第2课时 单项式
- 格式:ppt
- 大小:1.61 MB
- 文档页数:12
新人教七年级上册第二章第2课时单项式【知识与技能】1.理解单项式及单项式的系数、次数的概念.2.会准确迅速地确定一个单项式的系数和次数.【过程与方法】通过列代数式,了解单项式的有关概念,结合小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.【情感态度】初步培养学生观察、分析、抽象、概括等思维能力和应用意识.【教学重点】1.掌握用字母表示有关单项式的数量关系.2.掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数.【教学难点】单项式概念的建立.一、情境导入,初步认识问题下列各式子:100t, 0.8p,mn, a2h, -n,它们有什么特点?【教学说明】先让学生通过观察、分析、与同伴进行交换,试着说出自己找到的各式特点.教师给予积极的鼓励,适当的总结,引入新课题.二、思考探究,获取新知单项式、单项式的系数和次数.问题教材第56页思考.【教学说明】结合上节课时的学习,用字母表示数的式子有什么特点?教师提出这个问题,让学生稍作思考后回答,然后师生共同归纳,得出有关单项式的概念及其系数和次数.教师应向学生强调以下几点:①单项式中不含加减运算,只含字母与字母或数与字母的乘法(包括乘方)运算;②当一个单项式的系数是1时,“1”统一省略不写.当一个单项式的系数是-1时,“1”可以省略不写,但“-”不能省略;③一个数也是单项式;④单项式的系数是带分数时,要写成假分数,如141x 2y 要写成45x 2y ;⑤单项式的系数包括它前面的符号;⑥单项式的次数是所有字母次数的和,不是看哪一个字母的次数最高.三、典例精析,掌握新知例1 教材第56~57页例3.【教学说明】这个例题较为简单,可让学生独立完成后教师进行巡视,及时发现问题.巡视过程中,教师注意看学生是否会将第(2)小题21ah 的次数写成1,是否会将第(3)小题的系数写成0,若发现有此类问题要进行纠正.此外,教师还应让学生看第(4)(5)小题的结果,向学生强调:用字母表示数后,同一个式子可以表示不同的意义.例2 判断下列各代数式是否是单项式.如不是,请说明理由;如是,请指出它的系数和次数.①x +1; ②x 1; ③πr 2; ④-23a 2b. 解:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x 的商;③是,它的系数是π,次数是2;④是,它的系数是-23,次数是3. 【教学说明】通过这个例题,教师可让学生说明:①中的式子是下一课时要学到的多项式;②中的式子是分式,在以后的学习中要学到;③中的π是常数,不是字母(学生对此可能有思维定势);④中的次数是a 的次数与b 的次数相加,不是单指a 的次数.试一试 教材第57页练习.【教学说明】在讲解完上面的例题后,教师引导学生做教材第57页练习.对于第1题,教师让学生分成2组,第1组回答系数,第2组回答次数,看哪个组回答得对,以培养学生的团队意识,活跃课堂气氛.第2题为用字母表示数的题,教师仍可点名让学生回答.四、运用新知,深化理解1.下列各式中,单项式有( )A.4个B.5个C.6个D.7个2.单项式-3πxy 2z 3的系数和次数分别是( )A.-π,5B.-1,6C.-3π,6D.-3,73.判断题.(对的打“√”,错的打“(1)字母a 和数字1都不是单项式. ( )(2)x 3可以看作x 1与3的乘积,所以式子x3是单项式. ( ) (3)单项式xyz 的次数是3. ( )(4)-323y x 这个单项式系数是2,次数是4. ( ) (5)单项式24的次数是4. ( )4.指出下列单项式的系数和次数.①-6; ②-a 8; ③+2a 2b; ④-32352z y x . 5.如果(a+1)x 3y b-1是关于x 、y 的单项式,且系数不为0,次数为5,那么a 、b 满足什么条件?【教学说明】以上几题均是对本课时的知识进行练习巩固,教师可让学生先独立完成,然后学生举手回答,看学生会在哪方面有困惑或疑问,然后有针对性地对相应知识点进行讲解.【答案】1.B2.C3.(1)× (2)× (3)√ (4)× (5)×4.①系数为-6,次数为0.【解析】一个数字也是单项式,此处-6可看作-6与一个指数为0的字母相乘,所以其次数为0.②系数为-1,次数为8.③系数为2,次数为3.④系数为-332,次数为8. 5.解:由题意可得,a+1≠0,且3+b-1=5,解得a ≠-1,b=3.即a 、b 满足的条件是a ≠-1,b=3.五、师生互动,课堂小结教师提出以下问题,让学生思考,然后师生一起进行知识小结:(1)什么是单项式?单项式的系数和次数是什么?(2)你还有什么疑问和困惑?说说看.1.布置作业:从教材习题2.1中选取.2.完成练习册中本课时的练习.本课时内容是概念学习课,教学过程要重点展示概念的形成过程,由学生观察、分析、比较,找出单项式的共同特点,再归纳、抽象概括,形成单项式及相关概念的定义.整个教学过程要遵照启发式原则,凡是经学生努力探究能找出的知识都交由学生自主完成,这样有助于提升学生用数学解决问题的能力.。
第2课时 单项式和多项式1.理解单项式、单项式系数、次数及多项式的概念;(重点)2.能够迅速而准确的确定一个单项式的系数和次数或一个多项式的项数和次数; 3.能够用单项式或者多项式表示具体问题中的数量关系.(难点)一、情境导入 1.思考:(1)若正方形的边长为a ,则正方形的面积是________,体积是________; (2)设n 表示一个数,则它的相反数是________;(3)一个两位数的十位上的数字是a ,个位上的数字是b ,则这个两位数是________; (4)一辆汽车的速度是v 千米/时,行驶t 小时所走过的路程为________千米. 2.观察所列式子包含哪些运算,有何共同的运算特征. 二、合作探究 探究点一:单项式【类型一】 单项式的判断例题1 下列代数式2x ,-13ab 2c ,x +12,πr 2,4x ,a 2+2a ,0,m n 中,单项式有( )A .4个B .5个C .6个D .7个解析:2x ,-13ab 2c ,πr 2,0,都符合单项式的定义,共4个.故选A.方法总结:数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式.分母中含字母的不是单项式,分子中含加、减运算的式子也不是单项式.【类型二】 确定单项式的系数和次数例题2 分别写出下列单项式的系数和次数:(1)-ab 2; (2)5ab 3c 27; (3)2πxy23.解析:单项式的系数就是单项式中的数字因数;单项式的次数就是单项式中所有字母指数的和,只要将这些字母的指数相加即可.解:(1)单项式的系数是-1,次数是3;(2)单项式的系数是57,次数是6;(3)单项式的系数是2π3,次数是3.方法总结:(1)当单项式的系数是1或-1时,“1”通常省略不写;单项式的系数是带分数时,通常写成假分数.单项式的系数包括前面的符号.(2)我们把常数项的次数看作0.确定单项式的次数时,单项式中单独一个字母的指数1不能忽略,如-3x 3y ,它的指数是4而不是3.(3)π是圆周率,是一个确定的数,不是字母.探究点二:多项式【类型一】 单项式、多项式与整式的识别例题3 指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?x 2+y 2,-x ,a +b3,10,6xy +1,1x ,17m 2n ,2x 2-x -5,2x 2+x,a 7.解析:根据整式、单项式、多项式的概念和区别来进行判断. 解:2x 2+x ,1x的分母中含有字母,既不是单项式,也不是多项式,更不是整式. 单项式有-x ,10,17m 2n ,a 7;多项式有x 2+y 2,a +b3,6xy +1,2x 2-x -5;整式有x 2+y 2,-x ,a +b3,10,6xy +1,17m 2n ,2x 2-x -5,a 7. 方法总结:(1)分母中含有字母(π除外)的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算.【类型二】 确定多项式的项和次数例题4 写出下列各多项式的项数和次数,并指出是几次几项式:(1)23x 2-3x +5;(2)a +b +c -d ; (3)-a 2+a 2b +2a 2b 2. 解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.解:(1)23x 2-3x +5的项数为3,次数为2,二次三项式;(2)a +b +c -d 的项数为4,次数为1,一次四项式;(3)-a 2+a 2b +2a 2b 2的项数为3,次数为4,四次三项式. 方法总结:(1)多项式的项一定包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项.【类型三】 根据多项式的概念求字母的取值例题5 已知-5x m +104x m -4x m y 2是关于x 、y 的六次多项式,求m 的值,并写出该多项式.解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m +2=6,解得m =4,进而可得此多项式.解:由题意得m +2=6,解得m =4.此多项式是-5x 4+104x 4-4x 4y 2. 方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.例题6 若关于x 的多项式-5x 3-mx 2+(n -1)x -1不含二次项和一次项,求m 、n 的值. 解析:多项式不含二次项和一次项,则二次项和一次项系数为0.解:∵关于x 的多项式-5x 3-mx 2+(n -1)x -1不含二次项和一次项, ∴m =0,n -1=0,则m =0,n =1.方法总结:多项式不含哪一项,则哪一项的系数为0.三、板书设计整式⎩⎪⎨⎪⎧单项式⎩⎪⎨⎪⎧系数:单项式中的数字因数次数:所有字母的指数和多项式⎩⎪⎨⎪⎧项数:单项式的个数次数:次数最高的项的次数这节课的教学内容并不难,如果采用讲授的方式,很快90%以上的学生都可以理解、掌握.虽然单纯地从学生接受知识的角度,讲授法应该效果更好,但同时学生的自主学习的习惯和能力也不知不觉地被忽略了.1.单项式:(1)单项式:即由_________与______的 组成的代数式称为单项式。