2
12z X z Y z z z z z z H --++=++= )()2(4.0)1(3.1)(n x n y n y n y =-+-+。