2018-2019学年广东省韶关市高一下学期期末考试数学试题
- 格式:docx
- 大小:953.68 KB
- 文档页数:17
广东省韶关市高一下学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·安徽模拟) 已知集合,则()A .B .C .D .2. (2分) (2015高二上·大方期末) 设直线ax+by+c=0的倾斜角为α,且sinα+cosα=0,则a﹣b=()A . 1B . ﹣1C . 0D . ﹣23. (2分)一个三条侧棱两两互相垂直并且侧棱长都为1的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为()A .B .C .D .4. (2分)设Sn为等比数列的前n项和,已知,则公比q=()A . 4B . 3C . 2D . 85. (2分) (2017高二下·嘉兴期末) 过点(2,2)且垂直于直线2x+y+6=0的直线方程为()A . 2x﹣y﹣2=0B . x﹣2y﹣2=0C . x﹣2y+2=0D . 2x+y+2=06. (2分) (2016高三上·厦门期中) 在△ABC中,内角A,B的对边分别是a,b,且A=30°,a=2 ,b=4,那么满足条件的△ABC()A . 有一个解B . 有两个解C . 无解D . 不能确定7. (2分) (2017高二下·温州期中) 已知m、n为空间两条不同直线,α、β、γ为不同的平面,则下列命题正确的是()A . 若α⊥β,a⊂α,则a⊥βB . 若α⊥γ,β⊥γ,则α∥βC . 若α∥β,a⊂α,b⊂β,则a∥bD . 若m⊥α,m∥n,n∥β,则α⊥β8. (2分)已知定义在R上的可导函数f(x)的图象如图所示,则不等式(x2-2x-3)f'(x)>0的解集为A .B .C .D .9. (2分)不等式组的解集是{x|x>2},则实数a的取值范围是()A . a≤﹣6B . a≥﹣6C . a≤6D . a≥610. (2分)曲线在(1,-1)处的切线方程为()A . x-y-2=0B . x-y+2=0C . x+y-2=0D . x+y+2=011. (2分) (2016高二上·定州开学考) 如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球半径为()A . 2B .C .D . 212. (2分)若G是的重心,a,b,c分别是角A,B,C的对边,若则角A=()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2019高一下·上海月考) 数列的通项公式为,其前n项和为,则________.14. (1分) (2019高一下·绵阳月考) 已知矩形的周长为16,矩形绕它的一条边旋转形成一个圆柱的侧面积的最大值为________.15. (1分) (2019高二上·雨城期中) 已知直线经过抛物线的焦点,与抛物线交于、,且,点是弧(为原点)上一动点,以为圆心的圆与直线相切,当圆的面积最大时,圆的标准方程为________.16. (1分) (2016高二下·长治期中) 已知数列{an}的各项均为正数,Sn为其前n项和,且对任意的n∈N* ,均有an , Sn ,成等差数列,则an=________.三、解答题 (共6题;共65分)17. (15分) (2019高一上·大庆月考) 已知定义在上的函数满足:① 对任意,,有.②当时,且 .(1)求证:;(2)判断函数的奇偶性;(3)解不等式 .18. (5分) (2016高一下·宜昌期中) 如图所示,我艇在A处发现一走私船在方位角45°且距离为12海里的B处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的最短时间.19. (15分)已知△ABC的三个顶点分别为A(﹣3,0),B(2,1),C(﹣2,3),试求:(1)边AC所在直线的方程;(2) BC边上的中线AD所在直线的方程;(3) BC边上的高AE所在直线的方程.20. (10分)(2018·临川模拟) 已知中,角,.(1)若,求的面积;(2)若点,满足,,求的值.21. (10分) (2016高二上·黄浦期中) 设数列{an}的前n项和为Sn .若对任意正整数n,总存在正整数m,使得Sn=am ,则称{an}是“H数列”.(1)若数列{an}的前n项和Sn=2n(n∈N*),证明:{an}是“H数列”;(2)设{an}是等差数列,其首项a1=1,公差d<0.若{an}是“H数列”,求d的值.22. (10分)如图所示,凸五面体ABCED中,DA⊥平面ABC,EC⊥平面ABC,AC=AD=AB=1,BC= ,F为BE 的中点.(1)若CE=2,求证:①DF∥平面ABC;②平面BDE⊥平面BCE;(2)若二面角E﹣AB﹣C为45°,求直线AE与平面BCE所成角.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共65分) 17-1、17-2、17-3、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、。
广东省韶关市高一下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)将高一(10)班的所有学生按体重大小排成一路纵队,用掷骰子的方法在前六名学生中任选一名,用里l表示该名学生在队列中的序号.将队列中序号为(l+6k)(k=1,2,3,…)的学生抽出作为样本,这里运用的抽样方法是()A . 系统抽样法B . 抽签法C . 随机数表法D . 简单随机抽样法2. (2分) (2016高二上·凯里期中) 甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示(如图).s1、s2分别表示甲、乙选手分数的标准差,则s1与s2的关系是()A . s1>s2B . s1=s2C . s1<s2D . 不确定3. (2分) (2017高一上·邢台期末) 从1,2,3,4,5,6这6个数字中任取三个数字,其中:①至少有一个偶数与都是偶数;②至少有一个偶数与都是奇数;③至少有一个偶数与至少有一个奇数;④恰有一个偶数与恰有两个偶数.上述事件中,是互斥但不对立的事件是()A . ①B . ②C . ③D . ④4. (2分) (2016高二下·肇庆期末) 从已有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()A .B .C .D .5. (2分)已知正数x,y满足,则的最小值为()A . 1B .C .D .6. (2分) (2018高一下·南平期末) 在中,,则的最大值为()A . 2B . 3C . 4D . 57. (2分)(2018·中山模拟) 执行右图程序框图,如果输入的x,t均为2,则输出的S=()A . 4B . 5C . 6D . 78. (2分) (2016高二上·和平期中) 如果a<b<0,那么下列不等式成立的是()A .B . ab<b2C . ﹣ab<﹣a2D .9. (2分) (2017高二下·黑龙江期末) 已知变量,有如下观察数据01342.4 4.5 4.6 6.5若对的回归方程是,则其中的值为()A . 2.64B . 2.84C . 3.95D . 4.3510. (2分)已知数列{an}…,依它的10项的规律,则a99+a100的值为()A .B .C .D .二、填空题 (共5题;共6分)11. (2分)从1到2015这2015个正整数中,有多少个3的倍数 ________;有多少个被3除余1且被4除余2的整数 ________.12. (1分)若执行如图所示的程序框图,输入x1=1,x2=2,x3=3, =2,则输出的数等于________.13. (1分)在等差数列{an}中,Sn为其前n项和,若且A,B,C三点共线,则S2013=________.14. (1分)(2016·商洛模拟) 将一个质点随机投放在关于x,y的不等式组所构成的三角形区域内,则该质点到此三角形的三个顶点的距离均不小于1的概率是________.15. (1分)若对于任意的x∈[1,2],不等式≥1恒成立,则实数a的最小值为________三、解答题 (共5题;共45分)16. (10分) (2019高二上·长沙期中) 为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.(1)求图中的值,并求综合评分的中位数;(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.17. (10分)(2017·襄阳模拟) 在△ABC中,角A,B,C的对边分别为a,b,c(1)若a,b,c成等比数列,,求的值;(2)若A,B,C成等差数列,且b=2,设A=α,△ABC的周长为l,求l=f(α)的最大值.18. (10分)某流感病研究中心对温差与甲型H1N1病毒感染数之间的相关关系进行研究,他们每天将实验室放入数量相同的甲型H1N1病毒和100只白鼠,然后分别记录了4月1日至4月5日每天昼夜温差与实验室里100只白鼠的感染数,得到如下资料:日期4月1日4月2日4月3日4月4日4月5日温差101311127感染数2332242917(1)求这5天的平均感染数;(2)从4月1日至4月5日中任取2天,记感染数分别为x,y用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求|x﹣y|≤3或|x﹣y|≥9的概率.19. (10分) (2015高三上·青岛期末) 设数列{an}的前n项和为.(1)求数列{an}的通项公式an;(2)是否存在正整数n,使得?若存在,求出n值;若不存在,说明理由.20. (5分)已知二次函数f(x)=ax2﹣4x+c.若f(x)<0的解集是(﹣1,5)(1)求实数a,c的值;(2)求函数f(x)在x∈[0,3]上的值域.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共5题;共45分) 16-1、16-2、17-1、17-2、18-1、18-2、19-1、19-2、20-1、第11 页共11 页。
广东省韶关市长来中学2018-2019学年高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列函数中与函数有相同图象的一个是().A.B.C.D.参考答案:A选项,定义域为,与已知函数定义域相同,且对应关系也相同,所以与有相同图象,故正确;选项,定义域是,与定义域不同,所以与其函数图象不同,故错误;选项,定义域是,与定义域不同,所以函数图象不同,故错误;选项,定义域是,与定义域不同,所以函数图象不同,故错误.综上所述,故选.2. 函数是上的单调递增函数,当时,,且,则的值等于().A 1B 2C 3D 4参考答案:B解析:(用排除法)令,则得.若,则,与矛盾;若,则,与“在上单调递增”矛盾;若,则,也与“在上单调递增”矛盾.3. 函数的单调递减区间是()A. (-∞,+∞)B. (-∞,1)C.(3,+∞)D. (1,+∞)参考答案:C【分析】先求得函数的定义域,然后根据复合函数同增异减求得函数的单调递减区间.【详解】由,解得或.当时,为减函数,而的底数为,所以为增区间.当时,为增函数,而的底数为,所以为减区间.故本小题选C. 【点睛】本小题主要考查对数函数的定义域的求法,考查复合函数单调性的判断,属于基础题.4. 已知数列{a n}满足,若,则a2008的值为()A.B.C.D.参考答案:A【考点】8H:数列递推式.【分析】由于所求项的序号较大,考虑数列是否有周期性,可通过求出足够多的项发现周期性,并应用.【解答】解:,a3=2a2﹣1=2×=a4=2a3=a5=2a4﹣1=2×=…数列的项轮流重复出现,周期是3所以a2008=a 3×669+1=a1=故选A【点评】本题考查利用数列的递推公式求项,当所求项的序号较大时,发现周期性,并应用是此类题目的共同特点.5. 已知平面和直线l,则内至少有一条直线与l()A、平行B、相交 C、垂直 D、异面参考答案:C6. (5分)圆(x+1)2+(y﹣2)2=1与圆x2+y2=9的位置关系是()A.相交B.外切C.相离D.内切参考答案:A考点:圆与圆的位置关系及其判定.专题:直线与圆.分析:求出两圆的圆心,根据圆与圆的位置关系的判断即可得到结论.解答:(x+1)2+(y﹣2)2=1的圆心A(﹣1,2),半径R=1,x2+y2=9的圆心O(0,0),半径r=3,则|AB|=,∵3﹣1<|AB|<3+1,∴圆(x+1)2+(y﹣2)2=1与圆x2+y2=9的位置关系是相交,故选:A.点评:本题主要考查圆与圆的位置关系的判断,求出两圆的圆心和半径是解决本题的关键.7. 已知ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则实数ω的取值范围是()A.[,] B.[,] C.(0,] D.(0,2]参考答案:A【考点】H5:正弦函数的单调性.【分析】由条件利用正弦函数的减区间可得,由此求得实数ω的取值范围.【解答】解:∵ω>0,函数f(x)=sin(ωx+)在(,π)上单调递减,则,求得≤ω≤,故选:A.8. 两圆和的位置关系是().A.相离B.相交C.内切D.外切参考答案:B解:把化为,又,所以两圆心的坐标分别为:和,两半径分别为和,则两圆心之间的距离,因为即,所以两圆的位置关系是相交.故选.9. 已知=(4,8),=(,4),且,则的值是( )(A)2 (B)-8 (C)-2 (D)8参考答案:B10. 右边的框图的功能是计算表达式的值,则在①、②两处应填()A. B.C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 如果函数在区间上为减函数,则实数a的取值范围是 .参考答案:12. 已知函数,若,则实数的值等于_______.参考答案:-2略13. 若点为圆的弦的中点,则弦所在直线的方程为 .参考答案:略14. 已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为_______________.参考答案:【详解】试题分析:设三角形的三边长为a-4,b=a,c=a+4,(a<b<c),根据题意可知三边长构成公差为4的等差数列,可知a+c=2b ,C=120,,则由余弦定理,c= a+ b-2abcosC,,三边长为6,10,14,,b= a+ c-2accosB,即(a+c)=a+c-2accosB, cosB=,sinB=可知S==.考点:本试题主要考查了等差数列与解三角形的面积的求解的综合运用。
广东省韶关市高一下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·安徽模拟) 已知等差数列中,,前5项和,则数列的公差为()A .B .C .D .2. (2分)下列关于实数x的不等式关系中,恒成立的是()A .B . x2+1>2xC .D .3. (2分) (2018高一下·齐齐哈尔期末) 已知直三棱柱中,,,,则异面直线与所成角的余弦值为()A .B .C .D .4. (2分) (2019高一下·电白期中) 在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,六朝才得到其关.”意思是某人要走三百七十八里的路程,第一天脚步轻快有力,走了一段路程,第二天脚痛,走的路程是第一天的一半,以后每天走的路程都是前一天的一半,走了六天才走完这段路程.则下列说法错误的是()A . 此人第二天走了九十六里路B . 此人第一天走的路程比后五天走的路程多六里C . 此人第三天走的路程占全程的D . 此人后三天共走了四十二里路5. (2分)若a<b,d<c,且(c﹣a)(c﹣b)<0,(d﹣a)(d﹣b)>0,则a,b,c,d大小关系是()A . d<a<c<bB . d<c<a<bC . a<d<b<cD . a<d<c<b6. (2分) (2017高二上·汕头月考) 在等比数列中,,则a6=()A . 6B . ±8C . -8D . 87. (2分) (2017高一下·正定期末) 已知集合,集合,则()A .B .C .D .8. (2分) (2019高二上·开福月考) 在如图所示的空间几何体中,下面的长方体的三条棱长,,上面的四棱锥中,,,则过五点、、、、的外接球的表面积为()A .B .C .D .9. (2分)(2020·哈尔滨模拟) 已知公差不为0的等差数列的前项的和为,,且成等比数列,则()A . 56B . 72C . 88D . 4010. (2分) (2016高二下·日喀则期末) 设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是()A . (0,)B . (,e)C . (0, ]D . [ ,)二、双空题 (共4题;共5分)11. (1分) (2018高二下·赣榆期末) 若不等式对任意恒成立,则实数的值________.12. (1分)若是首项为4,公比为2的等比数列,则log4a2016=________.13. (1分) (2019高一下·上海期中) 在中,,则角的最小值是________.14. (2分) (2018高二上·南通月考) 在正三棱柱中,点在上,且,设三棱锥的体积为,三棱锥的体积为,则 ________.三、填空题 (共3题;共3分)15. (1分) (2020高三上·浙江月考) 已知,,,则的最大值为________.16. (1分) (2019高三上·杭州月考) 设函数,当时,记最大值为,则的最小值为________.17. (1分) (2020高一下·台州期末) 已知x,y是正数,,则的最小值为________.四、解答题 (共5题;共25分)18. (5分) (2019高二上·淮安期中) 已知等差数列中,,,为公差.(1)求,;(2)设,求数列的前项和 .19. (5分) (2020高一下·吉林月考) 一缉私艇发现在北偏东方向,距离12nmile的海面上有一走私船正以的速度沿东偏南方向逃窜缉私艇的速度为,若要在最短的时间内追上该走私船,缉私艇应沿北偏东的方向去追,求追击所需的时间和α角的正弦值.20. (5分)解关于x的不等式ax2﹣(2a﹣1)x+a﹣1<0(a∈R).21. (5分) (2020高二上·哈尔滨开学考) 在中,角所对的边分别为,,,求及 .22. (5分) (2016高二下·会宁期中) 已知数列{an}的首项a1= ,an+1= ,n=1,2,3,….(1)证明:数列{ ﹣1}是等比数列;(2)求数列{ }的前n项和Sn .参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、双空题 (共4题;共5分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、填空题 (共3题;共3分)答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:四、解答题 (共5题;共25分)答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:。
广东省韶关市2019年高一下学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019高三上·汉中月考) 已知集合,,则 =()A .B .C .D .2. (2分)(2016·桂林模拟) 如图, 空间四边形ABCD中,若,则与所成角为()A .B .C .D .3. (2分)函数的递减区间为()A .B .C .D .4. (2分)(2019·北京) 若x,y满足|x|≤1-y,且y≥-1.则3x+y的最大值为()A . -7B . 1C . 5D . 75. (2分) (2016高三上·杭州期中) 平面向量与的夹角为60°, =(2,0),| |=1,则| +2 |=()A .B . 2C . 4D . 126. (2分)已知角a终边上一点p(),则2sin2a-3tana=()A .B .C .D . 07. (2分)如图给出了函数y=ax,y=logax,y=log(a+1)x,y=(a-1)x2,的图象,则与函数y=ax,y=logax,y=log(a+1)x,y=(a-1)x2,依次对应的图象是()A . ①②③④B . ①③②④C . ②③①④D . ①④③②8. (2分) (2017高三下·银川模拟) 当时,,则 a 的取值范围是()A . (0,)B . (,1C . (1,)D . (,2)9. (2分)一个几何体的三视图如图所示,则此几何体的体积是A . 112B . 80C . 72D . 6410. (2分)函数f(x)=lnx的图象与函数g(x)=x2-4x+4的图象的交点个数为()A . 0B . 1C . 2D . 311. (2分)(2017·山西模拟) 已知在△ABC中,b2+a2﹣c2<0,且b>a,sinA+ cosA= ,则tanA=()A . 或B .C .D . 或12. (2分)三个数,之间的大小关系是()A . b<c<aB . c<b<aC . b<a<cD . a<c<b二、填空题 (共4题;共4分)13. (1分) (2018高一上·新宁月考) 计算:3(5 -4 )-6( -2 )=________。
2018-2019学年第二学期期末考试高一年级数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的人数为20000人,其中持各种态度的人数如表所示:电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为()A.25,25,25,25 B.48,72,64,16 C.20,40,30,10 D.24,36,32,82.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=()A.860 B.720 C.1020 D.10403. 在中,,,则等于()A. 3B.C. 1D. 24.(1+tan20°)(1+tan25°)=()A.2 B.1 C.﹣1 D.﹣25.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A.i<99 B.i≤99 C.i>99 D.i≥997. 已知直线平面,直线平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则8.已知过点P(0,2)的直线l与圆(x﹣1)2+y2=5相切,且与直线ax﹣2y+1=0垂直,则a=()A.2 B.4 C.﹣4 D.19.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::( +1),试用以上给出的公式求得△ABC的面积为()A. B. C. D.10.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.1511.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A.B.C.D.12.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是()A.图象关于点(﹣,0)中心对称B.图象关于x=﹣轴对称C.在区间[﹣,﹣]单调递增D.在[﹣,]单调递减二、填空题(共4小题,每小题5分,满分20分)13.函数f(x)=Asin(ωx+φ)+b的图象如图所示,则f(x)的解析式为.14.在△ABC中,内角A、B、C所对应的边分别为a、b、c,若bsinA﹣acosB=0,则A+C= .15. 已知直线的倾斜角为,则直线的斜率为__________.16.已知正实数x,y满足x+2y﹣xy=0,则x+2y的最小值为8y的取值范围是.三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.某同学用“五点法”画函数f (x )=Asin (ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f (x )的解析式;(2)将y=f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g (x )的图象.若y=g (x )图象的一个对称中心为(,0),求θ的最小值.18. 在中,内角所对的边分别为,且.(1)求;(2)若,且的面积为,求的值.19.设函数f (x )=mx 2﹣mx ﹣1.若对一切实数x ,f (x )<0恒成立,求实数m 的取值范围.20.已知函数f (x )=cosx (sinx+cosx )﹣. (1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.21.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.22.(12分)(2016秋•德化县校级期末)已知f(x)=sin2(2x﹣)﹣2t•sin(2x﹣)+t2﹣6t+1(x∈[,])其最小值为g(t).(1)求g(t)的表达式;(2)当﹣≤t≤1时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.参考答案:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D2.D3.D4.A5.C6.B7. B8.C9.A10.B11.C12.C二、填空题(共4小题,每小题5分,满分20分)13..14.120°. 15. 16. 8;(1,+∞).三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.18. (1) ;(2). 19.(﹣4,0].20.(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z..21.1) P==.(2)a=0.00422.(1)∵x∈[,],∴sin(2x﹣)∈[﹣,1],∴f(x)=[sin(2x﹣﹣t]2﹣6t+1,当t<﹣时,则当sinx=﹣时,f(x)min=;当﹣≤t≤1时,当sinx=t时,f(x)min=﹣6t+1;当t>1时,当sinx=1时,f(x)min=t2﹣8t+2;∴g(t)=(2)k≤﹣8或k≥﹣5.。
韶关市2018-2019学年第二学期末检测高一数学参考解答和评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.1. 【解析】}021|{>-=x x A , 易知=A C u }21|{≥x x ,选D2. 【解析】 依题意,tan 0α<且cos 0α<,可得α的终边在第二象限,选B3. 【解析】由已知奇函数)(x f 在区间[3,7]上是增函数,所以)(x f 在区间[]3,7--是增函数且最小值是5-,故选A .4. 【解析】 由中位数相等可得5y =,平均数相等可得3x = 选B5. 【解析】依题意,135α=o,所以,cos α= 选D 6. 【解析】 由2BP PA =u u u r u u u r, 则2()OP OB OA OP -=-u u u r u u u r u u u r u u u u r , 所以,2133OP OA OB =+u u u r u u u r u u u r ,选A 7. 【解析】由已知可得,2tan 3α=,()()()cos 3sin πcos 3sin cos π9sin cos 9sin αααααααα-++-=-+-+ 13tan 119tan 5αα-==--+, 故选B. 8. 【解析】 1x =时, 2.09y =,但不一定等于m 故选C9. 【解析】由函数图象平移规律可知,sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R ,,选C10. 【解析】 将正方体的展开图还原成正方体后可知 ③④正确,选C11. 【解析】由||||OB OA OB OA -=+可知,AOB ∆是等腰直角三角形,圆心到直线距离2a =±,选D.12. 【解析】原题等价于213530x x a x x a ⎧<<⎪<⎨⎪-++=⎩当0∆=时,134a =,52x = 当0∆>,134a <时,令()g x =253x x a -++,a 满足(1)0(3)0g g >⎧⎨≤⎩解得 13a <≤ 选A二、填空题:13. 【解析】由两点间距离公式易得 AB =.14. 【解析】 由向量共线的性质可得,6x =-15. 【解析】5,4,3,2,1的五张卡片中,任取两张,有10种情况,两张上的数字大小恰好相差1有4种情况, 所以42105p ==16. 解析①cos(2)cos2y x x =-=,最小正周期为π,正确 ②由三角函数定义和诱导公式可得, 结论正确③两函数图象仅有一个交点,结论不正解④原函数可化为cos y x =-,结论正确17. (10分)解(1)因为3πθ=,所以||||cos a b a b θ⋅=r r r r=1cos 3π=22………………………………………………4分 (2) 因为b a ρρ-与a ρ垂直,所以0)(=⋅-a b a ρρρ ………………………………6分即0cos 21cos ||||||||22=-=-=⋅-θθb a a b a a ρρρρρρ,………………8分所以cos θ=22………………9分 又0°≤θ ≤180°,所以θ=45°………………10分18.(12分)解:(1)因为()f x 的最小正周期为π因为,0ω>,2,T ππω==∴22πωπ==.…………………………………………2分 又函数()f x 图象上的最低点纵坐标为3-,且0A >∴3A = ………………………………………………4分∴()3sin(2)3f x x π=+. …………………………………………………5分 (2)由222,,232k x k k z πππππ-++∈≤≤ ………………………………………………7分 可得5,1212k x k k z πππ-π+∈≤≤ ………………………………………………………9分 可得()f x 单调递增区间5[,]().1212k k k Z ππππ-+∈ …………………………………10分 由πππk x +=+232,得)(212Z k k x ∈+=ππ. 所以函数()f x 的对称轴方程为)(212Z k k x ∈+=ππ………………………19.(12分) (1)证明:设AC 和BD 交于点O ,连结PO , 由于P ,O 分别是1DD ,BD 的中点,故PO //1BD ,………………2∵PO ⊂平面PAC ,1BD ⊄平面PAC ………………3分所以直线1BD ∥平面PAC . ………………4分(2)证明:在四棱柱1111D C B A ABCD -中底面ABCD 是菱形,则AC BD ⊥ ………………5分 又1DD ⊥平面ABCD ,且AC ⊂平面ABCD ,则1DD ⊥AC ,………………6分∵BD ⊂平面11BDD B ,1D D ⊂平面11BDD B ,1BD D D D ⋂= ……7分∴AC ⊥平面11BDD B ………………8分(3)由(2)已证:AC ⊥平面11BDD B∴CP 在平面11BDD B 内的射影为OP∴CPO ∠是CP 与平面11BDD B 所成的角 ………………9分因为60BAD ∠=o,所以BCD ∆为正三角形||CO ∴==||PO ==………………10分 在CPO RT ∆中,||tan ||CO CPO PO ∠=== ………………11分 ∴CP 与平面11BDD B………………12分 20.(12分)解:(1)由频率分布直方图知,各区间频率为0.07,0.15,0.20,0.30,0.25,0.03…………………………………………………………………………………………2分这组数据的平均数x -=0.07×125+0.15×175+0.20×225+0.30×275+0.25×325+0.03×375=255.………………………………………………………………………………………4分(2)利用分层抽样从这两个范围内抽取5个芒果,则质量在[200,250)内的芒果有2个,记为a 1,a 2,质量在[250,300)内的芒果有3个,记为b 1,b 2,b 3;…………………6分从抽取的5个芒果中抽取2个共有10种不同情况:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 3). ………………7分记事件A 为“这2个芒果都来自同一个质量区间”,则A 有4种不同组合:(a 1,a 2),(b 1,b 2),(b 1,b 3),(b 2,b 3) ……………… ………………………8分从而P (A )=410=25,故这2个芒果都来自同一个质量区间的概率为25。
2018~2019学年度高一下学期数学期末试卷(含答案)一、选择题(本大题共12小题,共60分)1.若角α的终边经过点(1,−√3),则sinα=()A. −12B. −√32C. 12D. √322.已知a⃗=(1,x)和b⃗ =(2x+3,−3),若a⃗⊥b⃗ ,则|a⃗+b⃗ |=()A. 10B. 8C. √10D. 643.已知sin(α+π6)=2√55,则cos(π3−α)=()A. √55B. −√55C. 2√55D. −2√554.函数f(x)=sin(2x+φ)的图象向右平移π6个单位后所得的图象关于原点对称,则φ可以是()A. π6B. π3C. π4D. 2π35.已知直线3x−y+1=0的倾斜角为α,则12sin2α+cos2α=()A. 25B. −15C. 14D. −1206.某班统计一次数学测验的平均分与方差,计算完毕以后才发现有位同学的卷子还未登分,只好重算一次.已知原平均分和原方差分别为x−、s2,新平均分和新方差分别为x1−、s12,若此同学的得分恰好为x−,则()A. x−=x1−,s2=s12B. x−=x1−,s2<s12C. x−=x1−,s2>s12D. ,s2=s127.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成,现从这些运动员中抽取1个容量为n的样本,若分别采用系统抽样和分层抽样,则都不用剔除个体;当样本容量为n+1个时,若采用系统抽样,则需要剔除1个个体,那么样本容量n为()A. 5B. 6C. 12D. 188.执行如图的程序框图.若输入A=3,则输出i的值为()A. 3B. 4C. 5D. 69. 已知△ABC 满足AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ ,则△ABC 是( )A. 等边三角形B. 锐角三角形C. 直角三角形D. 钝角三角形10. “勾股定理”在西方被称为“华达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为4的大正方形,若直角三角形中较小的锐角α=15°,现在向该大正方形区域内随机地投掷一枚飞镖,飞镖落在图中区域1或区域2内的概率是( )A. 12B. 58C. 34D. 7811. 函数f(x)=Asin(ωx +φ)(A >0,ω>0,0<ϕ<π2)的部分图象如图所示,则f(0)的值是( )A. √32B. √34C. √62D. √6412. 已知a ⃗ =(sin ω2x,sinωx),b ⃗ =(sin ω2x,12),其中ω>0,若函数f(x)=a ⃗ ⋅b ⃗ −12在区间(π,2π)内没有零点,则ω的取值范围是( ) A. (0,18]B. (0,58]C. (0,18]∪[58,1]D. (0,18]∪[14,58]二、填空题(本大题共4小题,共20分)13. 甲、乙两人在相同的条件下各射击10次,它们的环数方差分别为s 甲2=2.1,s 乙2=2.6,则射击稳定程度较高的是______(填甲或乙).14. 执行如图的程序框图,若输入的x =2,则输出的y =______.15. 《九章算术》是中国古代数学名著,其对扇形田面积给出“以径乘周四而一”的算法与现代数学的算法一致,根据这一算法解决下列问题:现有一扇形田,下周长(弧长)为20米,径长(两段半径的和)为24米,则该扇形田的面积为______平方米.16. 已知点P(4m,−3m)(m <0)在角α的终边上,则2sinα+cosα=______.三、解答题(本大题共6小题,共70分)17.2018年3月19日,世界上最后一头雄性北方白犀牛“苏丹”在肯尼亚去世,从此北方白犀牛种群仅剩2头雌性,北方白犀牛种群正式进入灭绝倒计时.某校一动物保护协会的成员在这一事件后,在全校学生中组织了一次关于濒危物种犀牛保护知识的问卷调查活动.已知该校有高一学生1200人,高二1300人,高三学生1000人.采用分层抽样从学生中抽70人进行问卷调查,结果如下:完全不知道知道但未采取措施知道且采取措施高一8x y高二z133高三712m在进行问卷调查的70名学生中随机抽取一名“知道但未采取措施”的高一学生的概率是0.2.(Ⅰ)求x,y,z,m;(Ⅱ)从“知道且采取措施”的学生中随机选2名学生进行座谈,求恰好有1名高一学生,1名高二学生的概率.18.为增强学生体质,提升学生锻炼意识,我市某学校高一年级外出“研学”期间举行跳绳比赛,共有160名同学报名参赛.参赛同学一分钟内跳绳次数都在区间[90,150]内,其频率直方图如右下图所示,已知区间[130,140),[140,150]上的频率分别为0.15和0.05,区间[90,100),[100,110),[110,120),[120,130)上的频率依次成等差数列.(Ⅰ)分别求出区间[90,100),[100,110),[110,120)上的频率;(Ⅱ)将所有人的数据按从小到大排列,并依次编号1,2,3,4…160,现采用等距抽样的方法抽取32人样本,若抽取的第四个的编号为18.(ⅰ)求第一个编号大小;(ⅰ)从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)上的概率是多少?19.已知a⃗=(1,2),b⃗ =(−3,4).(1)若|k a⃗+b⃗ |=5,求k的值;(2)求a⃗+b⃗ 与a⃗−b⃗ 的夹角.,且α为第二象限角.20.已知sinα=35(1)求sin2α的值;)的值.(2)求tan(α+π4)(x∈R).21.设函数f(x)=4cosx⋅sin(x+π6(1)求函数y=f(x)的最小正周期和单调递增区间;]时,求函数f(x)的最大值.(2)当x∈[0,π2),f(0)=0,且函数f(x) 22.已知f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<|φ|<π2.图象上的任意两条对称轴之间距离的最小值是π2)的值;(1)求f(π8(2)将函数y=f(x)的图象向右平移π个单位后,得到函数y=g(x)的图象,求函数6g(x)的解析式,并求g(x)在x∈[π6,π2]上的最值.答案和解析1.【答案】B【解析】解:角α的终边经过点(1,−√3),则sinα=yr =−√32.故选:B.直接利用任意角的三角函数的定义,求解即可.本题考查任意角的三角函数的定义,考查计算能力.2.【答案】A【解析】解:a⃗=(1,x)和b⃗ =(2x+3,−3),若a⃗⊥b⃗ ,可得:2x+3−3x=0,解得x=3,所以a⃗+b⃗ =(10,0),所以|a⃗+b⃗ |=10.故选:A.利用向量的垂直,求出x,然后求解向量的模.本题考查向量的数量积以及向量的模的求法,向量的垂直条件的应用,是基本知识的考查.3.【答案】C【解析】解:∵已知sin(α+π6)=2√55,∴cos(π3−α)=cos[π2−(α+π6)]=sin(α+π6)=2√55,故选:C.由条件利用诱导公式进行化简所给的式子,可得结果.本题主要考查利用诱导公式进行化简三角函数式,属于基础题.4.【答案】B【解析】解:函数f(x)=sin(2x+φ)的图象向右平移π6个单位后,可得y=sin(2x−π3+φ),∵图象关于原点对称,∴φ−π3=kπ,k∈Z,可得:φ=kπ+π3.当k=0时,可得φ=π3.故选:B.根据图象变换规律,可得解析式,图象关于原点对称,建立关系,即可求解φ值.本题主要考查函数y=Asin(ωx+φ)的图象变换规律和对称问题,属于基础题.5.【答案】A【解析】解:∵直线3x −y +1=0的倾斜角为α,∴tanα=3, ∴12sin2α+cos 2α=12⋅2sinαcosα+cos 2α=sinαcosα+cos 2αsin 2α+cos 2α=tanα+1tan 2α+1=3+19+1=25,故选:A .由题意利用直线的倾斜角和斜率求出tanα的值,再利用三角恒等变换,求出要求式子的值.本题主要考查直线的倾斜角和斜率,三角恒等变换,属于中档题. 6.【答案】C【解析】解:设这个班有n 个同学,数据分别是a 1,a 2,…,a i,…,a n , 第i 个同学没登分,第一次计算时总分是(n −1)x −,方差是s 2=1n−1[(a 1−x −)2+⋯+(a i−1−x −)2+(a i+1−x −)2+⋯+(a n −x −)2]第二次计算时,x 1−=(n−1)x −+x−n=x −,方差s 12=1n [(a 1−x −)2+⋯(a i−1−x −)2+(x −x)2+(a i+1−x −)2+⋯+(a n −x −)2]=n−1ns 2, 故s 2>s 12, 故选:C .根据平均数和方差的公式计算比较即可.本题考查了求平均数和方差的公式,是一道基础题. 7.【答案】B【解析】解:由题意知采用系统抽样和分层抽样方法抽取,不用剔除个体; 如果样本容量增加一个,则在采用系统抽样时, 需要在总体中先剔除1个个体, ∵总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n , 分层抽样的比例是n36,抽取的乒乓球运动员人数为n36⋅6=n6, 篮球运动员人数为n36⋅12=n3,足球运动员人数为n36⋅18=n2, ∵n 应是6的倍数,36的约数, 即n =6,12,18.当样本容量为(n +1)时,总体容量是35人, 系统抽样的间隔为35n+1, ∵35n+1必须是整数,∴n 只能取6.即样本容量n =6. 故选:B .由题意知采用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,算出总体个数,根据分层抽样的比例和抽取的乒乓球运动员人数得到n 应是6的倍数,36的约数,由系统抽样得到35n+1必须是整数,验证出n 的值.本题考查分层抽样和系统抽样,是一个用来认识这两种抽样的一个题目,把两种抽样放在一个题目中考查,加以区分,是一个好题. 8.【答案】C【解析】解:运行步骤为:i =1,A =7 i =2,A =15; i =3,A =31; i =4,A =63; i =5,A =127; 故输出i 值为5, 故选:C .根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出变量i 的值,模拟程序的运行过程,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题. 9.【答案】C【解析】【分析】本题考查了向量的加减法则,数量积的运算性质,三角形形状的判断,属于中档题.根据向量的加减运算法则,将已知化简得AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ 2+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ ,得CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0.结合向量数量积的运算性质,可得CA ⊥CB ,得△ABC 是直角三角形.【解答】解:∵△ABC 中,AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ , ∴AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ )+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ , 即AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ 2+CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ , ∴CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0, ∴CA ⃗⃗⃗⃗⃗ ⊥CB⃗⃗⃗⃗⃗ ,即CA ⊥CB , ∴△ABC 是直角三角形, 故选C . 10.【答案】B【解析】解:小正方形的边长为4sin750−4cos750=(√6+√2)−(√6−√2)=2√2, 故小正方形与大正方形的面积之比为(2√24)2=12,因此剩下的每个直角三角形的面积与大正方形的面积之比为12÷4=18, ∴飞镖落在区域1或区域2的概率为12+18=58. 故选:B .由已知求出小正方形的边长,得到小正方形及直角三角形与大正方形的面积比,则答案可求.本题考查几何概型概率的求法,求出小正方形及直角三角形与大正方形的面积比是关键,是中档题.11.【答案】C【解析】解:由图知,A=√2,又ω>0,T 4=7π12−π3=π4,∴T=2πω=π,∴ω=2,∴π3×2+φ=2kπ+π(k∈Z),∴φ=2kπ+π3(k∈Z),∵0<ϕ<π2,∴φ=π3,∴f(x)=√2sin(2x+π3),∴f(0)=√2sinπ3=√62.故选:C.由图知,A=√2,由T4=π4,可求得ω,π3ω+φ=2kπ+π(k∈Z),0<ϕ<π2可求得φ,从而可得f(x)的解析式,于是可求f(0)的值.本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求得φ是难点,考查识图能力,属于中档题.12.【答案】D【解析】解:a⃗=(sinω2x,sinωx),b⃗ =(sinω2x,12),其中ω>0,则函数f(x)=a⃗⋅b⃗ −12=sin2(ω2x)+12sinωx−12=12−12cosωx+12sinωx−12=√2sin(ωx−π4),可得T=2πω≥π,0<ω≤2,f(x)在区间(π,2π)内没有零点,结合三角函数可得,{πω−π4≥02πω−π4≤π或{πω−π4≥−π2πω−π4≤0,解得14≤ω≤58或0<ω≤18,故选:D.利用两角和与差的三角函数化简函数的解析式,利用函数的零点以及函数的周期,列出不等式求解即可.本题考查函数的零点个数的判断,三角函数的化简求值,考查计算能力.13.【答案】甲【解析】解:方差越小越稳定,s 甲2=2.1<s 乙2=2.6,故答案为:甲.根据方差的大小判断即可.本题考查了方差的意义,掌握方差越小越稳定是解决本题的关键,是一道基础题. 14.【答案】7【解析】解:由已知中的程序框图可知:该程序的功能是计算并输出y ={2x x >23x +1x ≤2的值,∵输入结果为2,∴y =3×2+1=7. 故答案为:7.由已知中的程序框图可知:该程序的功能是计算并输出y ={2x x >23x +1x ≤2的值,由已知代入计算即可得解.本题主要考查选择结构的程序框图的应用,关键是判断出输入的值是否满足判断框中的条件,属于基础题. 15.【答案】120【解析】解:由题意可得:弧长l =20,半径r =12, 扇形面积S =12lr =12×20×12=120(平方米),故答案为:120.利用扇形面积计算公式即可得出.本题考查了扇形面积计算公式,考查了推理能力与计算能力,属于基础题.16.【答案】25【解析】解:点P(4m,−3m)(m <0)在角α的终边上,∴x =4m ,y =−3m ,r =|OP|=√16m 2+9m 2=−5m , ∴sinα=y r=35,cosα=x r =−45,∴2sinα+cosα=65−45=25,故答案为:25.由题意利用任意角的三角函数的定义,求得sinα和cosα的值,可得2sinα+cosα的值. 本题主要考查任意角的三角函数的定义,属于基础题.17.【答案】解:(Ⅰ)采用分层抽样从3500名学生中抽70人,则高一学生抽24人,高二学生抽26人, 高三学生抽20人.“知道但未采取措施”的高一学生的概率=x70=0.2, ∴x =14,∴y =24−14−8=2,z=26−13−3=10,m=20−12−7=1,∴x=14,y=2,z=10,m=1;(Ⅱ)“知道且采取措施”的学生中高一学生2名用A,B表示,高二学生3名用C,D,E表示,高三学生1名用F表示.则从这6名学生中随机抽取2名的情况有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种,其中恰好1名高一学生1名高二学生的有6种.∴P=615=25,即恰好有1名高一学生,1名高二学生的概率为25.【解析】(Ⅰ)根据分层抽样先求出x,即可求出y,z,m.(Ⅱ)知道且采取措施”的学生中高一学生2名用A,B表示,高二学生3名用C,D,E 表示,高三学生1名用F表示.根据古典概率公式计算即可.本题考查等可能事件的概率,古典概型概率计算公式等知识,属于中档题.18.【答案】解:(Ⅰ)[90,100),[100,110),[110,120)上的频率之和为:1−10×0.035−0.15−0.05=0.45,且前三个频率成等差数列(设公差为d),故[100,110)上的频率为:0.453=0.15,从而2d=0.35−0.15=0.2,解得d=0.1,∴[90,100),[100,110),[110,120)上的频率分别为0.05,0.15,0.25.……(5分) (Ⅱ)(ⅰ)从160人中抽取32人,样本距为5,故第一个编号为18−3×5=3.……(7分) (ⅰ)抽取的32人的编号依次成等差数列,首项为3,公差为5,设第n个编号为a n,则a n=3+(n−1)×5=5n−2,……(9分)由(1)可知区间[90,100),[100,110)上的总人数为160×(0.05+0.15)=32人,[110,120),[120,130)上的总人数为160×(0.25+0.35)=96人,[90,130)共有128人,令33≤a n≤128,解得7≤n≤26,∴在[110,120),[120,130)上抽取的样本有20人,……(11分)故从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)的概率是p=2032=58.……(12分)【解析】(Ⅰ)先求出[90,100),[100,110),[110,120)上的频率之和,再由前三个频率成等差数列,得[100,110)上的频率为0.15,由此能求出[90,100),[100,110),[110,120)上的频率.(Ⅱ)(ⅰ)从160人中抽取32人,样本距为5,由此能求出第一个编号.(ⅰ)抽取的32人的编号依次成等差数列,首项为3,公差为5,设第n个编号为a n,则a n=3+(n−1)×5=5n−2,由此能求出从此32人中随机选出一人,则此人的跳绳次数在区间[110,130)的概率.本题考查频率的求法,考查第一个编号、概率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.19.【答案】解:(1)根据题意,k a⃗+b⃗ =k(1,2)+(−3,4)=(k−3,2k+4),由|k a ⃗ +b ⃗ |=5,得√(k −3)2+(2k +4)2=5,解得:k =0或k =−2;(2)根据题意,设a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的夹角为θ,a ⃗ =(1,2),b ⃗ =(−3,4),则a ⃗ +b ⃗ =(−2,6),a ⃗ −b ⃗ =(4,−2);∴cosθ=40×20=−√22, ∵θ∈[0,π];∴a ⃗ +b ⃗ 与a ⃗ −b ⃗ 夹角为3π4.【解析】(1)根据题意,求出k a ⃗ +b⃗ 的坐标,进而由向量模的计算公式可得√(k −3)2+(2k +4)2=5,解可得k 的值,即可得答案;(2)设a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的夹角为θ,求出a ⃗ +b ⃗ 与a ⃗ −b ⃗ 的坐标,由向量数量积的计算公式可得cosθ的值,结合θ的范围计算可得答案.本题考查向量数量积的坐标计算,关键是掌握向量数量积、模的计算公式. 20.【答案】解:(1)∵sinα=35,且α为第二象限角,∴cosα=−√1−sin 2α=−45, ∴sin2α=2sinαcosα=2×35×(−45)=−2425;(2)由(1)知tanα=sinαcosα=−34, ∴tan(α+π4)=tanα+tan π41−tanαtan π4=−34+11−(−34)=17.【解析】(1)由已知利用平方关系求得cosα,再由二倍角公式求得sin2α的值;(2)由(1)求出tanα,展开两角和的正切求得tan(α+π4)的值.本题考查同角三角函数基本关系式的应用,考查两角和的正切,是基础的计算题. 21.【答案】解:(1)f(x)=4cosx ⋅sin(x +π6)=2√3sinxcosx +2cos 2x=√3sin2x +cos2x +1=2sin(2x +π6)+1,∴函数f(x)的周期T =π,∴当2kπ−π2≤2x +π6≤2kπ+π2时,即kπ−π3≤x ≤kπ+π6,k ∈Z ,函数单调增, ∴函数的单调递增区间为[kπ−π3,kπ+π6](k ∈Z); (2)当x ∈[0,π2]时,2x +π6∈[π6,7π6], ∴sin(2x +π6)∈[−12,1],∴当sin(2x +π6)=1,f(x)max =3.【解析】(1)对f(x)化简,然后利用周期公式求出周期,再利用整体法求出单调增区间; (2)当x ∈[0,π2]时,sin(2x +π6)∈[−12,1],然后可得f(x)的最大值.本题考查了三角函数的化简求值和三角函数的图象与性质,考查了整体思想和数形结合思想,属基础题.22.【答案】解:(1)f(x)=sin(ωx+φ)+cos(ωx+φ)=√2sin(ωx+φ+π4),故2πω=2×π2,求得ω=2.再根据f(0)=sin(φ+π4)=0,0<|φ|<π2,可得φ=−π4,故f(x)=√2sin2x,f(π8)=√2sinπ4=1.(2)将函数y=f(x)的图象向右平移π6个单位后,得到函数y=g(x)=√2sin2(x−π6)=√2sin(2x−π3)的图象.∵x∈[π6,π2],∴2x−π3∈[0,2π3],当2x−π3=π2时,g(x)=√2sin(2x−π3)取得最大值为√2;当2x−π3=0时,g(x)=√2sin(2x−π3)取得最小值为0.【解析】(1)由条件利用两角和差的正弦公式化简f(x)的解析式,由周期求出ω,由f(0)= 0求出φ的值,可得f(x)的解析式,从而求得f(π8)的值.(2)由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再根据正弦函数的定义域和值域求得g(x)在x∈[π6,π2]上的最值.本题主要考查两角和差的正弦公式,由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由f(0)=0求出φ的值,可得f(x)的解析式;函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于中档题.。
广东省韶关市2019版高一下学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018高一下·鹤壁期末) 已知角的终边经过点,则的值等于()A .B .C .D .2. (2分)已知α是锐角,=(,sinα),=(cosα,),且∥,则α为()A . 15°B . 45°C . 75°D . 15°或75°3. (2分)(2018·大新模拟) 为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是()A . 0.3B . 0.4C . 0.6D . 0.74. (2分)二进制数10111转化为五进制数是()A . 41B . 25C . 21D . 435. (2分) (2019高一下·上海月考) 《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积= ,弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”指半径长与圆心到弦的距离之差.现有圆心角为,半径等于4米的弧田.下列说法不正确的是()A . “弦” 米,“矢” 米B . 按照经验公式计算所得弧田面积()平方米C . 按照弓形的面积计算实际面积为()平方米D . 按照经验公式计算所得弧田面积比实际面积少算了大约0.9平方米(参考数据 )6. (2分) (2018高二上·宜昌期末) 对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本中的中位数、众数、极差分别是A . 46,45,56B . 46,45,53C . 47,45,56D . 45,47,537. (2分)与原数据单位不一样的是()A . 众数B . 平均数C . 标准差D . 方差8. (2分)在平行四边形中,点为中点,,则等于A .B .C .D .9. (2分)如图给出的是计算的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是()A . i>100,n=n+1B . i>100,n=n+2C . i>50,n=n+2D .10. (2分)函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到y=cos2x 的图象,则只要将f(x)的图象()A . 向左平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向右平移个单位长度11. (2分) (2015高三上·青岛期末) 阅读如图的算法框图,输出的结果S的值为()A .B . 0C .D . -12. (2分)(2018·孝义模拟) 已知函数的周期为,当时,方程恰有两个不同的实数解,,则()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)已知向量=(3,1),=(1,3),=(k,7),若(-)∥,则k=________ .14. (1分) (2016高一下·宝坻期末) 一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒.当你到达路口时,看见红灯的概率是________.15. (1分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示.若f(α)=1,α∈(0,),则sin2α=________.16. (1分) (2017高二上·汕头月考) 在边长为1的正三角形中,设 ,则________.三、解答题 (共6题;共45分)17. (10分) (2016高一下·扬州期末) 已知0<β<α<,tanα=4 ,cos(α﹣β)= .(1)求sin2α的值;(2)求β的大小.18. (10分)设向量,的夹角为60°且| |=| |=1,如果,,.(1)证明:A、B、D三点共线.(2)试确定实数k的值,使k的取值满足向量与向量垂直.19. (10分)某公司为确定下一年投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年利润y(单位:万元)的影响,对近5年的宣传费xi和年利润yi(i=1,2,3,4,5)进行了统计,列出了下表:x(单位:千元)2471730y(单位:万元)12345员工小王和小李分别提供了不同的方案.(1)小王准备用线性回归模型拟合y与x的关系,请你建立y关于x的线性回归方程(系数精确到0.01);(2)小李决定选择对数回归模拟拟合y与x的关系,得到了回归方程: =1.450lnx+0.024,并提供了相关指数R2=0.995,请用相关指数说明选择哪个模型更合适,并预测年宣传费为4万元的年利润(精确到0.01)(小王也提供了他的分析数据(yi﹣ i)2=1.15)参考公式:相关指数R2=1﹣回归方程 = x+ 中斜率和截距的最小二乘法估计公式分别为 = , = ﹣ x,参考数据:ln40=3.688, =538.20. (5分)对于数列{xn},从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列.某同学在学习了这一个概念之后,打算研究首项为a1 ,公差为d的无穷等差数列{an}的子数列问题,为此,他取了其中第一项a1 ,第三项a3和第五项a5 .(1)若a1 , a3 , a5成等比数列,求d的值;(2)在a1=1,d=3 的无穷等差数列{an}中,是否存在无穷子数列{bn},使得数列(bn)为等比数列?若存在,请给出数列{bn}的通项公式并证明;若不存在,说明理由;(3)他在研究过程中猜想了一个命题:“对于首项为正整数a,公比为正整数q(q>1)的无穷等比数列{cn},总可以找到一个子数列{bn},使得{dn}构成等差数列”.于是,他在数列{cn}中任取三项ck , cm , cn(k<m <n),由ck+cn与2cm的大小关系去判断该命题是否正确.他将得到什么结论?21. (5分)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,已知第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明.22. (5分)已知函数f(x)=sin(2x﹣)+2cos2x﹣1(Ⅰ)求函数f(x)的单调增区间,并说明可把f(x)图象经过怎样的平移变换得到g(x)=sin2x的图象.(Ⅱ)若在△ABC中,a、b、c分别是角A、B、C的对边,且a=1,b+c=2,f(A)=,求△ABC的面积.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共45分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、22-1、。
广东省韶关市 2019 年高一下学期数学期末考试试卷 A 卷姓名:________班级:________成绩:________一、 选择题 (共 10 题;共 20 分)1. (2 分) 已知,则=( )A.2B . -2C.3D . -32. (2 分) 一个扇形的弧长与面积的数值都是 5,则这个扇形中心角的度数( )A.5B. C.3D. 3. (2 分) (2015 高一下·枣阳开学考) 函数 y=sin22x 是( ) A . 周期为 π 的奇函数 B . 周期为 π 的偶函数C . 周期为 的奇函数D . 周期为 的偶函数4. (2 分) (2017 高一下·包头期末) 数列 1,,,…,的前 n 项和为( )A.第1页共9页B.C.D.5. (2 分) 在中,角 A,B,C 所对的边 a,b,c,已知则 C=( )A.B.C. 或D.6.(2 分)等差数列{an}的公差不为零,首项 a1=1,a2 是 a1 和 a5 的等比中项,则数列的前 10 项之和是( )A . 90B . 100C . 145D . 1907. (2 分) 在 A . 30 度 B . 45 度 C . 60 度 D . 120 度中,, 则角 B 等于( )8. (2 分) 若将函数(ω>0)的图象向右平移 个单位长度后,与函数的图象重合,则 ω 的最小值为( )A.第2页共9页B.C.D. 9.(2 分)(2016 高一下·揭阳开学考) 已知等差数列{an}中 a3+a9+a15=9,则数列{an}的前 17 项和 S17(= ) A . 102 B . 36 C . 48 D . 51 10. (2 分) (2019 高一下·哈尔滨月考) 对于任意实数 x,符号[x]表示不超 x 的最大整数,例如[3]=3,[﹣ 1.2]=﹣2,[1.2]=1.已知数列{an}满足 an=[log2n],其前 n 项和为 Sn , 若 n0 是满足 Sn>2018 的最小整数, 则 n0 的值为( ) A . 305 B . 306 C . 315 D . 316二、 填空题 (共 8 题;共 9 分)11. (1 分) , ln2,tan 三个数中最大的是________12. (1 分) (2019 高二上·洛阳期中) 在锐角,则的最小值为________.中,内角的对边分别为,若13. (1 分) 在等比数列{an}中,a3+a8=﹣31,a4a7=﹣32,公比 q 是整数,则 a10=________.14. (1 分) (2017·天心模拟) △ABC 的三个内角 A,B,C 所对的边分别为 a,b,c,asinAsinB+bcos2A=2a, 则角 A 的最大值是________.第3页共9页15. (1 分) 化简:+(π<α< )=________.16. (1 分) (2017 高二下·吉林期末) 若数列 是等差数列,则数列 类比上述性质,相应地, 是正项等比数列,则也是等比数列________.也是等差数列;17. ( 1 分 ) (2018· 河 北 模 拟 ) 已 知 数 列满足,,若,则数列 的前 项和________.18. (2 分) (2018 高三上·镇海期中) 已知,且此时 的值为________.,则的最小值________,三、 解答题 (共 4 题;共 30 分)19. (10 分) (2018 高一下·淮北期末) 设数列都在直线上.的前 项和为 ,,且对任意正整数 ,点(1) 求数列 的通项公式;(2) 若,数列 的前 项和为 ,求证:.20. (5 分) (2017 高一上·乌鲁木齐期末) 如图所示,已知点 A(1,0),D(﹣1,0),点 B,C 在单位圆 O 上,且∠BOC= .(Ⅰ)若点 B( , ),求 cos∠AOC 的值;(Ⅱ)设∠AOB=x(0<x< ),四边形 ABCD 的周长为 y,将 y 表示成 x 的函数,并求出 y 的最大值.21. ( 10 分 ) (2019 高 一 下 · 上 海 月 考 ) 在中 , 内 角 A,B,C 的 对 边 分 别 为 a,b,c , 且.第4页共9页(1) 求的值;(2) 若,求周长的最大值.22. (5 分) (2017·息县模拟) 等差数列{an}中,已知 a3=5,且 a1 , a2 , a5 为递增的等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}的通项公式(k∈N*),求数列{bn}的前 n 项和 Sn .第5页共9页一、 选择题 (共 10 题;共 20 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、二、 填空题 (共 8 题;共 9 分)11-1、 12-1、 13-1、 14-1、 15-1、参考答案第6页共9页16-1、 17-1、 18-1、三、 解答题 (共 4 题;共 30 分)19-1、19-2、第7页共9页20-1、 21-1、第8页共9页21-2、 22-1、第9页共9页。
2018-2019学年广东省韶关市高一下学期期末考试数学试题一、选择题1.设全集U R =,集合{|13}A x x =-<<, {|1}B x x =<,则()U A C B ⋂=( ) A. {|13}x x << B. {|13}x x ≤< C. {|13}x x <≤ D.{|13}x x ≤≤2.若lg lg 0a b +=且a b ≠,则函数()x f x a =与()x g x b =的图像( ) A. 关于x 轴对称 B. 关于y 轴对称 C. 关于原点对称 D. 关于直线y x =对称3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A. 月接待游客逐月增加 B. 年接待游客量逐年增加C. 各年的月接待游客量高峰期大致在7,8月D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.运行右图所示框图的相应程序,若输入,a b 的值分别为2log 3和3log 2,则输出M 的值是( )A. 0B. 1C. 2D. -15.已知空间两条不同的直线,m n 和两个不同的平面,αβ,以下能推出“αβ⊥”的是( )A. m n ⊥, //m α, //n βB. //m n , m α⊥, n β⊥C. m n ⊥, m α⊥, n αβ⋂=D. //m n , m α⊥, n β⊂6.直线20mx y m +-+=恒经过定点( ) A. ()1,1- B. ()1,2 C. ()1,2- D. ()1,17.某几何体的三视图如图所示,则该几何体的体积是( )A.12π+ B. 32π+ C.312π+ D. 332π+ 8.函数()223,0{ 2,0x x x f x lnx x +-≤=-+>的零点个数为( )A. 0B. 1C. 2D. 39.直线2340x y --=与直线()110mx m y +++=互相垂直,则实数m =( )A. 2B. 25-C. 35- D. -310.设函数()cos f θθθ+,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点12P ⎛ ⎝⎭,则()f θ=( )11.已知函数()21log 1f x x x=+-,若()11,2x ∈, ()22,x ∈+∞,则( ) A. ()10f x <, ()20f x < B. ()10f x <, ()20f x >C. ()10f x >, ()20f x <D. ()10f x >, ()20f x >12.菱形ABCD 中, 60BAD ∠=,点E 满足2DE EC =,若17•2AE BE =,则该菱形的面积为( )A. 92C. 6D.二、填空题13.如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是 _________ .14.某实验室一天的温度(单位: 0C )随时间t (单位: h )的变化近似满足函数关系: ()102sin 123f t t ππ⎛⎫=-+ ⎪⎝⎭, [)0,24t ∈,该实验室这一天的最大温差为__________.15.已知幂函数a y x =的图像经过点()2,8,且与圆222x y +=交于,A B 两点,则AB =__________.16.已知0sin104m =,则用含m 的式子表示0cos7为__________.三、解答题17.已知函数()sin 2cos 236f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭, x R ∈.(1)求()f x 的最小正周期;(2)将()y f x =图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求函数()y g x =的单调递增区间. 18.已知函数()221f x ax x a =-++. (1)若()()11f x f x -=+,求实数a 的值;(2)当0a >时,求()f x 在区间[]0,2上的最大值.19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率; (Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数学.科网不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.20.如图所示,在四棱锥P ABCD -中, //AB CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===, 90APD ∠=,求直线PB 与平面ABCD 所成的角的大小.21.长为2a 的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动. (1)求线段AB 的中点的轨迹Γ的方程;(2)当2a =时,曲线Γ与x 轴交于,C D 两点,点G 在线段CD 上,过G 作x 轴的垂线交曲线Γ于不同的两点,E F ,点H 在线段DF 上,满足GH 与CE 的斜率之积为-2,试求DGH ∆与DGF ∆的面积之比. 22.已知函数()•,x x f x e a e x R -=+∈. (1)当1a =时,证明: ()f x 为偶函数;(2)若()f x 在[)0,+∞上单调递增,求实数a 的取值范围;(3)若1a =,求实数m 的取值范围,使()()221m f x f x ⎡⎤+≥+⎣⎦在R 上恒成立.2018-2019学年广东省韶关市高一下学期期末考试数学试题一、选择题1.设全集U R =,集合{|13}A x x =-<<, {|1}B x x =<,则()U A C B ⋂=( ) A. {|13}x x << B. {|13}x x ≤< C. {|13}x x <≤ D.{|13}x x ≤≤【答案】B【解析】 由题意得, {|1}U C B x x =≥,所以(){|13}U A C B x x ⋂=≤<,故选B .2.若lg lg 0a b +=且a b ≠,则函数()x f x a =与()x g x b =的图像( ) A. 关于x 轴对称 B. 关于y 轴对称 C. 关于原点对称 D. 关于直线y x =对称 【答案】B【解析】 由lg lg 01a b ab +=⇒=,即1b a=, 则根据指数函数的图象与性质可知,函数()xf x a =与()1xg x a ⎛⎫= ⎪⎝⎭的图象关于y 对称,故选B .3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A. 月接待游客逐月增加B. 年接待游客量逐年增加C. 各年的月接待游客量高峰期大致在7,8月D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】2014年8月到9月接待游客下降,所以A 错;年接待游客量逐年增加;各年的月接待游客量高峰期大致在7,8月;各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,所以选A. 4.运行右图所示框图的相应程序,若输入,a b 的值分别为2log 3和3log 2,则输出M 的值是( )A. 0B. 1C. 2D. -1 【答案】C【解析】试题分析:因为2log 31>, 3log 21<,所以23log 3log 2>,由算法框图可知,运行后输出M 的值为23log 3log 21112M =⋅+=+=. 【考点】算法框图.5.已知空间两条不同的直线,m n 和两个不同的平面,αβ,以下能推出“αβ⊥”的是( )A. m n ⊥, //m α, //n βB. //m n , m α⊥, n β⊥C. m n ⊥, m α⊥, n αβ⋂=D. //m n , m α⊥, n β⊂ 【答案】D【解析】 有图有跌,对于A 中,平面,αβ可能平行或相交但是不一定垂直,所以是错误的;对于B 中,由于//,m n m α⊥得到n α⊥,又n β⊥,所以//αβ,得不到αβ⊥,所以是错误的;对于C 中, ,,m n m n ααβ⊥⊥⋂=,由此无法得到m 与β的位置关系,因此,αβ不一定垂直,所以是错误的;对于D 中,由于//,m n m α⊥,得到n α⊥,又n β⊂是正确的,故选D . 6.直线20mx y m +-+=恒经过定点( ) A. ()1,1- B. ()1,2 C. ()1,2- D. ()1,1 【答案】C【解析】 由题意得,直线可化()21y m x +=--,根据直线的点斜式可得,直线过定点()1,2-,故选C .7.某几何体的三视图如图所示,则该几何体的体积是( )A.12π+ B. 32π+ C.312π+ D. 332π+ 【答案】A 【解析】由三视图可知该几何体为半圆锥与三棱锥的组合体(如图所示)则其体积为2111113213123322V ππ=⨯⨯⨯⨯+⨯⨯⨯⨯=+ ,选A8.函数()223,0{ 2,0x x x f x lnx x +-≤=-+>的零点个数为( )A. 0B. 1C. 2D. 3 【答案】C【解析】试题分析:由()0f x =得23,x x e =-=所以零点个数为2,选C . 【考点】函数零点9.直线2340x y --=与直线()110mx m y +++=互相垂直,则实数m =( )A. 2B. 25-C. 35- D. -3【答案】D【解析】 由题意得,根据两直线垂直可得()2310m m -+=,解得3m =-,故选D .10.设函数()cos f θθθ+,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点12P ⎛ ⎝⎭,则()f θ=( )【答案】A【解析】 由角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点12P ⎛ ⎝⎭,可得1sin 2θθ==,所以()1cos 222f θθθ=+=+=,故选A . 11.已知函数()21log 1f x x x=+-,若()11,2x ∈, ()22,x ∈+∞,则( ) A. ()10f x <, ()20f x < B. ()10f x <, ()20f x > C. ()10f x >, ()20f x < D. ()10f x >, ()20f x > 【答案】B【解析】 函数()21log 1f x x x=+-在()1,+∞是增函数,(根据复合函数的单调性), 而()20f =,因为()()121,2,2,x x ∈∈+∞,所以()()120,0f x f x ,故选B .点睛:本题主要考查了函数的单调性的应用,本题的解答中根据函数的解析式,利用复合函数的单调性的判定方法,得到函数的单调性是解答的关键,同时熟记函数的单调性是解答的重要一环.12.菱形ABCD 中, 60BAD ∠=,点E 满足2DE EC =,若17•2AE BE =,则该菱形的面积为( )A. 92C. 6D. 【答案】B【解析】 由已知菱形ABCD 中, 060BAD ∠=,点E 满足2DE EC =, 若172AE BE ⋅=,设菱形的边长为3x , 所以()()AE BE AD DE BC CE AD BC AD CE DE BC DE CE ⋅=+⋅+=⋅+⋅+⋅+⋅2222231717932222x x x x x =-+-==,解得1x =,所以菱形的边长为3,所以菱形的面积为033sin60⨯⨯=B . 点睛:本题主要考查了平面向量的线性运算,本题的解答中根据向量的三角形法则和向量的平行四边形法则和向量的数量积的运算,得出关于菱形边长的方程,在利用三角形的面积公式,即可求解三角形的面积,其中熟记向量的运算法则和数量积的运算公式是解答的关键.二、填空题 13.(2014•濮阳县一模)如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是 _________ .【答案】.【解析】试题分析:根据题意,计算出扇形区域ADE 和扇形CBF 的面积之和为,结合矩形ABCD 的面积为2,可得在矩形ABCD 内且没有信号的区域面积为,再利用几何概型计算公式即可得出所求的概率.首先,因为扇形ADE 的半径为1,圆心角等于,所以扇形ADE 的面积为.同理可得,扇形CBF 的面积也为;然后又因为长方形ABCD 的面积,再根据几何概型的计算公式得,在该矩形区域内随机地选一地点,则该地点无信号的概率是.【考点】几何概型.14.某实验室一天的温度(单位: 0C )随时间t (单位: h )的变化近似满足函数关系: ()102sin 123f t t ππ⎛⎫=-+ ⎪⎝⎭, [)0,24t ∈,该实验室这一天的最大温差为__________.【答案】4【解析】 因为()102sin 123f t t ππ⎛⎫=-+ ⎪⎝⎭,所以731233t ππππ<+<,当31232t πππ+=时,即14t =时,函数()f t 取得最大值为10212+=, 当1232t πππ+=时,即2t =时,函数()f t 取得最小值为1028-=,所以一天的最大温差为1284-=.15.已知幂函数a y x =的图像经过点()2,8,且与圆222x y +=交于,A B 两点,则AB =__________.【答案】【解析】 以为幂函数y x α=的图象经过点()2,8,即823αα=⇒=,即幂函数3y x =联立方程组2232{ x y y x +==,解得1x =±, 即3y x =与222x y +=的交点为()()1,1,,1,1A B --,所以AB =.点睛:本题主要考查了幂函数的性质和圆的标准方程问题,本题的解答中根据幂函数的性质得到α的值,得到幂函数的解析式,联立方程组求解点,A B 的坐标,即可求解弦AB 的长,其中正确求解是解答的关键.16.已知0sin104m =,则用含m 的式子表示0cos7为__________.【解析】 由题意的()000020sin104sin 9014cos142cos 71m =+==-=,所以201cos 72m +=,即0cos7= 点睛:本题主要考查了三角函数的诱导公式和余弦的倍角公式的应用,本题的解答中根据诱导公式得到202cos 71m -=,即可求解0cos7的值,其中熟记三角恒等变换的公式是解得关键.三、解答题17.已知函数()sin 2cos 236f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭, x R ∈.(1)求()f x 的最小正周期;(2)将()y f x =图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求函数()y g x =的单调递增区间.【答案】(1)π;(2)7,1212k k ππππ⎡⎤-+-+⎢⎥⎣⎦, k Z ∈. 【解析】试题分析:(1)根据三角恒等变换的公式化简得()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,即可求解函数的最小正周期;(2)根据图象的变换得到()22sin 23g x x π⎛⎫=+⎪⎝⎭,利用正弦函数的性质,即可求解函数()g x 的单调递增区间. 试题解析:(1)()sin 2cos 236f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭sin2coscos2sincos2cossin2sin3366x x x x ππππ=+++sin2x x =+2sin 23x π⎛⎫=+ ⎪⎝⎭,故()f x 的最小正周期22T ππ==; 【法二:由于22632x x πππ-=+-,故cos 2sin 263x x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,()sin 2cos 22sin 2363f x x x x πππ⎛⎫⎛⎫⎛⎫=++-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()f x 的最小正周期为π】(2)()22sin 263g x f x x ππ⎛⎫⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭, 由2222232k x k πππππ-+≤+≤+,解得71212k x k ππππ-+≤≤-+ 故()g x 的单调递增区间为7,1212k k ππππ⎡⎤-+-+⎢⎥⎣⎦, k Z ∈. 18.已知函数()221f x ax x a =-++. (1)若()()11f x f x -=+,求实数a 的值; (2)当0a >时,求()f x 在区间[]0,2上的最大值. 【答案】(1)1a =;(2)()max 53,1{1,01a a f x a a -≥=+<<【解析】试题分析:(1)因为()()11f x f x -=+,得()f x 的图像关于直线1x =对称,即可求解实数a 的值;(2)由于0a >,根据二次函数的性质,分11a ≤和112a <<、11a≥三种请讨论,即可求解函数在[]0,2上的最值. 试题解析:(1)因为()()11f x f x -=+,故()f x 的图像关于直线1x =对称, 故0a ≠且11a=,解得1a =; 【法二:直接把()()11f x f x -=+代入展开,比较两边系数,可得1a =】 (2)由于0a >, ()f x 的图像开口向上,对称轴10x a=>, 当11a ≤,即1a ≥时, ()f x 在10,a ⎡⎤⎢⎥⎣⎦上递减,在1,2a ⎡⎤⎢⎥⎣⎦上递增,且()()02f f ≤,故()f x 在[]0,2上的最大值为()253f a =-;当112a <<,即112a <<时, ()f x 在10,a ⎡⎤⎢⎥⎣⎦上递减,在1,2a ⎡⎤⎢⎥⎣⎦上递增,且()()02f f >,()f x 在[]0,2上的最大值为()01f a =+; 当11a≥,即102a <≤时, ()f x 在[]0,2上递减,最大值为()01f a =+;综上所述, ()max 53,1{1,01a a f x a a -≥=+<<19.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率; (Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数学.科网不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例. 【答案】(1)0.4(2)20(3)3:2 【解析】试题分析:(Ⅰ)根据频率=组距×高,可得分数小于70的概率为:1﹣(0.04+0.02)×10;(Ⅱ)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.进而得到答案. 试题解析:(1)由频率分布直方图知,分数在[)70,80的频率为0.04100.4⨯=, 分数在[)80,90的频率为0.02100.2⨯=,则分数小于70的频率为10.40.20.4--=,故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4. (2)由频率分布直方图知,样本中分数在区间[]50,90的人数为()0.010.020.040.021010090+++⨯⨯= (人),已知样本中分数小于40的学生有5人,所以样本中分数在区间[)40,50内的人数为1009055--= (人), 设总体中分数在区间[)40,50内的人数为x , 则5100400x=,得20x =, 所以总体中分数在区间[)40,50内的人数为20人. (3)由频率分布直方图知,分数不小于70的人数为()0.040.021010060+⨯⨯= (人),已知分数不小于70的男女生人数相等, 故分数不小于70分的男生人数为30人, 又因为样本中有一半男生的分数不小于70, 故男生的频率为: 0.6, 即女生的频率为: 0.4,即总体中男生和女生人数的比例约为: 3:2.点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的; (3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.20.如图所示,在四棱锥P ABCD -中, //AB CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===, 90APD ∠=,求直线PB 与平面ABCD 所成的角的大小.【答案】(1)见解析;(2)30.【解析】试题分析:(1)根据题设条件证得AB ⊥平面PAD ,再根据面面垂直的判定定理,即可得到平面PAB ⊥平面PAD ; (2)取AD 的中点O ,连PO 、BO ,根据线面角的定义得到PBO ∠为直线PB 与平面ABCD 所成的角,在等腰Rt PAD ∆和等腰Rt PAB ∆中,即可直线PB 与平面ABCD 所成的角.试题解析:(1)//AB CD , CD PD ⊥,故AB PD ⊥,又AB PA ⊥, PA PD P ⋂=,可得AB ⊥平面PAD , AB ⊂平面PAB ,故平面PAB ⊥平面PAD ; (2)取AD 的中点O ,连PO 、BO , 由于PA PD =,故PO ⊥ AD ,结合平面PAB ⊥平面PAD ,知PO ⊥平面ABCD , 故PBO ∠为直线PB 与平面ABCD 所成的角,在等腰Rt PAD ∆和等腰Rt PAB ∆中, PO =, PB =, 于是1sin 2PO PBO PB ∠==,即直线PB 与平面ABCD 所成的角为30.21.长为2a 的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动. (1)求线段AB 的中点的轨迹Γ的方程;(2)当2a =时,曲线Γ与x 轴交于,C D 两点,点G 在线段CD 上,过G 作x 轴的垂线交曲线Γ于不同的两点,E F ,点H 在线段DF 上,满足GH 与CE 的斜率之积为-2,试求DGH ∆与DGF ∆的面积之比.【答案】(1)222x y a +=(2)23.【解析】试题分析:(1)设线段AB 的中点为(),x y ,根据平面上两点间的距离公式,即可求解线段AB 的中点的轨迹Γ的方程;(2)当2a =时,直线GH 和直线DF 的方程,联立方程组,求得点H 的坐标,即可得打结果. 试题解析:设线段AB 的中点为(),x y ,则()2,0A x , ()0,2B y ,故2AB a ==,化简得222x y a +=,此即线段AB 的中点的轨迹Γ的方程;【法二:当A 、O 重合或B 、O 重合时, AB 中点到原点距离为a ;当A 、B 、O 不共线时,根据直角三角形斜边中线等于斜边的一半,知AB 中点到原点距离也恒为a ,故线段AB 的中点的轨迹Γ的方程为222x y a +=】(2)当2a =时,曲线Γ的方程为224x y +=,它与x 轴的交点为()2,0C -、()2,0D ,设()0,0G x , ()00,E x y , ()00,F x y -, 直线CE 的斜率002CEy k x =+,故直线GH 的斜率()0022GH x k y -+=, 直线GH 的方程是()()00022x y x x y -+=-,而直线DF 的方程是0022y x y x -=--,即()0022y y x x =--- 联立()()()000022{22x y x x y y y x x -+=-=---,解得()00213{23x x y y +==-,此即点H 的坐标, 故23DGH H DGF F S y S y ∆∆==. 点睛:本题主要考查了轨迹方程的求解和两条直线的位置关系的应用,其中解答中涉及到平面上两点间的距离公式的应用,直线与圆的位置关系等知识点的综合考查,本题的解答中确定直线GH 和直线DF 的方程,联立方程组,求得点H 的坐标是解得关键. 22.已知函数()•,x x f x e a e x R -=+∈. (1)当1a =时,证明: ()f x 为偶函数;(2)若()f x 在[)0,+∞上单调递增,求实数a 的取值范围;(3)若1a =,求实数m 的取值范围,使()()221m f x f x ⎡⎤+≥+⎣⎦在R 上恒成立.【答案】(1)见解析;(2)1a ≤;(3)34m ≥. 【解析】试题分析:(1)代入1a =,根据函数奇偶性的定义,即可判定()f x 为偶函数;(2)利用函数单调性的定义,求得函数()f x 在[)0,+∞上单调递增,进而得到12x x a e +<对任意的120x x ≤<恒成立,即可求解实数a 的取值范围; (3)由(1)、(2)知函数()f x 的最小值()02f =,进而得()()222x x f x e e -=+-,设x x t e e -=+,得不等式()()221m f x f x ⎡⎤⋅+≥+⎣⎦恒成立,等价于21m t t ⋅≥+,进而21t m t+≥恒成立,利用二次函数的性质即可求解实数m 的取值范围. 试题解析:(1)当1a =时, ()x x f x e e -=+,定义域(),-∞+∞关于原点对称, 而()()x x f x e e f x --=+=,说明()f x 为偶函数; (2)在[)0,+∞上任取1x 、2x ,且12x x <, 则()()()()()121211221212x x x x x x x x x x e e eaf x f x e aee aee +--+---=+-+=,因为12x x <,函数x y e =为增函数,得12x x e e <, 120x x e e -<, 而()f x 在[)0,+∞上单调递增,得()()12f x f x <, ()()120f x f x -<, 于是必须120x x e a +->恒成立, 即12x x a e +<对任意的120x x ≤<恒成立,1a ∴≤;(3)由(1)、(2)知函数()f x 在(],0-∞上递减,在[)0,+∞上递增, 其最小值()02f =,且()()22222x x x x f x e e e e --=+=+-,设x x t e e -=+,则[)2,t ∈+∞, 110,2t ⎛⎤∈ ⎥⎝⎦于是不等式()()221m f x f x ⎡⎤⋅+≥+⎣⎦恒成立,等价于21m t t ⋅≥+, 即21t m t +≥恒成立, 而22211111124t t t t t +⎛⎫=+=+- ⎪⎝⎭,仅当112t =,即2t =时取最大值34,故34m ≥点睛:本题主要考查了函数性质的综合应用,其中解答中涉及到函数的单调性的定义及判定、函数的奇偶性性的判定与证明,以及函数的单调性与奇偶性的应用、二次函数的最值等知识点的综合考查,其中熟记函数的单调性的定义、奇偶性的定义和熟练应用是解答的关键.同时着重考查了学生分析问题和解答问题的能力.。